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Abstract

3D instance segmentation plays a predominant role in

environment perception of robotics and augmented reality.

Many deep learning based methods have been presented re-

cently for this task. These methods rely on either a detection

branch to propose objects or a grouping step to assemble

same-instance points. However, detection based methods

do not ensure a consistent instance label for each point,

while the grouping step requires parameter-tuning and is

computationally expensive. In this paper, we introduce an

assign-and-suppress network, dubbed as AS-Net, to enable

end-to-end instance segmentation without detection and a

separate step of grouping. The core idea is to frame in-

stance segmentation as a candidate assignment problem. At

first, a set of instance candidates are sampled. Then we pro-

pose an assignment module for candidate assignment and a

suppression module to eliminate redundant candidates. A

mapping between instance labels and instance candidates

is further sought to construct an instance grouping loss

for the network training. Experimental results demonstrate

that our method is more effective and efficient than previous

detection-free approaches.

1. Introduction

3D instance segmentation has wide applications span-

ning from 3D perception in autonomous systems to 3D re-

construction in augmented reality and virtual reality. For

example, it is critical for an indoor robot to identify obsta-

cles and targets in a scene so that it can interact with a spe-

cific object and move around the scene. Achieving this goal

requires to distinguish different semantic labels as well as

different instances with the same semantic label. Therefore,

it is important to investigate the problem of 3D instance seg-

mentation.

3D instance segmentation from point clouds is a very

challenging task. While bearing the difficulties incurred by

scattered data and an additional dimension, it also shares
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Figure 1. An illustration of different frameworks for 3D instance

segmentation. (a) Detection-based framework, (b) detection-free

framework, (c) ours. Note that there are inconsistent or missing

labels when detection-based results are merged, as highlighted in

red and yellow in (a).

the same problems as its 2D counterpart. Firstly, instance

labels are in a random order, which is quite different from

semantic labels and makes it difficult to directly optimize

instance labels in an end-to-end way. Secondly, the number

of instances, which greatly impacts instance segmentation,

is unknown during inference, thus posing additional chal-

lenges.

Great progress has been made in 2D/3D instance seg-

mentation [4, 7, 11, 12, 18, 22, 28, 29, 31]. In gen-

eral, existing methods can be classified into two categories:

detection-based and detection-free. Detection-based ap-

proaches [11, 12, 31] can well handle random instance la-

bels and an irregular number of instances by using a de-

tection branch to mask different objects. However, they

cannot ensure consistent labeling for each point. For ex-

ample, a point may get multiple instance labels or no label

depending on how many segmented regions contain it, as

illustrated in Fig. 1(a). On the other hand, detection-free

approaches [18, 22, 28, 29] harness an additional group-

ing step to sidestep ordering and irregular number of in-

stances, e.g. using mean-shift algorithm [22, 29], as de-

picted in Fig. 1(b). The additional group step usually relies

on hyper-parameters setting like clustering bandwidth [21]

for good performance. In addition, these methods often op-

timize a proxy objective instead of instance segmentation,

e.g. respectively minimizing or maximizing the embedding

feature distance between points of the same instance or two
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Figure 2. Pipeline of our method. Our method takes in a point cloud of N points, and learns point features with a point cloud feature

extraction backbone. Point features are further refined by a refining module. Then a set of instance candidates representing different

instances are sampled. Instance grouping then boils down to candidate assignment with an assignment module and redundant candidates are

masked with a suppression module. Loss functions (Lsem,Le,Lc,Lcd,Lg,Lsim) enforced at different positions are detailed in Sec. 3.5.

K denotes the number of instance candidates. Boxes colored in X and X denote modules with and without learnable parameters,

respectively.

different instances [4, 22, 28, 29]. Thus, there is a gap be-

tween the training objective and the final instance segmen-

tation.

In this paper, we propose a novel framework, called AS-

Net, which aims at providing an end-to-end solution for

3D instance segmentation without detection. The whole

pipeline is shown in Fig. 2. Instead of detecting a large num-

ber of objects for different instances, we sample a small set

of instance candidates as instance representatives. Instance

segmentation then becomes a problem of assigning points

to different candidates with an assignment module. Then a

suppression module is proposed to mask redundant candi-

dates so that the irregular number of instances can be tamed.

At last, we introduce a mapping between instance labels

and instance candidates to facilitate the direct optimization

of instance grouping with random orders of instances. In

Fig. 1, we illustrate the differences between our framework

and the previous ones.

In summary, our contributions are:

• A 3D instance segmentation framework that first sam-

ples a set of instance candidates, then assigns points

to different candidates with an assignment module

and eliminates duplicate candidates with a suppression

module.

• An algorithm mapping instance labels to instance can-

didates and facilitating an end-to-end training of in-

stance segmentation.

• Extensive experiments that show our method achieves

superior results at much faster running speed, com-

pared to existing methods.

2. Related Work

2D Instance Segmentation. 2D instance segmentation

aims at both semantic classification and pixel grouping of

instance objects, pioneered by [6, 9]. Recently, advanced

deep learning has greatly pushed forward the performance

of instance segmentation. Previous works can be classi-

fied into two streams, namely detection-based methods and

detection-free methods.

Detection-based methods either employ a sliding-and-

segmentation process [7, 23] or a joint detection-and-

segmentation process [5, 9, 10, 11]. The sliding-and-

segmentation based approaches [7, 23] suffer from inaccu-

rate boundary prediction and segmentation of overlapping

objects. The joint detection-and-segmentation methods, e.g.

MaskRCNN [11], can generate nice instance segmentation,

but require a larger memory footprint because of the use of

the additional detection process.

The other category of works obtains instances by group-

ing pixels according to predicted pixel information, e.g.

basin energy for watershed transform [3], shape informa-

tion [2, 14, 20], semantic information [2], and embedding

features [4, 8, 16, 21], etc. However, most of these meth-

ods require multi-stage processing during inferences. For

example, embedding based approaches [4, 16, 21] first in-

fer embedding features, and then group pixels with a clus-

tering algorithm. This inevitably introduces gaps between

training and testing phases as a proxy objective rather than

pixel grouping loss is optimized. Also, additional hyper-

parameters, e.g. clustering bandwidth [4, 21] and parame-

ters in conditional random field [2], also require careful tun-

ing to ensure good performance. Though Neven et al. [21]

proposed to directly estimate these hyper-parameters, i.e.

clustering bandwidth in mean-shift algorithm, it can only

attenuate but cannot eliminate the gap.

3D Instance Segmentation for Point Clouds. Consider-

ing the prevalent point cloud data and its wide applications

in autonomous driving and scene reconstruction, great in-

terests in 3D point cloud instance segmentation have been

spurred in the vision community. 3D instance segmentation

can be treated as an analogy of 2D instance segmentation on

3D data, aiming at object-level understanding of 3D scene.
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However, noisy data and unstructured topology make this

problem more difficult. Seminal work [28] investigated 3D

instance segmentation by exploring pairwise similarity ma-

trix. Pham et al. [22] proposed a multi-value conditional

random field (MV-CRF) to enhance instance segmentation

and semantic segmentation. Wang et al. [29] explored the

dependency between semantic features and instance fea-

tures, achieving the-state-of-the-art results. These methods

are all based on point cloud representation and generally use

a multi-stage process as 2D proposal-free instance segmen-

tation [4, 16, 18, 21], thus inheriting their limitations like

hyper-parameter tuning and optimization gaps.

Another category of 3D instance segmentation methods

is based on detection. In particular, Hou et al. [12] jointly

optimized 3D detection and 3D semantic instance segmen-

tation by extending MaskRCNN [11] to multi-modal sig-

nals in RGBD scans. Yi et al. [31] proposed a Genera-

tive Shape Proposal Network (SGPN) to generate shapes

from different seeds, and then instance segmentation was

attained by estimating a bounding box and its segmenta-

tion. Yang et al. [30] presented an interesting work which

directly predicts a fixed number of bounding boxes and then

estimates an instance mask for each bounding box. How-

ever, detection-based methods may assign no label or in-

consistent instance labels to a point because of a missing

shot or overlapping in detection segments. In this work,

we try to learn 3D instance segmentation in an end-to-end

fashion without detection and without the additional step of

grouping.

3D Point Cloud Analysis. The great performance of deep

neural network on 2D image analysis has motivated re-

searchers to apply it to 3D point clouds. Qi et al. firstly

proposed PointNet [24] and PointNet++ [25] in order to

handle random orders of point clouds and multi-scaling fea-

ture extraction. Recent works also investigated the spher-

ical kernel [19], angular representation [15], and tangent

projection [27] to learn feature representations from point

clouds. Our work relies on a backbone network to extract

point cloud features. Though we use PointNet and Point-

Net++ for our evaluation, it can be easily changed to other

architectures.

3. Proposed Method

We aim at instance segmentation of 3D point clouds in an

end-to-end fashion without detection. Our method takes a

3D point cloud X = {xj}
N
j=1

as input and predicts instance

label Y i = {yij}
N
j=1

for each point as illustrated in Fig. 2,

where N is the number of input points, xj denotes input

features of each point, e.g. coordinates and color, and yij is

an instance label in an instance label set Li.

Different from previous two-stage detection-free meth-

ods [22, 28, 29] and detection-based methods [12], we for-

mulate this problem as a one-stage process without an ad-

ditional grouping step or detection. A point cloud is firstly

processed with a point cloud backbone to extract semantic

features, centroid-aware features, and instance-aware fea-

tures by exploring the supervisions from semantic labels,

instance centroid, and instance labels, where the centroid of

an instance is obtained by calculating the mean coordinate

of all points in an instance. These features are then concate-

nated as refined features F r ∈ R
N×256. Instance segmen-

tation is achieved by first sampling K instance candidates

Lc = {1, 2, ...,K} and then predicting the score that each

point belongs to an instance candidate, dubbed as candidate

assignments W ∈ R
N×K . Each row in W contains the

scores that a point is assigned to each of the K candidates.

Redundant candidates are further eliminated according to a

mask M ∈ {0, 1}1×K yielded by a suppression network,

with each dimension specifying if a candidate is masked /

removed. The final grouping label for each point is esti-

mated by taking the one with the maximal score among all

unmasked candidates.

3.1. Feature Learning for Point clouds

Instance segmentation is relevant to both semantic infor-

mation and geometric information. For example, objects

with different semantic labels can be easily identified as dif-

ferent instances. But semantic information cannot be used

to distinguish objects at the same category. In this case,

geometric information, e.g. object bounding boxes and ob-

ject centroids, can assist instance identification. In fact, this

kind of information is also widely exploited to guide 2D in-

stance segmentation [3, 11]. In our method, we jointly learn

the centroid-aware and semantic-aware information for 3D
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Figure 3. Feature refinement module. Point features are refined

by incorporating semantic features, centroid-aware features, and

instance-aware features. We also predict centroid distance be-

tween the predicted instance centroid and its ground truth counter-

part. Note that ⊕ denotes feature concatenation, while |Ls| counts

the number of semantic labels. Supervision losses for different

features are marked with x.
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instance segmentation.

We firstly extract point features with an existing point

cloud backbone, e.g. PointNet [24], as shown in Fig. 2.

Then point features are fed to four branches to jointly

learn semantic features (the top branch), instance-aware

features (the second branch), centroid-aware features (the

third branch), and centroid distance between the centroid

prediction and ground truth (the bottom branch) with four

separated multi-layer perceptron (MLP) as illustrated in

Fig. 3. Semantic features are learned by enforcing a seman-

tic loss Lsem, which can help distinguish objects with dif-

ferent semantic labels. Instance-aware features are learned

by minimizing an embedding loss Le such that features of

points in a same instance should be close. Centroid-aware

features are trained by optimizing the distance Lc between

predicted instance centroids and their ground truth. These

instance centroids help differentiate objects according to

their positions. Distance Lc is further estimated by mini-

mizing a centroid distance loss Lcd, which can act as a reg-

ularizer. Then we concatenate features from the top three

branches as refined features F r. All loss functions are de-

tailed in Sec. 3.5.

3.2. Instance Candidate Sampling

In our method, we sample a set of instance candidates

Lc as instance representatives, which are used to group

points. However, it is difficult to determine instance can-

didates without knowing instance segmentation. An intu-

ition is to generate plenty enough instance candidates cover-

ing all instances and different candidates should have inter-

candidate distance as large as possible. We empolyed fur-

thest point sampling proposed in PointNet++ [25] for this

task. Basically, furthest point sampling calculates the dis-

tance between the sampled points and each of the other

points, and adds the point with the largest distance to the

sampling set. This process iterates until enough candidates

are sampled. In our experiment, we use Euclidean distance

between instance-aware features of points as point distance.

3.3. Candidate Suppression

(a) (b) (c)

Figure 4. Influence of the number of instance candidates. Stars

mark different candidates, and black circles give their member

points. (a) A candidate is missing, (b) the correct number of can-

didates is sampled, (c) a redundant candidate is generated.

The number of sampled candidates has great impacts on
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the performance as shown in Fig. 4. For example, missing a

candidate reduces the number of instances, thus decreasing

the recall (see Fig. 4 (a)). In contrast, redundant candidates

deteriorate the grouping accuracy, as they nibble points of

other candidates, see blue points in Fig. 4 (c).

In our method, we set the candidate number K to a large

enough number so that it can cover all instances in most

times. Unfortunately, this will greatly increase redundant

candidates. To circumvent candidate redundancy, we in-

troduce a suppression module as shown in Fig. 5 to pre-

dict a candidate mask M . Suppression module firstly cal-

culates absolute differences between feature F r
j , F

r
k of any

two candidates j, k ∈ Lc, then feeds the result to a two-

layer MLP (128 × 64 × 1) to estimate a similarity matrix

S ∈ R
K×K as shown in Fig. 5. The similarity matrix S is

then binarized to 0, 1, with 1 denoting two candidates are

from a same instance.

Grouping candidates from a same instance can be seen

as a problem to find all connected components of a graph if

we treat similarity matrix S as an adjacent graph represen-

tation between any two candidates. Power of a matrix can

be used to solve this problem. The intuition is that a k−th

power of a connection matrix represents the connected com-

ponents with less than k hops. If k is large enough, power

of a matrix will find all connected components as explained

in [26]. In our experiment, we compute a 32−th power

of similarity matrix S, and each row of the result matrix

denotes the connectivity of a candidate to the others. For

each group of candidates, we keep one candidate and mask

the others as redundant candidates. Candidate grouping is

non-differential, and the suppression module is learned by

minimizing a similarity loss in Sec. 3.5.
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3.4. Instance Assignment

We formulate instance grouping as an assignment of

points X to different instance candidates Lc. In this pa-

per, we propose a dedicated assignment module to learn the

assignment as shown in Fig. 6. The assignment network

firstly encodes features with a one-layer MLP (256× 128),

then takes the absolute differences between candidate fea-

tures and point features, finally estimates assignment scores

W with a two-layer MLP (128 × 64 × 1). Then assign-

ment scores are masked with predicted mask M in Fig. 5

by W − α(1 − M) with broadcasting, where α is set to

a large value to eliminate redundant candidates. Final in-

stance segmentation can be obtained by labeling each point

with the candidate of the highest score.

3.5. Objective Functions

The whole network is learned by optimizing an objec-

tive combing semantic loss Lsem, instance centroid loss

Lc, centroid distance loss Lcd, embedding loss Le, instance

grouping loss Lg , and candidate similarity loss Lsim:

L = wsem · Lsem + wc · Lc + wcd · Lcd + we · Le

+ wg · Lg + wsim · Lsim,
(1)

where w∗ denotes balancing weights for different loss

terms. Figs. 2 and 3 show where these losses are enforced

during training.

Semantic loss. Semantic loss Lsem calculates the cross en-

tropy loss between predicted semantic labels and the ground

truth labels.

Centroid loss. Instance centroid loss Lc is defined as the

distance between predicted instance centroid zj and the

ground truth centroid z∗j :

Lc =

N∑

j=1

‖zj − z∗j ‖2. (2)

Centroid distance loss. Centroid distance loss Lcd is com-

puted as the following:

Lcd =

N∑

j=1

‖dj − ‖zj − z∗j ‖2‖2, (3)

where dj is the predicted centroid distance.

Similarity loss. The suppression module is learned with a

similarity loss Lsim enforced on similarity matrix S. Basi-

cally, this loss uses a binary cross entropy to measure if two

candidates are from the same instance. The ground truth is

easy to attain as instance labels are given.

Instance grouping loss. Given predicted candidate assign-

ment and the ground truth instance label of each point, can-

didates and instances may be in different orders and have

(a) (b) (c)

(b)

Figure 7. A matching example between candidates and instance la-

bels. (a) Predicted candidate assignment (left) and instance labels

(right) for a list of points, (b) the optimal mapping from instance

labels (right) to candidates (left), (c) instance labels (left) in (a)

is remapped according to (b). Candidates and instance labels are

denoted by the index with the densest color.

different numbers (see Fig. 7 (a) for an example). Because

instance labels only specify which points are in a same

group and have no specific meaning, the order of instances

can be random. This randomness makes it tough to directly

optimize instance segmentation accuracy.

To tackle this problem, we propose to map instance la-

bels Li to candidates Lc. An example is illustrated in Fig. 7.

We firstly calculate the optimal mapping, namely {1 →
1, 2 → 3, 3 → 2}, as shown in Fig. 7(b). Then the orig-

inal instance labels {3, 2, 2, 1} are mapped to {2, 3, 3, 1} in

Fig. 7(c) so that remapped instance labels and candidates

will have a consistent order. The optimal mapping is ob-

tained by minimizing the cost of the optimal matches:

minimize
|Li|∑
j=1

|Lc|∑
k=1

bj,k · cost(j, k),

s.t.
|Li|∑
j=1

bj,k = 1, ∀k = 1, ..., |Lc|,

|Lc|∑
k=1

bj,k <= 1, ∀j = 1, ..., |Li|,

(4)

where bj,k is a binary variable denoting if j and k are a

match, | · | counts the number of instances or candidates,

and cost(j, k) measures how well a match is. The first con-

straint ensures each instance label is assigned to a candidate,

while the second constraint guarantees at most one candi-

date is matched to instance labels. In our case, the matching

should maximize instance segmentation accuracy, thus the

cost is defined as one minus the intersection over union be-

tween predicted candidate assignments and instance labels:

cost(j, k) = 1.0−

∑N

m=1
✶(ycm = lcj) ∧ ✶(yim = lik)∑N

m=1
✶(ycm = lcj) ∨ ✶(yim = lik)

, (5)

where ycm is the predicted candidate assignment of point

m, yim denotes the ground truth instance label that point

belongs to, and ✶(·) tests if a given value is true.

This assignment problem can be solved by the Hungarian

algorithm [17] or integer programming. In our implemen-

tation, we use the linear assignment solver in SciPy. As the

number of instances is small for each input (no more than

50 instances), the problem can be solved efficiently.
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After obtaining the mapping between instance labels and

instance candidates, we can optimize instance segmenta-

tion by minimizing the cross entropy between the predicted

probability and the optimally assigned labels.

Embedding loss. Though our method can be learned with

the proposed instance grouping loss, instance-aware fea-

tures are still required to ensure good candidates can be

sampled in the candidate sampling step. This is because the

sampling step is non-differential, therefore instance group-

ing loss cannot be propagated back to guide the embedding

learning. Following [22, 29], the embedding loss Le is de-

fined as follows:

Le = Lpull + Lpush + wreg · Lreg, (6)

where Lpull is a pulling loss, Lpush is a pushing loss, and

Lreg is a regularization term. Pulling loss tries to minimize

distances between instance-aware feature f i
j and the mean

feature of its owner instance mk, while pushing loss max-

imizes inter-instance distance of the mean feature mk,mo

of two different instances:

Lpull =
1

|Li|

|Li|∑

k=1

1

Nk

Nk∑

j=1

max (0, ‖mk−f i
j‖2−δ1)

2, (7)

Lpush =
1

|Li|(|Li| − 1)

|Li|∑

k=1

K∑

o=1,o 6=k

max (0, δ2−‖mk−mo‖2)
2,

(8)

where Nk is the number of points in instance k, δ1 =
0.5, δ2 = 1.5 are two margins to clip the loss. Loss Lreg

helps restrict instance-aware features to be finite by encour-

aging small values:

Lreg =
1

|Li|

|Li|∑

k=1

‖mk‖2. (9)

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. We conduct the evaluation on Stanford 3D In-

door Semantic Dataset (S3DIS) [1], which is widely used

in 3D instance segmentation [22, 28, 29]. S3DIS contains

3D scans collected in 6 areas. Following the standard data

split, area 5 is used for testing and other areas are used for

training. We also evaluate our method on SceneNN [13],

which is an indoor scene dataset scanned at room scale. We

follow data splits of JSIS [22] for training and testing. As

the registered mesh contains many outliers, we clean them

up by removing outlier instances with less than 200 points.

Evaluation. Our method mainly aims at instance segmen-

tation of 3D point clouds. The widely used metrics for

instance segmentation are mean class precision (mPrec)

and mean class recall (mRec) with an intersection over

union (IoU) larger than 0.5 between the prediction and

the ground truth. We also report the mean class cover-

age (mCov) and mean class weighted coverage (mwCov)

following [29, 32]. Coverage measures the instance-wise

IoU between the ground truth and its matching predictions.

Given a list of ground truth regions G and prediction regions

P of a specific category, mCov and mwCov are calculated

as:

mCov(G,P) =
1

|G|

∑

g∈G

max
p∈P

IoU(g, p), (10)

mwCov(G,P) =
∑

g∈G

wg max
p∈P

IoU(g, p),

wg =
|g|∑

g′∈G |g′|
,

(11)

where | · | counts the number of points in a list, and IoU(·, ·)
calculates IoU between two point sets.

Implementation. We implemented the algorithm in Py-

Torch. The network was trained with an Adam optimizer

with an initial learning rate of 0.002. During training and

testing, we segmented the scene into point clouds with 4096
points following SGPN [28]. Our algorithm predicts in-

stance segmentation for each point cloud and then merges

them with the BlockMerging algorithm proposed in SGPN

as the final result.

4.2. Comparisons to the­state­of­the­art

Existing methods. We compare our method with the-state-

of-the-art methods in 3D instance segmentation, including

SGPN [28], ASIS [29], and JSIS [22]. Results of these

methods are generated with their released codes. As the

network backbone has great influences on final results, we

evaluate these methods with a same backbone, i.e. Point-

Net [24]. Wang et. al [29] only released the code with a

PointNet++ [25] backbone. To enable a fair comparison,

we implement ASIS with a PointNet backbone. Results of

our method with a PointNet++ backbone are also reported

to facilitate a comparison with the state-of-the-art results of

ASIS. For the evaluation on S3DIS dataset, we assess the

performance with released models of JSIS (PN) and ASIS

(PN2), and the finetuned SGPN (PN) model, where PN and

PN2 denote PointNet and PointNet++, respectively. For the

evaluation on other datasets and ASIS (PN) model, we train

the network from scratch with the training dataset.

Results on S3DIS dataset. In our experiments, we found

3D instance segmentation sensitive to different samplings

of a point cloud. In Fig. 8, we compare the performance of

different methods and their variances on 6 sampling of point

clouds in the testing dataset. Our method has consistently

better results on the average of all metrics. Though results

of all methods oscillate, ours has smaller variances in both

mCov and mwCov metrics. To eliminate the influences of
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Table 1. Comparison of mCov metric on S3DIS dataset. #inst counts the number of instances of a category.

ceiling floor wall beam column window door table chair sofa bookcase board clutter

#inst 2346 76 68 343 3 74 52 127 154 258 11 217 42 921

SGPN (PN) 0.439 0.805 0.863 0.533 0.025 0.035 0.693 0.615 0.492 0.462 0.202 0.288 0.365 0.322

JSIS (PN) 0.394 0.827 0.836 0.534 0.000 0.029 0.491 0.101 0.479 0.714 0.150 0.456 0.082 0.421

ASIS (PN) 0.422 0.864 0.883 0.603 0.000 0.036 0.619 0.130 0.461 0.649 0.099 0.389 0.403 0.355

Ours (PN) 0.444 0.869 0.872 0.654 0.000 0.083 0.606 0.332 0.454 0.635 0.136 0.406 0.400 0.327

ASIS (PN2) 0.446 0.869 0.883 0.605 0.000 0.019 0.602 0.100 0.467 0.680 0.231 0.407 0.593 0.341

Ours (PN2) 0.496 0.860 0.863 0.695 0.000 0.075 0.624 0.144 0.541 0.768 0.326 0.518 0.697 0.392

Figure 8. Quantitative comparison on S3DIS dataset. The height

of each color bar shows the average of each metric, and the range

of a black bar line denotes the difference between the maximal

value and the minimal value of each metric.

Inputs ASIS (PN2) Ours (PN2) Ground truth

Figure 9. Qualitative comparison with ASIS (PN2). Colors help

mark different instances. Notice how cluttered objects in the high-

lighted regions are distinguished.

these variances, average results of 6 samplings from a same

input are reported. In Tab. 1, we compare with the state-of-

the-art methods on mCov metric. Results demonstrate our

method is comparable to other methods when using a Point-

Net backbone, and can achieve the best results on 10/13
categories if a PointNet++ backbone is used. Results on the

other metrics are provided in the supplemental. Qualitative

results are demonstrated in Fig. 9 and Fig. 10. We match

predicted instances with their ground truth by our assgin-

ment algorithm in Sec. 3.5 so that same instances will have

the same color. We can achieve better instance segmen-

tation with both PointNet backbone and PointNet++ back-

bone, especially in cluttering regions, e.g. nearby chairs,

long tables and a bunch of objects in the highlighted regions

in Fig. 9 and Fig. 10.

Results on SceneNN dataset. We also evaluate our method

Table 2. Comparison results on SceneNN dataset.

Methods mCov mwCov mPrec mRecall

JSIS (PN) 0.095 0.112 0.029 0.039

ASIS (PN) 0.123 0.133 0.080 0.095

Ours (PN) 0.124 0.134 0.080 0.066

Table 3. Ablation study on different modules.

w/o cen. w/o sem. w/o emb. w/o c.d. w/o sup. Ours (PN)

mCov 0.430 0.435 0.400 0.432 0.350 0.444

mwCov 0.463 0.467 0.432 0.466 0.383 0.475

mPrec 0.491 0.495 0.458 0.504 0.392 0.526

mRecall 0.405 0.420 0.371 0.425 0.319 0.433

on SceneNN dataset. Results are reported in Tab. 2 on 10
selected categories of NYU-40 labels (including wall, floor,

bed, chair, table, door, desk, fridge, television, and prop).

All methods perform badly because reconstructed scenes

in SceneNN dataset have many outliers and flying shapes.

Also, the dataset is quite small.

4.3. Ablation Study

To evaluate the effectiveness of different modules, we

investigate the influence of centroid-aware features (w/o

cen.), semantic features (w/o sem.), instance-aware features

(w/o emb.), and centroid distance branch (w/o c.d.) by re-

moving the corresponding branches from feature refining

module. We also study how important the suppression mod-

ule is by removing the masking process and the similarity

loss (w/o sup.).

In Tab. 3, we show results on alternative designs. We can

see fusion of different kinds of features boosts the perfor-

mance, especially instance-aware features. This is because

the candidate sampling step relies on instance-aware fea-

tures to get reliable candidates. Though the centroid branch-

ing does not contribute to refining feature F r, it still has

impacts on the results. This may credit to the regularization

of multi-task learning. Suppression module is also impor-

tant as it helps eliminate redundant candidates as discussed

in Fig. 4. In Fig. 11, influences of the selection of K is

evaluated, and our method is robust to different choices of

K during inference. This is attributed to the learned sup-

pression module. In default, we use the maximal number of

instances in all inputs of the training dataset as K.
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Inputs SGPN (PN) Ours (PN) Ground truthJSIS (PN) ASIS (PN)

Figure 10. Instance segmentation results on S3DIS testing dataset. Notice how our method is able to distinguish different instances of the

same categories, e.g. chairs.

Figure 11. Influences of the selection of K during inference.

Table 4. Comparison on inference time. The time is measured and

averaged on S3DIS testing dataset (area 5).

Methods Network (ms) Grouping (ms) Overall (ms)

SGPN (PN) 47.0 8774.3 8821.3

ASIS (PN) 160.7 241.6 402.3

JSIS (PN) 14.5 5048.2 5062.7

Ours (PN) 34.3 0.0 34.3

4.4. Time Analysis

We compare the computation time in Tab. 4. The time

is measured on a computer with a nVidia GTX 1080 GPU

and an Intel i7-6850K CPU on the testing set of S3DIS.

Note that data loading time is not counted. We measure

the grouping time costed on grouping merging for SGPN,

mean-shift clustering for ASIS, and both mean-shift clus-

tering and multi-value CRF label refinement for JSIS. We

can see the grouping stage is the most computational part

in these methods. In contrast, our method can be executed

in an end-to-end way, and the network inference runs quite

fast. Therefore our method only took 34ms to process a

point cloud with 4096 points. In Tab. 4, our algorithm is

about 257x faster than SGPN, 11x faster than ASIS, and

147x faster than JSIS. All methods are evaluated with a

PointNet backbone. Our computational boosting is owing

to the end-to-end instance assignment design.

4.5. Limitations and Discussions

Our method uses furthest point sampling to generate

instance candidates. This process is non-differential and

highly depends on instance-aware features. If poor candi-

dates are sampled, it will make it more difficult for redun-

dancy removal and instance assignment. In the future, we

will incorporate the estimated centroid distance to guide the

candidate sampling.

5. Conclusion

We present an end-to-end approach for 3D instance seg-

mentation. Different from the detection-free methods and

detection-based methods, we directly generate a set of in-

stance candidates, and cast instance grouping as a candidate

assignment problem for each point. Redundant candidates

are further masked with a suppression module. Experimen-

tal results on S3DIS dataset and SceneNN dataset demon-

strate the efficiency and effectiveness of our method. Our

framework is not restricted to 3D point cloud, and can be

easily extended to handle 2D instance segmentation as well.
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