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Figure 1: Coherent reconstruction of pose and shape for multiple people. Typical top-down regression baselines (center) suffer from

predicting people in overlapping positions, or in inconsistent depth orderings. Our approach (right) is trained to respect all these constraints

and recover a coherent reconstruction of all the people in the scene in a feedforward manner.

Abstract

In this work, we address the problem of multi-person

3D pose estimation from a single image. A typical re-

gression approach in the top-down setting of this problem

would first detect all humans and then reconstruct each

one of them independently. However, this type of predic-

tion suffers from incoherent results, e.g., interpenetration

and inconsistent depth ordering between the people in the

scene. Our goal is to train a single network that learns to

avoid these problems and generate a coherent 3D recon-

struction of all the humans in the scene. To this end, a

key design choice is the incorporation of the SMPL para-

metric body model in our top-down framework, which en-

ables the use of two novel losses. First, a distance field-

based collision loss penalizes interpenetration among the

reconstructed people. Second, a depth ordering-aware loss

reasons about occlusions and promotes a depth ordering

of people that leads to a rendering which is consistent

with the annotated instance segmentation. This provides

depth supervision signals to the network, even if the im-

age has no explicit 3D annotations. The experiments show

that our approach outperforms previous methods on stan-

dard 3D pose benchmarks, while our proposed losses en-

able more coherent reconstruction in natural images. The

project website with videos, results, and code can be found

at: https://jiangwenpl.github.io/multiperson

1. Introduction

Recent work has achieved tremendous progress on the

frontier of 3D human analysis tasks. Current approaches
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have established impressive performance for 3D keypoint

estimation [35, 57], 3D shape reconstruction [11, 62], full-

body 3D pose and shape recovery [15, 26, 28, 43], or even

going beyond that and estimating more detailed and expres-

sive reconstructions [42, 63]. However, as we progress to-

wards more holistic understanding of scenes and people in-

teracting in them, a crucial step is the coherent 3D recon-

struction of multiple people from single images.

Regarding multi-person pose estimation, on one end of

the spectrum, we have bottom-up approaches. The works

following this paradigm, first detect all body joints in the

scene and then group them, i.e., assigning them to the ap-

propriate person. However, it is not straightforward how

bottom-up processing can be extended beyond joints (e.g.,

use it for shape estimation, or mesh recovery). Different

from bottom-up, top-down approaches first detect all peo-

ple in the scene, and then estimate the pose for each one

of them. Although they take a hard decision early on (per-

son detection), they typically rely on state-of-the-art meth-

ods for person detection and pose estimation which allows

them to achieve very compelling results, particularly in the

2D pose case, e.g., [9, 56, 64]. However, when reasoning

about the pose of multiple people in 3D, the problems can

be more complicated than in 2D. For example, the recon-

structed people can overlap each other in the 3D space, or

be estimated at depths that are inconsistent with the actual

depth ordering, as is demonstrated in Figure 1. This means

that it is crucial to go beyond just predicting a reasonable

3D pose for each person individually, and instead estimate

a coherent reconstruction of all the people in the scene.

This coherency of the holistic scene is the primary goal

of this work. We adopt the typical top-down paradigm, and

our aim is to train a deep network that learns to estimate a

coherent reconstruction of all the people in the scene. Start-
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Figure 2: Overview of the proposed approach. We design an end-to-end framework for 3D pose and shape estimation of multiple people

from a single image. An R-CNN-based architecture [19] detects all people in the image and estimates their SMPL parameters [34]. During

training we incorporate constraints to promote a coherent reconstruction of all the people in the scene. First, we use an interpenetration

loss to avoid people overlapping each other. Second, we apply a depth ordering-aware loss by rendering the meshes of all the people to the

image and encouraging the rendered instance segmentation to match with the annotated instance masks.

ing with a framework that follows the R-CNN pipeline [48],

a key decision we make is to use of the SMPL parametric

model [34] as our representation, and add a SMPL estima-

tion branch to the R-CNN. The mesh representation pro-

vided by SMPL allows us to reason about occlusions and

interpenetrations enabling the incorporation of two novel

losses towards coherent 3D reconstruction. First, a com-

mon problem of predictions from regression networks is

that the reconstructed people often overlap each other, since

the feedforward nature does not allow for holistic feedback

on the potential intersections. To train a network that learns

to avoid this type of collisions, we introduce an interpen-

etration loss that penalizes intersections among the recon-

structed people. This term requires no annotations and re-

lies on a simple property of natural scenes, i.e., that peo-

ple cannot intersect each other. Besides collisions, another

source of incoherency in the results is that the estimated

depths of the meshes are not respecting the actual depth or-

dering of the humans in the scene. Equipped with a mesh

representation, we render our holistic scene prediction on

the 2D image plane and penalize discrepancies of this ren-

dering from the annotated instance segmentation. This loss

enables reasoning about occlusion, encouraging the depth

ordering of the people in the scene to be consistent with the

annotated instance masks. Our complete framework (Fig-

ure 2) is evaluated on various benchmarks and outperforms

previous multi-person 3D pose and shape approaches, while

the proposed losses improve coherency of the holistic result

both qualitatively and quantitatively.

To summarize, our main contributions are:

• We present a complete framework for coherent regres-

sion of 3D pose and shape for multiple people.

• We train with an interpenetration loss to avoid regress-

ing meshes that intersect each other.

• We train with a depth ordering-aware loss to promote

reconstructions that respect the depth ordering of the

people in the scene.

• We outperfrom previous approaches for multi-person

3D pose and shape, while recovering significantly

more coherent results.

2. Related work

In this Section we provide a short description of prior

works that are more relevant to ours.

Single-person 3D pose and shape: Many recent works

estimate 3D pose in the form of a skeleton, e.g., [35, 39, 44,

47, 57, 59, 60, 67], or 3D shape in a non-parmetric way,

e.g., [11, 53, 62]. However, here we focus on full-body

pose and shape reconstruction in the form of a mesh, typi-

cally using a parametric model, like SMPL [34]. After the

early works on the problem [14, 52], the first fully auto-

matic approach, SMPLify, was proposed by Bogo et al. [4].

SMPLify iteratively fits SMPL on the 2D joints detected

by a 2D pose estimation network [46]. This optimization

approach was later extended in multiple ways; Lassner et

al. [31] use silhouettes for the fitting, Varol et al. [62] use

voxel occupancy grids, while Pavlakos et al. [42] fit a more

expressive parametric model, SMPL-X.

Despite the success of the aforementioned fitting ap-

proaches, recently we have observed an increased interest

in approaches that regress the pose and shape parameters

directly from images, using a deep network for this task.

Many works focus on first estimating some form of in-

termediate representation before regressing SMPL param-

eters. Pavlakos et al. [45] use keypoints and silhouettes,
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Omran et al. [41] use semantic part segmentation, Tung et

al. [61] append heatmaps for 2D joints to the RGB input,

while Kolotouros et al. [29] regress the mesh vertices with

a Graph CNN. Regressing SMPL parameters directly from

RGB input is more challenging, but it avoids any hand-

designed bottleneck. Kanazawa et al. [26] use an adversar-

ial prior to penalize improbable 3D shapes during training.

Arnab et al. [3] use temporal context to improve the regres-

sion network. Güler et al. [15] incorporate a test-time post-

processing based on 2D/3D keypoints and DensePose [16].

Multi-person 3D pose: For the multi-person case, the

top-down paradigm is quite popular for 3D pose estima-

tion, since it capitalizes on the success of the R-CNN

works [13, 48, 19]. The LCR-Net approaches [50, 51] first

detect each person, then classify its pose in a pose clus-

ter and finally regress an offset for each joint. Dabral et

al. [10] first estimate 2D joints inside the bounding box and

then regress 3D pose. Moon et al. [40] contribute a root net-

work to give an estimate of the depth of the root joint. Zan-

fir et al. [65] rely on scene constraints to iteratively optimize

the 3D pose and shape of the people in the scene. Alterna-

tively, there are also approaches that follow the bottom-up

paradigm. Mehta et al. [38] propose a formulation based on

occlusion-robust pose-maps, where Part Affinity Fields [6]

are used for the association problem. Follow-up work [37],

improves, among others, the robustness of the system. Fi-

nally, Zanfir et al. [66] solve a binary integer linear program

to perform skeleton grouping.

In the context of pose and shape estimation in particular,

there is a limited number of works that estimate full-body

3D pose and shape for multiple people in the scene. Zan-

fir et al. [65] optimize the 3D shape of all the people in

the image using multiple scene constraints. Our approach

draws inspiration from this work and shares the same goal,

in the sense of recovering a coherent 3D reconstruction. In

contrast to them, instead of optimizing for this coherency at

test-time, we train a feedforward regressor and use the scene

constraints at training time to encourage it to produce coher-

ent estimates at test-time. Using a feedforward network to

estimate pose and shape for multiple people has been pro-

posed by the work of Zanfir et al. [66]. However, in that

case, 3D shape is regressed based on 3D joints, which are

the output of a bottom-up system. In contrast, our approach

is top-down, and SMPL parameters are regressed directly

from pixels, instead of using an intermediate representation,

like 3D joints. In fact, it is non-trivial to design a framework

for SMPL parameter regression in a bottom-up manner.

Coherency constraints: An important aspect of our

work is the incorporation of loss terms that promote co-

herent 3D reconstruction of the multiple humans. Re-

garding our interpenetration loss, Bogo et al. [4] and

Pavlakos et al. [42] use a relevant objective to avoid self-

interpenetrations of the human under consideration. In a

more similar spirit to us, Zanfir et al. [65] use a volume oc-

cupancy loss to avoid humans intersecting each other. In

different applications, Hasson et al. [18] penalize interpen-

etrations between the object and the hand that interacts with

it, while Hassan et al. [17] penalize interpenetrations be-

tween humans and their environment. The majority of the

above works uses the interpenetration penalty to iteratively

refine estimates at test-time. With the exception of [18], our

work is the only one that uses an interpenetration term to

guide the training of a feedforward regressor and promote

colliding-free reconstructions at test time.

Regarding our depth ordering-aware loss, we follow the

formulation of Chen et al. [8], which was also used in the

context of 3D human pose by Pavlakos et al. [44]. In con-

trast to them, we do not use explicit depth annotations, but

instead, we leverage the instance segmentation masks to

reason about occlusion and thus, depth ordering. The work

of Rhodin et al. [49] is also relevant, where inferring depth

ordering is used as an intermediate abstraction for scene de-

composition from multiple views. Our work also aims to

estimate a coherent depth ordering, but we do so from a sin-

gle image with the guidance of instance segmentation, while

we retain a more explicit human representation in terms of

meshes. Finally, using instance segmentation via render and

compare has also been proposed by Kundu et al. [30]. How-

ever, their multi-instance evaluation includes only rigid ob-

jects, specifically cars, whereas we investigate the, signifi-

cantly more complex, non-rigid case.

3. Technical approach

In this Section, we describe the technical approach fol-

lowed in this work. We start with providing some in-

formation about the SMPL model (Subsection 3.1) and

the baseline regional architecture we use (Subsection 3.2).

Then we describe in detail our proposed losses promoting

interpenetration-free reconstruction (Subsection 3.3) and

consistent depth ordering (Subsection 3.4). Finally, we pro-

vide more implementation details (Subsection 3.5).

3.1. SMPL parametric model

For the human body representation, we use the SMPL

parametric model of the human body [34]. What makes

SMPL very appropriate for our work, in comparison with

other representations, is that it allows us to reason about oc-

clusion and interpenetration enabling the use of the novel

losses we incorporate in the training of our network. The

SMPL model defines a function M(θ,β) that takes as in-

put the pose parameters θ, and the shape parameters β, and

outputs a mesh M ∈ R
Nv×3, consisting of Nv = 6890

vertices. The model also offers a convenient mapping from

mesh vertices to k body joints J , through a linear regressor

W , such that joints can be expressed as a linear combination

of mesh vertices, J = WM .
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Figure 3: Illustration of interpenetration loss. Left: Collision

between person i (red) and j (beige). Center: Distance field φi

for person i, Right: Mesh Mj of person j. The vertices of Mj

that collide with person i, i.e., located in non-zero areas of φi and

visualized with soft red, are penalized by the interpenetration loss.

3.2. Baseline architecture

In terms of the architecture for our approach, we follow

the familiar R-CNN framework [48], and use a structure

that is most similar to the Mask R-CNN iteration [19]. Our

network consists of a backbone (here ResNet50 [20]), a Re-

gion Proposal Network, as well as heads for detection and

SMPL parameter regression (SMPL branch). Regarding the

SMPL branch, its architecture is similar to the iterative re-

gressor proposed by Kanazawa et al. [26], regressing pose

and shape parameters, θ and β respectively, as well as cam-

era parameters π = {s, tx, ty}. The camera parameters are

predicted per bounding box but we later update them based

on the position of the bounding box in the full image (details

in the Sup.Mat.). Although there is no explicit feedback

among bbox predictions, the receptive field of each proposal

includes the majority of the scene. Since each bounding box

is aware of neighboring people and their poses, it can make

an informed pose prediction that is consistent with them.

For our baseline network, the various components are

trained jointly in an end-to-end manner. The detection task

is trained according to the training procedure of [19], while

for the SMPL branch, the training details are similar to the

ones proposed by Kanazawa et al. [26]. In the rare cases

that 3D ground truth is available, we apply a loss, L3D, on

the SMPL parameters and the 3D keypoints. In the most

typical case that only 2D joints are available, we use a 2D

reprojection loss, L2D, to minimize the distance between

the ground truth 2D keypoints and the projection of the 3D

joints, J , to the image. Additionally, we also use a discrimi-

nator and apply an adversarial prior Ladv on regressed pose

and shape parameters, to encourage the output bodies to lie

on the manifold of human bodies. Each of the above losses

is applied independently to each proposal, after assigning

it to the corresponding ground truth bounding box. More

details about the above loss terms and the training of the

baseline model are included in the Sup.Mat.

3.3. Interpenetration loss

A critical barrier towards coherent reconstruction of mul-

tiple people from a single image is that the regression net-

work can often predict the people to be in overlapping lo-

cations. To promote prediction of non-colliding people, we

introduce a loss that penalizes interpenetrations among the

reconstructed people. Our formulation draws inspiration

from [17]. An important difference is that instead of a static

scene and a single person, our scene includes multiple peo-

ple and it is generated in a dynamic way during training.

Let φ be a modified Signed Distance Field (SDF) for the

scene that is defined as follows:

φ(x, y, z) = −min (SDF(x, y, z), 0) , (1)

According to the above definition, inside each human, φ

takes positive values, proportional to the distance from the

surface, while it is simply 0 outside of the human. Typically,

φ is defined on a voxel grid of dimensions Np ×Np ×Np.

The naı̈ve generation of a single voxelized representation

for the whole scene is definitely possible. However, we of-

ten require a very fine voxel grid, which depending on the

extend of the scene, might make processing intractable in

terms of memory and computation. One critical observa-

tion here is that we can compute a separate φi function for

each person in the scene, by calculating a tight box around

the person and voxelizing it. This allows us to ignore empty

scene space that is not covered by any person and we can

instead use a fine spatial resolution to get a detailed vox-

elization of the body. Using this formulation, the collision

penalty of person j for colliding with person i is defined as:

Pij =
∑

v∈Mj

φ̃i(v), (2)

where φ̃i(v) samples the φi value for each 3D vertex v in

a differentiable way from the 3D grid using trilinear inter-

polation (Figure 3). The φi computation for person i is

performed by a custom GPU implementation. This com-

putation does not have to be differentiable; φi only defines

a distance field from which we sample values in a differ-

entiable way. By definition, Pij is non-negative. It takes

value 0 if there is no collision between person i and j and

increases as the distance of the surface vertices for person j

move farther from the surface of person i. In theory, Pij can

be used by itself as an optimization objective for interpen-

etration avoidance. However, in practice, we observed that

it results in very large gradients for the person translation,

leading to training instabilities when there are heavy colli-

sions. Instead of the typical term, we use a robust version of

this objective. More specifically, our final interpenetration

loss for a scene with N people is defined as follows:

LP =
N
∑

j=1

ρ





N
∑

i=1,i 6=j

Pij



 (3)

where ρ is the Geman-McClure robust error function [12].

To avoid penalizing intersections between boxes corre-
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Figure 4: Illustration of depth ordering-aware loss. For an RGB image (first image), we consider the annotated instance segmentation

(second image), and the instances based on the rendering of the estimated meshes on the image plane (third image). In case that there is a

disagreement between the person index, e.g., for pixel p, where y(p) 6= ŷ(p), we penalize the corresponding depth estimates at this pixel

with an ordinal depth loss. The pixel depths Dy(p)(p) and Dŷ(p)(p) are estimated by rendering the depth map independently for each

person mesh (fourth and fifth image). This allows gradients to be backpropagated even to the non-visible vertices.

sponding to the same person, we use only the most confi-

dence box proposal assigned to a ground truth box.

3.4. Depth orderingaware loss

Besides interpenetration, another common problem in

multi-person 3D reconstruction is that people are often es-

timated in incorrect depth order. This problem is more

evident in cases where people overlap on the 2D image

plane. Although it is obvious to the human eye which per-

son is closer (due to the occlusion), the network predictions

can still be incoherent. Fixing this depth ordering problem

would be easy if we had access to pixel-level depth annota-

tions. However, this type of annotations is rarely available.

Our key idea here is that we can leverage the instance seg-

mentation annotations that are often available, e.g., in the

large scale COCO dataset [32]. Rendering the meshes of

all the reconstructed people on the image plane can indicate

the person corresponding to each pixel and optimize based

on the agreement with the annotated instance annotation.

Although this idea sounds straightforward, its realization

is more complicated. An obvious implementation would be

to use a differentiable renderer, e.g., the Neural Mesh Ren-

derer (NMR) [27], and penalize inconsistencies between

the actual instance segmentation and the one produced by

rendering the meshes to the image. The practical problem

with [27] is that it backpropagates errors only to visible

mesh vertices; if there is a depth ordering error, it will not

promote the invisible vertices to move closer to the cam-

era. In practice, we observed that this tends to move most

people farther away, collapsing our training. Liu et al. [33]

attempt to address this problem, but we observed that their

softmax operation across the depths can result in vanishing

gradients, while we also faced numerical instabilities.

Instead of rendering only the semantic segmentation of

the scene, we also render the depth image Di for each per-

son independently using NMR [27]. Assuming the scene

has N people, we assign a unique index i ∈ {1, 2, . . . , N}
to each one of them. Let y(p) be the person index at pixel

location p in the ground truth segmentation, and ŷ(p) be

the predicted person index based on the rendering of the 3D

meshes. We use 0 to indicate background pixels. If for a

pixel p the two estimates indicate a person (no background)

and disagree, i.e., y(p) 6= ŷ(p), then we apply a loss to the

depth values of both people for this pixel, y(p) and ŷ(p), to

promote the correct depth ordering. The loss we apply is an

ordinal depth loss, similar in spirit to [8]. More specifically,

the complete loss expression is:

LD =
∑

p∈S

log
(

1 + exp
(

Dy(p)(p)−Dŷ(p)(p)
))

(4)

where S = {p ∈ I : y(p) > 0, ŷ(p) > 0, y(p) 6= ŷ(p)}
represents the set of pixels for image I where we have depth

ordering mistakes (Figure 4). The key detail here is that

the loss is backpropagated to the mesh (and eventually the

model parameters) of both people, instead of backpropagat-

ing gradients only to the visible person, as a conventional

differentiable renderer would do. This promotes a more

symmetric nature to the loss (and the updates), and even-

tually makes this loss practical.

3.5. Implementation details

Our implementation is done using PyTorch and the pub-

licly available mmdetection library [7]. We resize all in-

put images to 512x832, keeping the same aspect ratio as

in the original COCO training. For the baseline model we

train only with the losses specified in Subsection 3.2, while

for our full model we include in our training the losses

proposed in Subsections 3.3 and 3.4. Our training uses 2

1080Ti GPUs and a batch size of 4 images per GPU.

For the SDF computation, we reimplemented [54, 55] in

CUDA. Voxelizing a single mesh in a 32 × 32 × 32 voxel

grid requires about 45ms on an 1080Ti GPU. For efficiency,

we perform 3D bounding box checks to detect overlapping

3D bounding boxes, and voxelize only the relevant meshes.

Additionally, we reimplemented parts of NMR [27] to make

rendering large images more efficient. This allowed us to

have more than an order of magnitude of speedup since the

forward pass complexity dropped from O(Fwh) to O(F +
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wh) on average, where F is the number of faces and w and

h the image width and height respectively.

4. Experiments

In this Section, we present the empirical evaluation of

our approach. First, we describe the datasets used for train-

ing and evaluation (Subsection 4.1). Then, we focus on

the quantitative evaluation (Subsections 4.2 and 4.3), and

finally we present more qualitative results (Subsection 4.4).

4.1. Datasets

Human3.6M [21]: It is an indoor dataset where a single

person is visible in each frame. It provides 3D ground truth

for training and evaluation. We use Protocol 2 of [26],

where Subjects S1,S5,S6,S7 and S8 are used for training,

while Subjects S9 and S11 are used for evaluation.

MuPoTS-3D [38]: It is a multi-person dataset providing

3D ground truth for all the people in the scene. We use this

dataset for evaluation using the same protocol as [38].

Panoptic [24]: It is a dataset with multiple people captured

in the Panoptic studio. We use this dataset for evaluation,

following the protocol of [65].

MPI-INF-3DHP [36]: It is a single person dataset with 3D

pose ground truth. We use subjects S1 to S8 for training.

PoseTrack [1]: In-the-wild dataset with 2D pose annota-

tions. Includes multiple frames for each sequence. We use

this dataset for training and evaluation.

LSP [22], LSP Extended [23], MPII [2]: In-the-wild

datasets with annotations for 2D joints. We use the train-

ing sets of these datasets for training.

COCO [32]: In-the-wild dataset with 2D pose and instance

segmentation annotations. We use the 2D joints for train-

ing as we do with the other in the-wild datasets, while the

instance segmentation masks are employed for the compu-

tation of the depth ordering-aware loss.

4.2. Comparison with the stateoftheart

For the comparison with the state-of-the-art, as a sanity

check, we first evaluate the performance of our approach on

a typical single person baseline. Our goal is always multi-

person 3D pose and shape, but we expect our approach

to achieve competitive results, even in easier settings, i.e.,

when only one person is in the image. More specifically,

we evaluate the performance of our network on the popular

Human3.6M dataset [21]. The most relevant approach here

is HMR by Kanazawa et al. [26], since we share similar

architectural choices (iterative regressor, regression target),

training practices (adversarial prior) and training data. The

results are presented in Table 1. Our approach outperforms

HMR, as well as the approach of Arnab et al. [3], that uses

the same network with HMR, but is trained with more data.

Having established that our approach is competitive in

the single person setting, we continue the evaluation with

Method HMR [26] Arnab et al. [3] Ours

Reconst. Error 56.8 54.3 52.7

Table 1: Results on Human3.6M. The numbers are mean 3D joint

errors in mm after Procrustes alignment (Protocol 2). The results

of all approaches are obtained from the original papers.

Method Haggling Mafia Ultim. Pizza Mean

Zanfir et al. [65] 140.0 165.9 150.7 156.0 153.4

Zanfir et al. [66] 141.4 152.3 145.0 162.5 150.3

Ours (baseline) 141.2 140.3 160.7 156.8 149.8

Ours (full) 129.6 133.5 153.0 156.7 143.2

Table 2: Results on the Panoptic dataset. The numbers are mean

per joint position errors after centering the root joint. The results

of all approaches are obtained from the original papers.

multi-person baselines. In this case, we consider ap-

proaches that also estimate pose and shape for multiple peo-

ple. The most relevant baselines are the works of Zan-

fir et al. [65, 66]. We compare with these approaches in

the Panoptic dataset [24, 25], using their evaluation proto-

col (assuming no data from the Panoptic studio are used for

training). The full results are reported in Table 2. Our ini-

tial network (baseline), trained without our proposed losses,

achieves performance comparable with the results reported

by the previous works of Zanfir et al. More importantly

though, adding the two proposed losses (full), improves per-

formance across all subsequences and overall, while we also

outperform the previous baselines. These results demon-

strate both the strong performance of our approach in the

multi-person setting, as well as the benefit we get from the

losses we propose in this work.

Another popular benchmark for multi-person 3D pose

estimation is the MuPoTS-3D dataset [36]. Since no

multi-person 3D pose and shape approach reports results

on this benchmark, we implement two strong top-down

baselines, based on state-of-the-art approaches for single-

person 3D pose and shape. Specifically, we select a regres-

sion approach, HMR [26], and an optimization approach,

SMPLify-X [42], and we apply them on detections provided

by OpenPose [5] (as is suggested by their public reposito-

ries), or by Mask-RCNN [19] (for the case of HMR). The

full results are reported in Table 3. As we can see, our base-

line model performs comparably to the other approaches,

while our full model trained with the proposed losses im-

proves significantly over the baseline. Similarly with the

previous results, this experiment further justifies the use of

our coherency losses. Besides this, we also demonstrate

that naı̈ve baselines trained with a single person in mind are

suboptimal for the multi-person setting of 3D pose. This

is different from the 2D case, where a single-person net-

work can perform particularly well in multi-person top-
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Method All Matched

OpenPose + SMPLify-X [42] 62.84 68.04

OpenPose + HMR [26] 66.09 70.90

Mask-RCNN + HMR [26] 65.57 68.57

Ours (baseline) 66.95 68.96

Ours (full) 69.12 72.22

Table 3: Results on MuPoTS-3D. The numbers are 3DPCK. We

report the overall accuracy (All), and the accuracy only for person

annotations matched to a prediction (Matched).

Method MuPoTS-3D PoseTrack

Our baseline 114 653

Our baseline + LP 34 202

Table 4: Ablative for interpenetration loss. The results indicate

the number of collisions on MuPoTS-3D and PoseTrack.

down pipelines as well, e.g., [9, 56, 64]. For the 3D case

though, when multiple people are involved, making the

network aware of occlusions and interpenetrations during

training, can actually be beneficial at test-time too.

4.3. Ablative studies

For this work, our interest in multi-person 3D pose esti-

mation extends beyond just estimating poses that are accu-

rate under the typical 3D pose metrics. Our goal is also to

recover a coherent reconstruction of the scene. This is im-

portant, because in many cases we can improve the 3D pose

metrics, e.g., get a better 3D pose for each detected person,

but return incoherent results holistically. For example, the

depth ordering of the people might be incorrect, or the re-

constructed meshes might be positioned such that they over-

lap each other. To demonstrate how our proposed losses im-

prove the network predictions under these coherency met-

rics even if they are only applied during training, we per-

form two ablative studies for more detailed evaluation.

First, we expect our interpenetration loss to naturally

eliminate most of the overlapping people in our predictions.

We evaluate this on MuPoTS-3D and PoseTrack, reporting

the number of collisions with and without the interpenetra-

tion loss. The results are reported in Table 4. As we ex-

pected, we observe significant decrease in the number of

collisions when we train the network with the LP loss.

Moreover, our depth ordering-aware loss should improve

the translation estimates for the people in the scene. Since

for monocular methods it is not meaningful to evaluate met-

ric translation estimates, we propose to evaluate only the

returned depth ordering. More specifically, we consider all

pairs of people in the scene, and we evaluate whether our

method predicted the ordinal depth relation for this pair cor-

rectly. In the end, we report the percentage of correctly

Method Moon et al. [40] Our baseline Our baseline + LD

Accuracy 90.85% 92.17% 93.68%

Table 5: Ablative for depth-ordering-aware loss. Depth order-

ing results on MuPoTS-3D. We consider all pairs of people in the

image, and we evaluate whether the approaches recovered the ordi-

nal depth relation between the two people correctly. The numbers

are percentages of correctly estimated ordinal depth relations.

estimated ordinal relations in Table 5. As expected, the

depth ordering-aware loss improves upon our baseline. In

the same Table, we also report the results of the approach of

Moon et al. [40] which is the state-of-the-art for 3D skeleton

regression. Although [40] is skeleton-based and thus, not

directly comparable to us, we want to highlight that even a

state-of-the-art approach (under 3D pose metric evaluation)

can still suffer from incoherency in the results. This pro-

vides evidence that we often might overlook the coherency

of the holistic reconstruction, and we should also consider

this aspect when we evaluate the quality of our results.

Finally, we underline that we do not apply these co-

herency losses at test time. Instead, during training, our

losses act as constraints to the reconstruction and ultimately

provide better supervision to the network, for images that

no explicit 3D annotations are available. The improved su-

pervision leads to more coherent results at test time too.

4.4. Qualitative evaluation

In this Subsection, we present more qualitative results of

our approach. In Figure 5 we compare our baseline with

our full model trained with the proposed losses. As ex-

pected, our full model generates more coherent reconstruc-

tions, improving over the baseline as far as interpenetration

and depth ordering mistakes are concerned. Errors can hap-

pen when there is significant scale difference among the

people and there is no overlap on the image plane (last row

of Figure 6). More results can be found in the Sup.Mat.

5. Summary

In this work, we present an end-to-end approach for

multi-person 3D pose and shape estimation from a single

image. Using the R-CNN framework, we design a top-

down approach that regresses the SMPL model parameters

for each detected person in the image. Our main contribu-

tion lies on assessing the problem from a more holistic view

and aiming on estimating a coherent reconstruction of the

scene instead of focusing only on independent pose estima-

tion for each person. To this end, we incorporate two novel

losses in our framework that train the network such that a)

it avoids generating overlapping humans and b) it is encour-

aged to position the people in a consistent depth ordering.

We evaluate our approach in various benchmarks, demon-

strating very competitive performance in the traditional 3D
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Input image Baseline Ours

Figure 5: Qualitative effect of proposed losses. Results of our baseline model (center) and our full model trained with our proposed losses

(right). As expected, we improve over our baseline in terms of coherency in the results (i.e., fewer interpenetrations, more consistent depth

ordering for the reconstructed meshes).

Figure 6: Qualitative evaluation. We visualize the reconstructions of our approach from different viewpoints; front (green background),

top (blue background) and side (red background). More qualitative results can be found in the Sup.Mat.

pose metrics, while also performing significantly better both

qualitatively and quantitatively in terms of coherency of the

reconstructed scene. In future work, we aim to more explic-

itly model interactions between people (besides the overlap

avoidance), so that we can achieve a more accurate and de-

tailed reconstruction of the scene at a finer level as well. In

a similar vein, we can incorporate further information to-

wards a holistic reconstruction of scenes. This can include

constraints from the ground plane [65], background [17], or

the objects that humans interact with [18, 58].
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