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Abstract

We present our on-going effort of constructing a large-

scale benchmark for face forgery detection. The first ver-

sion of this benchmark, DeeperForensics-1.0, represents the

largest face forgery detection dataset by far, with 60, 000
videos constituted by a total of 17.6 million frames, 10
times larger than existing datasets of the same kind. Exten-

sive real-world perturbations are applied to obtain a more

challenging benchmark of larger scale and higher diversity.

All source videos in DeeperForensics-1.0 are carefully col-

lected, and fake videos are generated by a newly proposed

end-to-end face swapping framework. The quality of gen-

erated videos outperforms those in existing datasets, vali-

dated by user studies. The benchmark features a hidden test

set, which contains manipulated videos achieving high de-

ceptive scores in human evaluations. We further contribute

a comprehensive study that evaluates five representative de-

tection baselines and make a thorough analysis of different

settings.1, 2

1. Introduction

Face swapping has become an emerging topic in com-

puter vision and graphics. Indeed, many works [1, 2, 4]

on automatic face swapping have been proposed in recent

years. These efforts have circumvented the cumbersome

and tedious manual face editing processes, hence expedit-

ing the advancement in face editing. At the same time, such

enabling technology has sparked legitimate concerns, par-

ticularly on its potential for being misused and abused. The

popularization of “Deepfakes” on the internet has further

set off alarm bells among the general public and authori-

ties, in view of the conceivable perilous implications. Ac-

cordingly, there is a dire need for countermeasures to be in

place promptly, particularly innovations that can effectively

detect videos that have been manipulated.

Working towards forgery detection, various groups have

1 GitHub: https://github.com/EndlessSora/DeeperForensics-1.0.
2 Project page: https://liming-jiang.com/projects/DrF1/DrF1.html.
† Corresponding author.

Figure 1: DeeperForensics-1.0 dataset is a new large-scale dataset

for real-world face forgery detection.

contributed datasets (e.g., FaceForensics++ [33], Deep Fake

Detection [9] and DFDC [14]) comprising manipulated

video footages. The availability of these datasets has

undoubtedly provided essential avenues for research into

forgery detection. Nonetheless, the aforementioned datasets

suffer several drawbacks. Videos in these datasets are ei-

ther of a small number, of low quality, or overly artifi-

cial. Understandably, these datasets are inadequate to train

a good model for effective forgery detection in real-world

scenarios. This is particularly true when current advances

in human face editing are able to produce extremely realis-

tic videos, rendering forgery detection a highly challenging

task. On another note, we observe high similarity between

training and test videos, in terms of their distribution, in cer-

tain works [26, 33]. Their actual efficacy in detecting real-

world face forgery cases, which are much more variable and

unpredictable, remains to be further elucidated.

We believe that forgery detection models can only be

enhanced when trained with a dataset that is exhaustive

enough to encompass as many potential real-world varia-

tions as possible. To this end, we propose a large-scale

dataset named DeeperForensics-1.0 consisting of 60, 000
videos with a total of 17.6 million frames for real-world face

forgery detection. The main steps of our dataset construc-

tion are shown in Figure 1. We set forth three yardsticks

when constructing this dataset: 1) Quality. The dataset shall

contain videos more realistic and much closer to the distri-

bution of real-world detection scenarios. (Section 3.1 and

3.2) 2) Scale. The dataset shall be made up of a large-scale

video sets. (Section 3.3) 3) Diversity. There shall be suf-

ficient variations in the video footages (e.g., compression,

blurry, transmission errors) to match those that may be en-
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Table 1: The most relevant datasets compared to our dataset. DeeperForensics-1.0 is an order of magnitude larger in scale than existing

datasets w.r.t. both real and fake parts. We build a professional indoor environment to better control the important attributes of the collected

data. 100 paid actors give consents to the use and manipulation of their faces by signing a formal agreement. We employ seven types

of perturbations at five intensity levels, leading to 35 perturbations in total. The video may be subjected to a mixture of more than one

perturbation. In contrast to prior works, we also introduce a new end-to-end high-fidelity face swapping method.

Dataset Total Videos
Ratio

(real : fake)

Controlled

Capture

Consented

Actors

Perturbations

(total number)

Perturbations

(mixture)

New

Method

UADFV [41] 98 1 : 1 × – – × ×

DeepFake-TIMIT [23] 620 only fake × – – × ×

Celeb-DF [26] 1203 1 : 1.95 × – – × ×

FaceForensics++ [33] 5000 1 : 4 × – 2 × ×

Deep Fake Detection [9]

(joins FaceForensics++)
3431 1 : 8.5 × 28 – × ×

DFDC Preview Dataset [14] 5214 1 : 3.6 × 66 3 × ×

DeeperForensics-1.0 (Ours) 60000 5 : 1 ✔ 100 35 ✔ ✔

countered in the real world (Section 3.3).

The primary challenge in the preparation of this dataset

is the lack of good-quality video footages. Specifically,

most publicly available videos are shot under an uncon-

strained environment resulting in large variations, including

but not limited to suboptimal illumination, large occlusion

of the target faces, and extreme head poses. Importantly, the

lack of official informed consents from the video subjects

precludes the use of these videos, even for non-commercial

purposes. On the other hand, while some videos of manip-

ulated faces are deceptively real, a larger number remains

easily distinguishable by human eyes. The latter is often

caused by model negligence towards appearance variations

or temporal differences, leading to preposterous and incon-

gruous results.

We approach the aforementioned challenge from two

perspectives. 1) Collecting fresh face data from 100 indi-

viduals with informed consents (Section 3.1). 2) Devising

a novel method, DeepFake Variational Auto-Encoder (DF-

VAE), to enhance existing videos (Section 3.2). In addition,

we introduce diversity into the video footages through de-

liberate addition of distortions and perturbations, simulating

real-world scenarios. We collate the newly collected data

and the DF-VAE-modified videos into the DeeperForensics-

1.0 dataset, with the aim of further expanding it gradually

over time. We benchmark five representative open-source

forgery detection methods using our dataset as well as a hid-

den test set containing manipulated videos that achieve high

deceptive ranking in user studies.

We summarize our contributions as follows: 1) We pro-

pose a new dataset, DeeperForensics-1.0 that is larger in

scale than existing ones, of high quality and rich diversity.

To improve its quality, we introduce a carefully designed

data collection and a novel framework, DF-VAE, that effec-

tively mitigate obvious fabricated effects of existing manip-

ulated videos. 2) We benchmark results of existing repre-

sentative forgery detection methods on our dataset, offering

insights into the current status and future strategy in face

forgery detection.

2. Related Work

Face forgery detection datasets. Building a dataset for

forgery detection requires a huge amount of effort on

data collection and manipulation. Early forgery detection

datasets comprise images captured under highly restrictive

conditions, e.g., MICC F2000 [7], Wild Web dataset [42],

Realistic Tampering dataset [24].

Owing to the urgency in video-based face forgery detec-

tion, some prominent groups have devoted their efforts to

create face forensics video datasets (see Table 1). UADFV

[41] contains 98 videos, i.e., 49 real videos from YouTube

and 49 fake ones generated by FakeAPP [5]. DeepFake-

TIMIT [23] manually selects 16 similar looking pairs of

people from VidTIMIT [34] database. For each of the 32
subjects, they generate about 10 videos using low-quality

and high-quality versions of faceswap-GAN [4], resulting

in a total of 620 fake videos. Celeb-DF [26] includes 408
YouTube videos, mostly of celebrities, from which 795 fake

videos are synthesized. FaceForensics++ [33] is the first

large-scale face forensic dataset that consists of 4, 000 fake

videos manipulated by four methods (i.e., DeepFakes [2],

Face2Face [36], FaceSwap [3], NeuralTextures [35])), and

1, 000 real videos from YouTube. Afterwards, Google joins

FaceForensics++ and contributes Deep Fake Detection [9]

dataset with 3, 431 real and fake videos from 28 actors.

Recently, Facebook invites 66 individuals and builds the

DFDC preview dataset [14], which includes 5, 214 original

and tampered videos with three types of augmentations.

In comparison, we invite 100 paid actors and collect

high-resolution (1920 × 1080) source data with various

poses, expressions, and illuminations. 3DMM blendshapes

[10] are taken as reference to supplement some exaggerated

expressions. We get consents from all the actors for using

and manipulating their faces. In contrast to prior works, we

also propose a new end-to-end face swapping method (i.e.,

DF-VAE) and systematically apply seven types of perturba-

tions to the fake videos at five intensity levels. The mix-

ture of distortions to a single video makes our dataset bet-

ter imitate real-world scenarios. Ultimately, we construct
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DeeperForensics-1.0 dataset, which contains 60, 000 videos

with 17.6 million frames in total, including 50, 000 original

collected videos and 10, 000 manipulated videos.

Face forgery detection benchmarks. A new promi-

nent benchmark, FaceForensics Benchmark [33], for facial

manipulation detection has been proposed recently. The

benchmark includes six image-level face forgery detection

baselines [6, 8, 12, 13, 15, 32]. Although FaceForensics

Benchmark adds distortions to the videos by converting

them into different compression rates, a deeper exploration

of more perturbation types and their mixture is missing.

Celeb-DF [26] also provides a face forgery detection bench-

mark including seven methods [6, 12, 25, 28, 30, 41, 43]

trained and tested on different datasets. In aforementioned

benchmarks, the test set usually shares a similar distribution

with the training set. Such an assumption inherently intro-

duces biases and renders these methods impractical for face

forgery detection in real-world settings with much more di-

verse and unknown fake videos.

In our benchmark, we introduce a challenging hidden

test set with manipulated videos achieving high deceptive

scores in user studies, to better simulate real-world distribu-

tion. Various perturbations are analyzed to make our bench-

mark more comprehensive. In addition, we mainly exploit

video-level forgery detection baselines [11, 16, 17, 37, 38].

Temporal information – a significant cue for video forgery

detection besides single-frame quality – has been consid-

ered. We will elaborate our benchmark in Section 4.

3. A New Large-Scale Face Forensics Dataset

The main contribution of this paper is a new large-

scale dataset for real-world face forgery detection,

DeeperForensics-1.0, which provides an alternative to ex-

isting databases. To construct a dataset more suitable for

real-world face forgery detection, we design this dataset

with careful consideration of quality, scale, and diversity. In

Section 3.1 and 3.2, we will discuss the details of data col-

lection and methodology (i.e., DF-VAE) to improve quality.

In Section 3.3, we will show how to ensure large scale and

high diversity of DeeperForensics-1.0.

3.1. Data Collection

Source data is the first factor that highly affects qual-

ity. Taking results in Figure 2 as an example, the source

data collection increases the robustness of our face swap-

ping method to extreme poses, since videos on the internet

usually have limited head pose variations.

We refer to the identity in the driving video as the “tar-

get” face and the identity of the face that is swapped onto

the driving video as the “source” face. Different from previ-

ous works, we find that the source faces play a much more

critical role than the target faces in building a high-quality

dataset. Specifically, the expressions, poses, and lighting

conditions of source faces should be much richer in order to

YouTube Source Target Swapped

Collected Source Target Swapped

Figure 2: Comparison of using only YouTube video and the col-

lected video as source data, with the same method and setting.

Figure 3: Diversity in identities, poses, expressions, and illumina-

tions in our collected source data.

perform robust face swapping. Hence, our data collection

mainly focuses on source face videos. Figure 3 shows the

diversity in different attributes of our data collection.

We invite 100 paid actors to record the source videos.

Similar to [9, 14], we obtain consents from all the actors

for using and manipulating their faces to avoid the portrait

right issues. The participants are carefully selected to en-

sure variability in genders, ages, skin colors, and nationali-

ties. We maintain a roughly equal proportion w.r.t. each of

the attributes above. In particular, we invite 53 males and

47 females from 26 countries. Their ages range from 20 to

45 years old to match the most common age group appear-

ing on real-world videos. The actors have four typical skin

tones: white, black, yellow, brown, with ratio 1:1:1:1. All

faces are clean without glasses or decorations.

Different from previous data collection in the wild (see

Table 1), we build a professional indoor environment for a

more controllable data collection. We only use the facial
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Figure 4: Examples of 3DMM blendshapes in our data collection.

Figure 5: Examples of style mismatch problems in prominent face

forensics datasets.

regions (detected and cropped by LAB [40]) of the source

data, so we can neglect the background. We set seven HD

cameras from different angles: front, left, left-front, right,

right-front, oblique-above, oblique-below. The resolution

of our recorded videos is high (1920 × 1080). We train

the actors in advance to keep the collection process smooth.

We request the actors to turn their heads and speak naturally

with eight expressions: neutral, angry, happy, sad, surprise,

contempt, disgust, fear. The head poses range from −90◦

to +90◦. Furthermore, the actors are asked to perform 53
expressions defined in 3DMM blendshapes [10] (see Fig-

ure 4) to supplement some extremely exaggerated expres-

sions. When performing 3DMM blendshapes, the actors

also speak naturally to avoid excessive frames that show

a closed mouth. In addition to expressions and poses, we

systematically set nine lighting conditions from various di-

rections: uniform, left, top-left, bottom-left, right, top-right,

bottom-right, top, bottom. The actors are only asked to turn

their heads under uniform illumination, so the lighting re-

mains unchanged on specific facial regions to avoid many

duplicated data samples recorded by the cameras set at dif-

ferent angles. In the end, our collected data contain over

50, 000 videos with a total of 12.6 million frames – an or-

der of magnitude more than existing datasets.

3.2. DeepFake Variational Auto-Encoder

To tackle low visual quality problems of previous works,

we consider three key requirements in formulating a high-

fidelity face swapping method: 1) It should be general and

scalable for us to generate large number of videos with high

quality. 2) The problem of face style mismatch caused by

appearance variations need to be addressed. Some failure

cases of existing methods are shown in Figure 5. 3) Tempo-

ral continuity of generated videos should be considered.

Based on the aforementioned requirements, we propose

DeepFake Variational Auto-Encoder (DF-VAE), a novel

learning-based face swapping framework. DF-VAE con-

sists of three main parts, namely a structure extraction mod-

ule, a disentangled module, and a fusion module. We will

give a brief and intuitive introduction of the DF-VAE frame-

work below. Please refer to the supplementary material for

detailed derivations and results.

Disentanglement of structure and appearance. The first

step of our method is face reenactment – animating the

source face with similar expression as the target face, with-

out any paired data. Face swapping is considered as a sub-

sequent step of face reenactment that performs blending be-

tween the reenacted face and the target background. For ro-

bust and scalable face reenactment, we should cleanly dis-

entangle structure (i.e., expression and pose) and appear-

ance representation (i.e., texture, skin color, etc.) of a face.

This disentanglement is rather difficult because structure

and appearance representation are far from being indepen-

dent.

The blue arrows in Figure 6 show the reconstruction pro-

cedure of the source face xt. Instead of feeding a single

source face xt, we sample another source face x′ to con-

struct unpaired data in the source domain. To make the

structure representation more evident, we use the stacked

hourglass networks [29] to extract landmarks of xt in the

structure extraction module and get the heatmap x̂t. Then

we feed the heatmap x̂t to the Structure Encoder Eα, and x′

to the Appearance Encoder Eβ . We concatenate the latent

representations (small cubes in red and green) and feed it

to the Decoder Dγ . Finally, we get the reconstructed face

x̃t, i.e., marginal log-likelihood of xt. In the target face do-

main, the reconstruction procedure is the same, as shown by

orange arrows.

During training, the network learns structure and ap-

pearance information in both the source and the target

domains. Exploiting the reparameterization trick [22],

the non-differentiable operation of sampling can be made

differentiable by an auxiliary variable with independent

marginal. The approximate posterior is estimated by the

separated encoders Eα and Eβ in an end-to-end training

process by standard gradient descent. It is noteworthy that

even if both yt and x′ belong to arbitrary identities, our ef-

fective disentangled module is capable of learning meaning-

ful structure and appearance information of each identity.

During inference, we concatenate the appearance prior

of x′ and the structure prior of yt (small cubes in red and

orange) in the latent space. The reconstructed face dt shares

the same structure with yt and keeps the appearance of x′.

Our framework allows concatenations of structure and ap-

pearance latent codes extracted from arbitrary identities in

inference and permits many-to-many face reenactment.
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Figure 6: The main framework of DeepFake Variational Auto-Encoder. In training, we reconstruct the source and target faces in blue and

orange arrows, respectively, by extracting landmarks and constructing an unpaired sample as the condition. Optical flow differences are

minimized after reconstruction to improve temporal continuity. In inference, we swap the latent codes and get the reenacted face in green

arrows. Subsequent MAdaIN module fuses the reenacted face and the original background resulting in the swapped face.

In summary, DF-VAE is a new conditional variational

auto-encoder [21] with high robustness and scalability. It

conditions on two posteriors in different domains. In the

disentangled module, the separated design of two encoders

Eα and Eβ , the explicit structure heatmap, and the unpaired

data construction jointly force Eα to learn structure infor-

mation and Eβ to learn appearance information.

Style matching and fusion. To fix the obvious style mis-

match problems as shown in Figure 5, we introduce a

masked adaptive instance normalization (MAdaIN) module.

We place a typical AdaIN [18] network after the reenacted

face dt. In the face swapping scenario, we only need to

adjust the style of the face area and use the original back-

ground. Therefore, we use a mask mt to guide AdaIN [18]

network to focus on style matching of the face area. To

avoid boundary artifacts, we apply Gaussian Blur to mt and

get the blurred mask mb
t .

In our face swapping context, dt is the content input of

MAdaIN, yt is the style input. MAdaIN adaptively com-

putes the affine parameters from face area of the style input:

MAdaIN (c, s) = σ (s)

󰀕

c− µ (c)

σ (c)

󰀖

+ µ (s) , (1)

where c = mb
t · dt, s = mb

t · yt. With the very low-

cost MAdaIN module, we reconstruct dt again by Decoder

Dδ . The blurred mask mb
t is used again to fuse the recon-

structed image with the background of yt. At last, we get

the swapped face dt. Figure 7 shows the effectiveness of

MAdaIN module for style matching and fusion.

The MAdaIN module is jointly trained with the disen-

tangled module in an end-to-end manner. Thus, by a single

Raw Video w/o MAdaIN w/ MAdaIN

Figure 7: Comparison of the swapped face styles without or with

MAdaIN module.

model, DF-VAE can perform many-to-many face swapping

with obvious reduction of style mismatch and facial bound-

ary artifacts (see supplementary material). Even if there are

multiple identities in both the source domain and the target

domain, the quality of face swapping does not degrade.

Temporal consistency constraint. Temporal discontinuity

of fake videos leads to obvious flickering of the face area,

making them very easy to be spotted by forgery detection

methods and human eyes. To improve temporal continuity,

we let the disentangled module to learn temporal informa-

tion of both the source face and the target face.

For simplification, we make a Markov assumption that

the generation of the frame at time t sequentially depends

on its previous P frames x(t−p):(t−1). We set P = 1 to

balance quality improvement and training time.

To build the relationship between the current frame and

previous ones, we further make an assumption that the opti-

cal flows should remain unchanged after reconstruction. We

use FlowNet 2.0 [19] to estimate the optical flow x̃f w.r.t.

x̃t and xt−1, xf w.r.t. xt and xt−1. Since face swapping is

sensitive to minor facial details that can be greatly affected
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Table 2: Seven types of distortions in DeeperForensics-1.0.

No. Distortion Type

1 Change of color saturation

2 Local block-wise distortion

3 Change of color contrast

4 Gaussian blur

5 White Gaussian noise in color components

6 JPEG compression

7 Change of video constant rate factor

by flow estimation, we do not warp xt−1 by the estimated

flow like [39]. Instead, we minimize the difference between

x̃f and xf to improve temporal continuity while keeping fa-

cial detail generation stable. To this end, we propose a new

temporal consistency constraint, which can be written as:

Ltemporal =
1

CHW
󰀂x̃f − xf󰀂1, (2)

where C = 2 for a common form of optical flow.

We only discuss the temporal continuity w.r.t. the source

face because the case of the target face is the same. If mul-

tiple identities exist in one domain, temporal information of

all these identities can be learned in an end-to-end manner.

3.3. Scale and Diversity

Our extensive data collection and the proposed DF-VAE

method are designed to improve the quality of manipulated

videos in DeeperForensics-1.0 dataset. In this section, we

will mainly discuss the scale and diversity aspects. We pro-

vide 10, 000 manipulated videos with 5 million frames. It is

an order of magnitude more than the previous datasets. We

take 1, 000 refined YouTube videos collected by FaceForen-

sics++ [33] as the target videos. Each face of our collected

100 identities is swapped onto 10 target videos, thus 1, 000
raw manipulated videos are generated directly by DF-VAE

in an end-to-end process. Thanks to the scalability and mul-

timodality of DF-VAE, the time overhead of model train-

ing and data generation is reduced to 1/5 compared to the

common Deepfakes methods, with no degradation in qual-

ity. Thus, a larger-scale dataset construction is possible.

To ensure diversity, we apply various perturbations to

better simulate videos in real scenes. Specifically, as shown

in Table 2, seven types of distortions defined in Image

Quality Assessment (IQA) [27, 31] are included. Each of

these distortions is divided into five intensity levels. We

apply random-type distortions to the 1, 000 raw manipu-

lated videos at five different intensity levels, producing a

total of 5, 000 manipulated videos. Besides, an additional

of 1, 000 robust manipulated videos are generated by adding

random-type, random-level distortions to the 1, 000 raw ma-

nipulated videos. Moreover, in contrast to all the previous

datasets, each sample of another 3, 000 manipulated videos

in DeeperForensics-1.0 is subjected to a mixture of more

than one distortion. The variability of perturbations im-

proves the diversity of DeeperForensics-1.0 to better imitate

Table 3: The percentage of user study ratings for UADFV,

DeepFake-TIMIT, Celeb-DF, FaceForensics++, Deep Fake Detec-

tion, DFDC, and DeeperForensics-1.0 dataset. A higher score

means the users think the videos are more realistic.

Dataset 1 2 3 4 5 “real”

UADFV [41] 29.2 36.0 20.7 8.9 5.2 14.1%

DeepFake-TIMIT [23] 31.4 31.4 24.8 9.6 2.7 12.3%

Celeb-DF [26] 5.6 14.8 18.6 24.2 36.9 61.0%

FaceForensics++ [33] 46.8 31.4 13.4 4.4 4.0 8.4%

Deep Fake Detection [9] 26.0 28.0 24.1 11.5 10.3 21.9%

DFDC [14] 25.4 29.7 22.0 11.9 11.1 23.0%

DeeperForensics-1.0 (Ours) 4.3 8.9 22.6 29.8 34.3 64.1%

the data distribution of real-world scenarios. The 10,000

manipulated videos, together with the 50,000 high-quality

source videos, form the proposed DeeperForensics-1.0.

3.4. User Study

To examine the quality of DeeperForensics-1.0 dataset,

we engage 100 professional participants, most of whom

specialize in computer vision research. We believe these

participants are qualified and well-trained in assessing re-

alness of tempered videos. The user study is conducted on

DeeperForensics-1.0 and six former datasets, i.e., UADFV

[41], DeepFake-TIMIT [23], Celeb-DF [26], FaceForen-

sics++ [33], Deep Fake Detection [9], DFDC [14]. We ran-

domly select 30 video clips from each of these datasets and

prepare a platform for the participants to evaluate their real-

ness. Similar to the user study of [20], the participants are

asked to provide their feedbacks to the statement “The video

clip looks real.” and give scores at five levels (1-clearly dis-

agree, 2-weakly disagree, 3-borderline, 4-weakly agree, 5-

clearly agree. We assume that users who give a score of 4
or 5 think the video is “real”). The user study results are

presented in Table 3. The quality of our dataset is appreci-

ated by most of the participants. Compared to the previous

datasets, DeeperForensics-1.0 achieves the highest realism

rating. Although Celeb-DF [26] also gets very high realness

scores, the scale of our dataset is much larger.

4. Video Forgery Detection Benchmark

Dataset split. We exploit 1, 000 raw manipulated videos

in Section 3.3 and 1, 000 YouTube videos from FaceForen-

sics++ [33] as our standard set. The videos are split into

training, validation, and test set with a ratio of 7 : 1 : 2. The

identities of the swapped faces may be duplicated because

faces of 100 invited actors are swapped onto 1, 000 driving

videos. To avoid data leak, we randomly choose unrepeated

70, 10, and 20 identities, and group all the videos according

to the identities. Similar to [33], the test and training sets

share a close distribution in our standard set. Other experi-

ments in our benchmark are conducted on different variants

of the standard set. These variants share the same 1, 000
driving videos with the standard set. We will detail them in

Section 4.2. For a fair comparison, all the experiments are

conducted in the same split setting.
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Hidden test set. For real-world scenarios, some experi-

ments in prior works [26, 33] may not perform a convincing

evaluation due to the huge biases caused by a close distribu-

tion between the training and test sets. The aforementioned

standard set has the same setting. As a result, strong detec-

tion baselines obtain very high accuracy on the standard test

set as demonstrated in Section 4.2. However, the ultimate

goal of face forensics datasets is to help detect forgeries in

real scenes. Despite the high accuracy on the standard test

set, the models may easily fail in real-world scenarios.

We argue that the test set of real-world face forgery de-

tection should not share a close distribution with the training

set. We need a test set that better simulates real-world set-

tings. We call it “hidden” test set. The hidden test set should

satisfy three factors: 1) Multiple sources. Fake videos in-

the-wild should be manipulated by different unknown meth-

ods. 2) High quality. Threatening fake videos should have

high quality to fool human eyes. 3) Diverse distortions.

Different perturbations should be taken into consideration.

Thus, in our initial benchmark, we introduce a challeng-

ing hidden test set with 400 carefully selected videos. First,

we collect fake videos generated by several unknown face

swapping methods to ensure multiple sources. Then, we ob-

scure all selected videos multiple times with diverse hidden

distortions that are commonly seen in real scenes. Finally,

we only select videos that can fool at least 50 out of 100
human observers in a user study. The ground truth labels

are hidden and are used on our host server to evaluate the

accuracy of detection models. Besides, the hidden test set

will be enlarged constantly to get future versions along with

development of Deepfakes technology. Fake videos manip-

ulated by future face swapping methods will be included as

long as they can pass the human test supported by us.

4.1. Baselines

Existing studies [26, 33] primarily provide image-level

face forgery detection benchmark. However, fake videos

in-the-wild are much more menacing than manipulated im-

ages. We propose to conduct evaluation mainly based on

video classification methods for two reasons. First, image-

level face forgery detection methods do not consider any

temporal information – an important cue for video-based

tasks. Second, image-level methods have been widely stud-

ied. We only choose one image-level method, Xception-

Net [12], which achieves the best performance in [33], as

one part of our benchmark for reference. The other four

video-based baselines are C3D [37], TSN [38], I3D [11],

and ResNet+LSTM [16, 17], all of which have achieved

promising results in video classification tasks. Details of all

the baselines can be found in our supplementary material.

4.2. Results and Analysis

Owing to the goal of detecting fakes in real-world sce-

narios, we mainly explore how real-world distortions affect

Table 4: The binary detection accuracy of the baselines on the

hidden test set when trained on four manipulated methods in

FaceForensics++ (FF++): DeepFakes (DF), Face2Face (F2F),

FaceSwap (FS), NeuralTextures (NT), and on DeeperForensics-

1.0 standard training set without distortions.

Train FF++ DF FF++ F2F FF++ FS FF++ NT DeeperForensics-1.0

Test (acc) hidden hidden hidden hidden hidden

C3D [37] 57.50 57.75 52.13 58.25 74.75

TSN [38] 57.63 57.25 53.50 57.38 77.00

I3D [11] 56.63 58.38 54.63 63.63 79.25

ResNet+LSTM [16, 17] 57.38 56.13 54.88 59.50 78.25

XceptionNet [12] 57.38 58.75 54.75 57.38 77.00

the model performance. Accuracies of face forgery detec-

tion on the standard test set and the introduced hidden test

set are evaluated under various settings.

Evaluation of effectiveness of DeeperForensics-1.0. For

a fair comparison, we evaluate DeeperForensics-1.0 and the

state-of-the-art FaceForensics++ [33] dataset because they

use the same driving videos. In this setting, we use 1, 000
raw manipulated videos without distortions in the standard

set of DeeperForensics-1.0. For FaceForensics++, the same

split is applied to its four subsets. All the models are tested

on the hidden test set (see Table 4).

The baselines trained on the standard training set of

DeeperForensics-1.0 achieve much better performance on

the hidden test set than all the four subsets of FaceForen-

sics++. This proves the higher quality of DeeperForensics-

1.0 over prior works, making it more useful for real-world

face forgery detection. In Table 4, I3D [11] obtains the best

performance on the hidden test set when trained on the stan-

dard training set. We conjecture that the temporal disconti-

nuity of fake videos leads to higher accuracy by this video-

level forgery detection method.

Evaluation of dataset perturbations. We study the effect

of perturbations towards the forgery detection model per-

formance. In contrast to prior work [33], we try to evaluate

the baseline accuracies when applying different distortions

to the training and the test sets, in order to explore the func-

tion of perturbations in face forensics dataset.

In this setting, we conduct all the experiments on

DeeperForensics-1.0 dataset with high diversity of pertur-

bations. We use 1, 000 manipulated videos in the stan-

dard set (std), 1, 000 manipulated videos with single-level

(level-5), random-type distortions (std/sing), 1, 000 manip-

ulated videos with random-level, random-type distortions

(std/rand). The data split is the same as that of the standard

set with a ratio of 7 : 1 : 2.

In Column 2 of Table 5, we find the accuracy is nearly

100% when the models are trained and tested on the stan-

dard set. This is reasonable because the strong baselines

perform very well in a clean dataset with the same distri-

bution. In Columns 3 and 4, the accuracy decrease com-

pared to Column 2, when we choose std/sing and std/rand

as the test set. Most of the video-level methods except C3D

[37] are more robust to perturbations on test set than Xcep-

tionNet [12]. This setting is very common because different

distributions of the training and the test sets lead to decrease
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Table 5: The binary detection accuracy of the baselines when

trained and tested on DeeperForensics-1.0 dataset with different

distortion perturbations. We analyze different training and test-

ing settings on the standard set without distortions (std), the stan-

dard set with single-level distortions (std/sing), and the standard

set with random-level distortions (std/rand).

Train std std std std/sing std/rand std/sing std/rand

Test (acc) std std/sing std/rand std/sing std/rand std/rand std/ sing

C3D [37] 98.50 87.63 92.38 95.38 96.63 96.75 94.00

TSN [38] 99.25 91.50 95.00 98.25 98.88 98.12 99.12

I3D [11] 100.00 90.75 96.88 99.50 99.63 99.63 98.00

ResNet+LSTM [16, 17] 100.00 90.63 97.13 100.00 98.63 100.00 97.25

XceptionNet [12] 100.00 88.38 94.75 99.63 99.63 99.75 99.00

in model accuracies. Hence, the lack of perturbations in the

face forensics dataset cutbacks the model performance for

real-world face forgery detection with even more complex

data distribution.

When we apply corresponding distortions to the training

and test sets, the accuracy will increase (Column 5 and 6
in Table 5) compared to Column 3 and 4. However, this

setting is impractical because the distributions of the train-

ing and test sets are still the same. We should augment the

test set to better simulate the real-world distribution. Thus,

some evaluation settings in previous works [26, 33] are un-

reasonable. If we swap the training set and the test set of

std/sing and std/rand to further randomize the condition, re-

sults shown in Column 7 and 8 indicate that the accuracy

remains high. This evaluation setting shows the possibility

that with the same generation method, exerting appropriate

distortions to the training set can make face forgery detec-

tion models more robust to real-world perturbations.

Evaluation of variants of training set for real-world face

forgery detection. We have conducted several experiments

for evaluations of possible perturbations. Nevertheless, the

case is more complex in real scenes because no informa-

tion about the fake videos is available. The video may be

subjected to more than one type and diverse levels of distor-

tions. In addition to distortions, the method manipulating

the faces is unknown.

From the evaluation of perturbations, we find the pos-

sibility of augmenting the training set to improve detec-

tion model performance. Thus, we further evaluate base-

line performance on the hidden test set by devising some

variants of the training set. We perform experiments

on DeeperForensics-1.0. In this setting, other than std,

std/sing, and std/rand, we use additional 1, 000 manipulated

videos, each of which is subjected to a mixture of three

random-level, random-type distortions (std/mix). We com-

bine std with std/sing, std/rand, and std/mix, respectively,

yielding three new training sets (with the same data split as

the former settings).

Column 2 in Table 6 shows the low accuracy when the

models trained on std and tested on the hidden test set (same

as Column 6 in Table 4). Columns 3 and 4 indicate that the

accuracy of all the baseline models increase when trained

on std+std/sing and std+std/rand. The accuracy of I3D [11]

and ResNet+LSTM [16, 17], are over 80% in some cases.

Table 6: The binary detection accuracy of the baselines on the

hidden test set when trained on DeeperForensics-1.0 dataset with

the standard set without distortions (std), combination of std and

the standard set with single-level distortions (std+std/sing), com-

bination of std and the standard set with random-level distortions

(std+std/rand), combination of std and the standard set with the

mixed distortions(std+std/mix).

Train std std+std/sing std+std/rand std+std/mix

Test (acc) hidden hidden hidden hidden

C3D [37] 74.75 78.25 78.13 78.88

TSN [38] 77.00 78.75 79.50 79.50

I3D [11] 79.25 80.13 80.13 80.13

ResNet+LSTM [16, 17] 78.25 80.25 79.50 80.25

XceptionNet [12] 77.00 79.75 79.75 79.88

In a more complex setting, when the models are trained on

std+std/mix, Column 5 shows the accuracy of all the detec-

tion baselines further increase.

The results suggest that designing suitable training set

variants has the potential to help increase face forgery detec-

tion accuracy, and applying various distortions to ensure the

diversity of DeeperForensics-1.0 is necessary. In addition,

compared to image-level method, video-level face forgery

detection methods have more potential capabilities to crack

real-world fake videos as shown in Table 6. Although the

accuracy on the challenging hidden test set is still not very

high, we provide two initial directions for future real-world

face forgery detection research: 1) Improving the source

data collection and generation method to ensure the quality

of the training set; 2) Augmenting the training set by various

distortions to ensure its diversity. We welcome researchers

to make our benchmark more comprehensive.

5. Discussion

In this work, we propose a new large-scale dataset

named DeeperForensics-1.0 to facilitate the research of face

forgery detection towards real-world scenarios. We make

several efforts to ensure good quality, large scale, and high

diversity of this dataset. Based on the dataset, we further

benchmark existing representative forgery detection meth-

ods, offering insights into the current status and future strat-

egy in face forgery detection. Several topics can be consid-

ered as future works. 1) We will continue to collect more

source and target videos to further expand DeeperForensics.

2) We plan to invite interested researchers for contributing

their video falsification methods to enlarge our hidden test

set, as long as the fakes can pass the human test supported

by us. 3) A better evaluation metric for face forgery detec-

tion methods is also an interesting research topic.
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