
In Defense of Grid Features for Visual Question Answering

Huaizu Jiang1,2∗, Ishan Misra2, Marcus Rohrbach2, Erik Learned-Miller1, and Xinlei Chen2

1UMass Amherst, 2Facebook AI Research (FAIR)

{hzjiang,elm}@cs.umass.edu, {imisra,mrf,xinleic}@fb.com

Abstract

Popularized as ‘bottom-up’ attention [2], bounding box

(or region) based visual features have recently surpassed

vanilla grid-based convolutional features as the de facto

standard for vision and language tasks like visual question

answering (VQA). However, it is not clear whether the ad-

vantages of regions (e.g. better localization) are the key rea-

sons for the success of bottom-up attention. In this paper,

we revisit grid features for VQA, and find they can work

surprisingly well – running more than an order of magni-

tude faster with the same accuracy (e.g. if pre-trained in a

similar fashion). Through extensive experiments, we ver-

ify that this observation holds true across different VQA

models (reporting a state-of-the-art accuracy on VQA 2.0

test-std, 72.71), datasets, and generalizes well to other

tasks like image captioning. As grid features make the

model design and training process much simpler, this en-

ables us to train them end-to-end and also use a more flex-

ible network design. We learn VQA models end-to-end,

from pixels directly to answers, and show that strong perfor-

mance is achievable without using any region annotations

in pre-training. We hope our findings help further improve

the scientific understanding and the practical application of

VQA. Code and features will be made available.

1. Introduction

After the introduction of deep learning [9, 42] and at-

tention mechanisms [45, 46] to multi-modal vision and lan-

guage research, perhaps one of the most significant develop-

ments was the discovery of ‘bottom-up’ attention [2]. Un-

like normal attention that uses ‘top-down’ linguistic inputs

to focus on specific parts of the visual input, bottom-up

attention uses pre-trained object detectors [31] to identify

salient regions based solely on the visual input itself. As a

result, images are represented by a collection of bounding

box or region1-based features [2, 37]–in contrast to vanilla

grid convolutional feature maps from ConvNets [33, 15]–

∗This work was done when Huaizu Jiang was an intern at FAIR.
1We use the terms ‘region’ and ‘bounding box’ interchangeably.
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Figure 1: We revisit grid-based convolutional features for VQA, and find

they can match the accuracy of the dominant region-based features from

bottom-up attention [2], provided that one closely follow the pre-training

process on Visual Genome [21]. As computing grid features skips the ex-

pensive region-related steps (shown in colors), it leads to significant speed-

ups (all modules run on GPU; timed in the same environment).

for follow-up tasks. These region features have since then

gained wide popularity and dominated vision and language

leader boards [16, 48] for major tasks like visual question

answering (VQA).

So what makes these region features successful? Natu-

rally, one would assume a major reason is better localization

of individual objects, as the regions are direct bounding box

outputs from detectors. Another plausible answer is that a

number of regions can easily capture both the coarse-level

information and fine-grained details in the image – even if

they overlap. However, do these potential advantages actu-

ally demonstrate that region features are superior to grids?

Surprisingly, we discovered that grid features extracted

from exactly the same layer of the pre-trained detector can

perform competitively against their region-based counter-

parts for VQA. Moreover, with simple modifications dur-

ing training, the same grid features can be made even

more effective and that they consistently achieve compa-

rable and sometimes better VQA accuracy than region fea-

tures. In fact, our ablative analysis suggests that the key

factors which contributed to the high accuracy of existing

10267



bottom-up attention features are: 1) the large-scale object

and attribute annotations collected in the Visual Genome

(VG) [21] dataset used for pre-training; and 2) the high spa-

tial resolution of the input images used for computing fea-

tures. As for the feature format itself – region or grid – it

only affects accuracy minimally. Through a comprehensive

set of experiments, we verified that our observations gen-

eralize across different network backbones, different VQA

models [16, 48], different VQA benchmarks [3, 12], and

even to other relevant tasks (e.g. image captioning [4]).

Our findings have important consequences for the de-

sign of future multi-modal vision and language models.

The immediate benefit of switching to grids is inference

speed, as we can now skip all of the region-related steps

in the existing VQA pipeline (Fig. 1). For example, us-

ing a ResNet-50 [15] backbone, we find the overall running

time drops from 0.89s to 0.02s per image – 40+ times faster

with slightly better accuracy! In fact, extracting region fea-

tures is so time-consuming that most state-of-the-art mod-

els [20, 48] are directly trained and evaluated on cached

visual features. This practice not only imposes unnecessary

constraints on model designs, but also limits potential ap-

plications of existing vision and language systems.

Empowered by grid features, we therefore take an initial

step to train VQA models end-to-end from pixels directly to

answers. Note that end-to-end training with region features

is challenging, since fine-tuning region locations likely re-

quires additional grounding annotations [13] that are com-

putationally expensive and difficult to acquire. In contrast,

grid features can be readily optimized for the final objective

(e.g. to answer questions correctly) without extra ground-

ing. The grid-feature pipeline also allows us to explore

more effective designs for VQA (e.g. pyramid pooling mod-

ule [52]) and enables networks pre-trained with zero region-

level annotations to greatly reduce the gap in accuracy with

VG models (trained on bounding boxes) – indicating strong

VQA models can be achieved without any explicit notion of

regions. These results further strengthen our defense of grid

features for VQA. We hope our discovery can open up new

opportunities for vision and language research in general.

2. Related Work

Visual features for vision and language tasks. Features

have played a key role in the advancement of vision and

language tasks. For example, deep learning features led to

remarkable improvements in image captioning [9, 42, 8].

While a complete review of visual features used for vision

and language tasks is beyond the scope of this paper, we

note that the accuracies of modern VQA models are de-

pendent on the underlying visual features used, including

VGG [33] and ResNet [15] grid features, which were later

dominated by bottom-up attention region features [2, 37].

Today, most state-of-the-art VQA models focus on fusing

schemes [49, 20, 48] and are built with region features as-

is [47]; whereas our work revisits grid features, and shows

that they can be equally effective and lead to remarkable

speed-ups – often greater than an order of magnitude!

Pre-training for VQA. Most VQA methods use two sep-

arately pre-trained models: vision models trained on Ima-

geNet [6] and VG [21]; and word embeddings [29] for lin-

guistic features. As these separately trained features may

not be optimal for joint vision and language understand-

ing, a recent hot topic is to develop jointly pre-trained mod-

els [23, 27, 36, 35, 53, 5] for vision and language tasks. A

common scheme for such methods is to view regions and

words as ‘tokens’ for their respective domain, and pre-train

a variant of BERT [7, 40] for ‘masked’ token prediction.

Complementary to that direction, our work delves specifi-

cally into the ‘format’ of visual tokens and can be poten-

tially combined with such methods for mutual benefits (e.g.

trade-off between speed and accuracy).

Regions vs. grids. The debate between region features and

grid features carries some inherent connections to object de-

tection: the dominance of the R-CNN based detection mod-

els [31, 14] demonstrates that a region (the ‘R’ in R-CNN)

based refinement stage is beneficial for object detection.

On the other hand, one-stage detectors [24, 26] approach

the detection task without the need for explicit region-level

computation and show that grid features can be competitive

for object detection. In our work, we also use grid features

– no regions for the VQA task. To minimize changes from

bottom-up attention paper [2], we pre-train the features with

Faster R-CNN [31]. However, during inference, we discard

the region-related steps from the detector and use only the

grid convolutional features. This in fact gives us a stronger

defense for grids, as we show that VQA can operate on a

‘single’ feature map, instead of feature maps of ‘multiple’

scales that one-stage detectors [24, 26] thrive on.

It is also worth noting that while region features are

effective on benchmarks like VQA [3, 11] and COCO

captions [4], for benchmarks that diagnose a model’s

reasoning abilities when answering visual questions (e.g.

CLEVR [17]), simple methods based on grids [30] have

shown strong performance. We hope that our discovery that

grid features also work well for the general VQA task can

bridge the gap between these two lines of work [32].

3. From Regions to Grids

In this section, we explain our approach to obtaining grid

features that are just as effective as region features, with

the constraint that they have been pre-trained with the same

task. In Sec. 7, we show that the ‘same pre-training’ con-

straint can be lifted and grid features can still close the gap

to regions with end-to-end training on down-stream tasks.

We first briefly review the region features from bottom-up

attention [2].
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Figure 2: From regions to grids. Left: We convert the original region feature extractor used by bottom-up attention [2] back to the ResNet [15] grid feature

extractor for the same layer (see Sec. 3.2, weights in blue are transferred), and find it works surprisingly well for VQA [11]. Right: We build a detector

based on 1×1 RoIPool while keeping the output architecture fixed for grid features (see Sec. 3.3), and the resulting grid features consistently perform

at-par with region features.

3.1. Bottom­Up Attention with Regions

The bottom-up attention method [2] uses a Faster R-

CNN [31] detection model. The detector is trained on a

cleaned version of Visual Genome [21], with thousands of

object categories and hundreds of attributes with bounding

box (region) annotations.

In order to obtain bottom-up attention features for tasks

like VQA, two region-related steps are needed:

Region selection. As Faster R-CNN is a two-stage detector,

region selection happens twice in the pipeline. The first is

through a region proposal network [31], which deforms and

selects prominent candidate ‘anchors’ as Regions of Inter-

est (RoIs). Another selection is done as post-processing to

aggregate top N boxes in a per-class manner. In both steps,

non-maximal suppression (NMS) is used, which keeps the

region with the highest classification score and removes

other near-duplicates in a local neighborhood.

Region feature computation. Given regions from the first

stage (up to thousands), RoIPool operations [31] are used

to extract the initial region-level features. Additional net-

work layers then compute the output representation of re-

gions separately. Finally, region features that survive both

rounds of selection are stacked together as the bottom-up

features to represent an image.

It is important to note that due to the complexity of

the VG dataset (e.g. thousands of classes) and the specific

Faster R-CNN detector used [2] (described next), both steps

are computationally intensive. In contrast, directly using

grid features can skip or accelerate these steps and offer po-

tentially significant speed-ups.

3.2. Grid Features from the Same Layer

The simplest way to convert region features to grids is

to see if one can directly compute outputs of the same net-

work layer, but in a shared, fully convolutional manner. To

this end, we take a closer look at the specific Faster R-CNN

architecture used by the original bottom-up attention [2].

The Faster R-CNN is a variant of the c4 model [15] with

an extra branch for attribute classification. It divides the

weights from a ResNet [15] into two separate sets: given

an input image, it first computes feature maps using the

lower blocks of ResNet up to C4. This feature map is

shared among all regions. Then, separately, per-region fea-

ture computations are performed by applying the C5 block

on the 14×14 RoIPool-ed features. The output of C5

is then AvgPool-ed to a final vector for each region as the

bottom-up features [2]. Since all the final region features

are from C5, it is easy to convert the detector back to the

ResNet classifier and take the same C5 layer as our output

grid features. Fig. 2 (left) illustrates our conversion process.

As our experiments will show, directly using the con-

verted C5 output already works surprisingly well. Any per-

formance drop from doing so may be because Faster R-

CNN is highly optimized for region-based object detection,

and likely not so much for grids. Therefore, we next see

if some minimal adjustments to the model can be made to

improve grid features.

3.3. 1×1 RoIPool for Improved Grid Features

Our idea is to simply use 1×1 RoIPool. This means

representing each region with a single vector, rather than a
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VG detection pre-train VQA

# feature RoIPool region layers AP accuracy ∆

1
R [2]

14×14 C5 [15] 4.07 64.29 -

2 1×1 2-FC 2.90 63.94 -0.35

3

G

14×14 C5 4.07 63.64 -0.65

4 1×1 2-FC 2.90 64.37 0.08

5 ImageNet pre-train 60.76 -3.53

Table 1: Main comparison. ‘R’ stands for region features as in bottom-

up attention [2]. ‘G’ stands for grid features. All results reported on VQA

2.0 vqa-eval. We show that: 1) by simply extracting grid features from

the same layer C5 of the same model, the VQA accuracy is already much

closer to bottom-up attention than ImageNet pre-trained ones (row 1,3 &

5); 2) 1×1 RoIPool based detector pre-training improves the grid fea-

tures accuracy while the region features get worse (row 1,2 & 4). Last col-

umn is the gap compared to the original bottom-up features (underlined).

three-dimensional tensor in Faster R-CNN. At first glance,

it may seem counter-intuitive, as the two additional spatial

dimensions (height and width) are useful to characterize dif-

ferent parts of objects in 2D – indeed, we find this modifica-

tion negatively affects object detection performance on VG.

But importantly, using 1×1 RoIPool regions also means

each vector on the grid feature map is forced to cover all the

information for a spatial region alone, which can potentially

result in stronger grid features.

However, directly applying 1×1 RoIPool on the orig-

inal model is problematic, likely because C5 consists of

several ImageNet pre-trained convolutional layers that work

best with inputs of particular spatial dimensions. To resolve

this, we follow recent developments in object detection and

use the entire ResNet up to C5 as the backbone for shared

feature computation [54]; and for region-level computation

place two 1024D fully-connected (FC) layers on the top,

which by default accept vectors as inputs.

To reduce the effect of low resolutions when training the

detector with features pooled from C5 (C5 has stride 32,

whereas C4 has 16), the stride-2 layers are replaced with

stride-1 layers, and the remaining layers are dilated with a

factor of 2 [54]. For grid feature extraction, we remove this

dilation and convert it back to the normal ResNet.

Fig. 2 (right) summarizes the changes we made to im-

proved grids. Note that compared to the original model

(left), we only made necessary modifications to the region

related components during training. Since all such compu-

tations are removed during feature extraction, our grid fea-

ture extractor is kept untouched during inference.

4. Main Comparison: Regions vs. Grids

From this section on, we report our experimental results

comparing regions with grids. We choose VQA (2.0) [11]

as our main task of interest, since it is currently a major

benchmark for evaluating joint vision and language under-

standing and has clear metrics for evaluation. For all our

comparisons, we denote methods using region features with

the tag ‘R’, and methods using grid features with ‘G’. In this

section, we focus on reporting our main findings from con-

verting regions to grids as described in Sec. 3. We begin by

briefly describing our experimental setups (more details in

the supplementary material). Note that our goal here is to

make the conclusion meaningful by controlled comparisons,

and not necessarily to optimize for absolute performance.

4.1. Experimental Setup

Faster R-CNN. For analysis, we use Faster R-CNN with

a ResNet-50 backbone pre-trained on ImageNet by de-

fault2. Closely following bottom-up attention [2], the de-

tector is then trained on the VG dataset [21] with region-

level annotations for 1600 object categories and 400 at-

tribute classes. For attributes, an additional branch is added

with loss weight 0.5. The model is trained with ‘1x’ sched-

ule [14]. Notably, input images are resized to have a maxi-

mum shorter side of 600 pixels (longest 1000) when keep-

ing aspect ratio fixed. For region features, we set N=100.

VQA split. Unless otherwise specified, we use the default

train set for training. To assist our analysis, we create

a local validation set, vqa-dev, out of the standard val

set to select the best model during training for evaluation.

It contains randomly sampled 8.4K images and their corre-

sponding questions, with 66K pairs in total. The rest of the

original val set (named vqa-eval) is reserved for test-

ing, on which we report results.

VQA model. We use the co-attention model [50] imple-

mented in Pythia [16, 34]. This model fuses visual features

(either region or grid) with textual representations of ques-

tions, and outputs the final answer.

4.2. Main Results

Our main results are summarized in Table 1. We make

two observations: First, compared with the widely used

bottom-up region features (row 1), directly extracting out-

puts from C5 with the same model (row 3) works surpris-

ingly well (64.29 vs. 63.64 accuracy). In contrast, the stan-

dard ResNet-50 model pre-trained on ImageNet [6] shows

much worse performance – 60.76 accuracy, a gap of more

than 3% with the bottom-up features.

Second, while our 1×1 RoIPool-based variant hurts

the object detection performance (average precision [25] on

VG drops from 4.07 to 2.90), it helps VQA – boosting the

accuracy by 0.73% (row 3 & 4) and as a result slightly out-

performs the original region-based features. On the other

hand, our RoI-based variant does not help the region fea-

tures method and drops the accuracy of region features to

63.94. This indicates the original model used by bottom-

up attention favors regions; while our design works better

for grids. Thus, we use the setting of the 1st row (best for

2https://github.com/facebookresearch/

maskrcnn-benchmark
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Figure 3: VQA accuracy vs. number of features N as input to the VQA

model. We report the average accuracy and standard deviation across 5

independent runs on the VQA 2.0 vqa-eval set. We observe that the

VQA accuracy of region features saturates around 200 regions. In contrast,

the grid features benefit from a larger N (translates from a larger input size)

and in this case stays better than regions even when N is the same (608).

regions) to represent ‘R’, and the 4th row (best for grids)

to represent ‘G’, to perform a more in-depth study and fair

comparison between the two through the rest of the paper.

4.3. Number of Regions

Apart from architectural differences in training, another

factor that can affect VQA accuracy is the number of feature

vectors N used to represent images. Our region model from

Pythia [16] has a default setting that uses the top 100 boxes

to represent region features, increasing it from the original

36 boxes in [2] to improve the accuracy. On the other hand,

since grid features are convolutional feature maps for a pre-

set layer, the number of features is determined by the input

size to the network. As our largest input size is 600×1000,

a 32-stride feature map (C5) results in 608 grid features –

much larger than the number of region features. To under-

stand how these different numbers of region features affect

the accuracy, we ran experiments with varying number of

features N and show the results in Figure 3.

As for the region features, we observe an improvement in

accuracy as the number of regions increases from 30 to 200,

beyond which the accuracy saturates. Interestingly, our grid

features are better even when compared to the highest num-

ber of regions3. Thus, the higher number of feature vectors

used in our grid method compared to the baseline region

method, is not the reason for its improved VQA accuracy.

4.4. Test Accuracy and Inference Time

We now report results on the VQA 2.0 test-dev set

to quantify the difference in performance between region

3Since NMS is used in selecting regions, the maximum number N

varies across images. Therefore we 1) cannot directly set it to the same

number as grids and 2) report maximum N instead (zero paddings are

used for images with fewer regions).

# features

(N )

test-dev

accuracy

inference time breakdown (ms)

shared

conv.

region

feat. comp.

region

selection
VQA total

R
100 66.13 9 326 548 6 889

608 66.22 9 322 544 7 882

G 608 66.27 11 - - 7 18

Table 2: Region vs. grid features on the VQA 2.0 test-dev with ac-

curacy and inference time breakdown measured in milliseconds per image.

Our grid features achieve comparable VQA accuracy to region features

while being much faster without region feature computation and region

selection.

and grid features. Note that different from previous setups,

we use trainval+vqa-eval for training. We report the

VQA accuracy and the inference time breakdown in Ta-

ble 2. Unlike our grid features which directly use convo-

lutional feature maps, region features involve additional op-

erations of region selection and region feature computation.

These additional operations take 98.3% of the total infer-

ence time for a region-based model. As a result, the VQA

model that takes our grid features as input runs 48× faster

than its counterpart using bottom-up region features.

4.5. Qualitative Comparison

We visualize attention maps over input images from the

top-down attention module [2], together with answers from

both regions and grids in Fig. 4. Source images are taken

from COCO [25] on which VQA 2.0 [11] benchmark is

built. To obtain the attention map, we propagate the at-

tention value of each region or grid to its corresponding

pixels, and then average the attention value for each pixel

(normalizing them individually to [0, 1]). As can be seen,

both types of features are able to capture relevant concepts

in input images (e.g., snowfield in the top left). Naturally,

attention maps of region features tend to cover object-like

regions, while for grid features the attention does not nec-

essarily cover the full area the supporting concept (e.g., the

snowfield), which can be used to answer the question. How-

ever, both features are able to answer visual questions well,

suggesting that localization is important, but accurate object

detection of individual objects is not crucial for VQA [11].

We show failure cases of region and grid features in

Fig. 4 (b)(c)(d). In most examples, the models attend to

the supporting concepts but still give wrong answers. In

the cases where both region and grid features fail, specifi-

cally designed modules may be needed (e.g., counting mod-

ule [51, 39] in the bottom right example) to answer the ques-

tion correctly.

5. Why do Our Grid Features Work?

As we mentioned in Sec. 2, grid features are not new – in

fact, they were widely used in vision and language tasks be-

fore the introduction of bottom-up attention features. Com-
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Q: Which devices do you see? Q: Has the pizza been eaten? Q: What color are the curtains? Q: What is the cat laying on?

GT-A: phones GT-A: no GT-A: red and white GT-A: suitcase

A(R): phones ✓ A(G): phones ✓ A(R): no ✓ A(G): yes ✗ A(R): red ✗ A(G): red and white ✓ A(R): shoes ✗ A(G): shoe ✗

Q: Is the plate white? Q: What breed of dog is this? Q: What is the person doing? Q: How many boats do you see?

GT-A: yes GT-A: pug GT-A: cutting GT-A: 7

A(R): yes ✓ A(G): yes ✓ A(R): pug ✓ A(G): bulldog ✗ A(R): texting ✗ A(G): cutting ✓ A(R): 5 ✗ A(G): 4 ✗

(a) (b) (c) (d)

Figure 4: Visualizations of attention maps overlaid on images produced by VQA models [16]. Source images taken from COCO [25] to compare against

bottom-up attention [2] on VQA 2.0 [11]. We show questions (Q), ground-truth answers (GT-A), and side-by-side predictions (attention maps, answers) of

region (R) and grid (G) features. From left to right: (a) both region and grid features give correct answers, (b) region features give correct answers but grid

features fail, (c) region features fail but grid features give correct answers, and (d) both region and grid features fail. Best viewed in color.

accuracy pre-training task input size

G
prev. 60.76 ImageNet [6] classification 448×448

ours 64.37 VG [21] object+attribute detection 600×1000

Table 3: Comparison between the conventional ImageNet pre-trained

and our proposed grid features on the VQA 2.0 vqa-eval set. Besides

VQA accuracy, we list two major differences between the two: 1) pre-

training task and 2) input image size.

pared to the previous attempts at grid features, why do our

grid features work well? In Table 3 we show the perfor-

mance of grid-based methods (ResNet-50 C5 features) for

different settings and find that there are two major factors:

1) input image size; 2) pre-training task. We study both

these factors next and report results on the vqa-eval set.

5.1. Factor 1: Input Image Size

The standard image size used during feature extraction

for ImageNet pre-trained models is 448×448 [10] discard-

ing the aspect ratio; whereas for VG detection in bottom-up

attention [2], the default size is 600×1000 while keeping

the aspect ratio intact. Therefore, we experimented with

different combinations and reported results for all of them

in Table 4. We note that for grid features, a larger input size

means more features for the VQA model.

From the table, we find that grid features benefit from

larger images as input, indicating this factor is indeed im-

portant. However, input size has a different effect for mod-

els pre-trained on ImageNet vs. VG. For ImageNet mod-

els which are pre-trained on smaller images [15], the per-

formance saturates around 600×1000. Interestingly, the

performance of VG models improves with the input size

and continues to increase even at 800×1333. We still use

600×1000 for the rest of the paper.

dataset
input size # features

N
accuracy

shorter side longer side

G

Im
ag

eN
et

448 448 196 60.76

448 746 336 61.21

600 1000 608 61.52

800 1333 1050 61.52

V
G

448 448 196 63.24

448 746 336 63.81

600 1000 608 64.37

800 1333 1050 64.61

Table 4: Impact of input image size on the VQA 2.0 vqa-eval set.

Grid features benefit from larger input image sizes. For an ImageNet pre-

trained model, the accuracy saturates around 600×1000 but the VG model

makes a better use of larger input image sizes.

5.2. Factor 2: Pre­Training Task

We now study the difference in VQA accuracy due to the

pre-training task in the ImageNet (classification) and VG

(detection)4. To understand these differences better, we in-

troduce an additional pre-trained model in each setting. For

classification, we include a model trained on YFCC [38],

which has 92M images with image tags. For detection, we

include a standard model from COCO [25] which only has

object annotations (no attributes). All models use a ResNet-

50 backbone for fair comparison.

The results are shown in Table 5. In the image classifica-

tion pre-trained setting, the YFCC model (trained on weak

image level tags), performs better than the ImageNet model,

possibly because it is trained on two orders of magnitude

more data. For detection based pre-training, the VG model

(trained with objects and attributes) gives better results than

4Strictly speaking, VG also uses ImageNet classification for pre-

training, because the detector is fine-tuned from a standard ImageNet pre-

trained model.
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pre-train task
accuracy

setup dataset annotation #images

G

cls ImageNet [6] image label 1.3M 61.52

cls YFCC [38] image tag 92M 62.72

det COCO [25] object box 118K 62.46

det VG [21] object+attribute 103K 64.37

Table 5: Choice of pre-training task. We explore the impact of the type

of pre-training task on the final performance while keeping the input size

fixed at 600×1000. Results reported on vqa-eval. We broadly char-

acterize the pre-training tasks into two types - object detection (‘det’) and

image classification (‘cls’).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Weight of Attribute Loss

63.2

63.4

63.6

63.8

64.0

64.2

64.4

64.6

64.8

Ac
cu

ra
cy

VQA2 vqa-eval set

Figure 5: Analysis on attribute loss weights when pre-training grid fea-

tures on Visual Genome (VG). All results on VQA 2.0 vqa-eval set.

the COCO model. The larger number of categories in VG

compared to COCO (1600 vs. 80) or the additional attribute

annotations it has are two possible reasons for the improved

performance. We study the impact of attributes next.

Attributes. Fig. 5 shows the impact of the attribute loss

weight on VQA accuracy. Setting the attribute loss weight

to zero during pre-training on VG, results in a drop in

VQA performance. In fact, the VQA accuracy in this case

matches the accuracy from a pre-trained COCO model sug-

gesting that attributes in the pre-training task are a major

reason for the better performance of VG models. We also

note that the grid features consistently outperform the re-

gion features for all values of the attribute loss weight.

6. Generalization of Grid Features

We now study whether our findings about grid features

are more broadly applicable to other tasks and models. In

this section, we study generalization across: 1) different

backbones; 2) different VQA models; 3) different VQA

tasks; 4) other tasks. For all the studies, we set the at-

tribute loss weight to 0.2, and compare both the accuracy

and speed. For regions we use top N=100 ones. Detailed

hyper-parameters are in the supplementary material.

Different backbone. We train Faster R-CNN models with

ResNeXt-101-32x8d [44] backbone on VG and use the

same Pythia setting from Section 4.5. Results on VQA 2.0

test-dev split are reported in Table 6a. We find that our

grid features are competitive to the region features even on

this more powerful backbone model. Speed-wise, grid fea-

tures still run substantially faster (23.8×) than region ones.

Different VQA model. We further test our features ob-

tained from the previous ResNeXt-101 backbone with the

state-of-the-art VQA model, MCAN [48] (2019 VQA Chal-

lenge winner). We use the open-sourced implementation5

to train the large version of the model. The results on VQA

2.0 test-dev set are in Table 6b, where our own region

features perform better than the results reported in [48] due

to stronger backbone. On top of that, our grid features work

even better than regions, leading to significant improvement

over results reported in MCAN [48] (+1.66). This final

model reports a state-of-the-art test-std result of 72.71

(single-model performance) for future reference.

Different VQA task. We use the VizWiz VQA

dataset [12], which is a real world dataset of pictures taken

with cellphones by visually-impaired users. It is more

challenging due to poor image quality, conversation-style

questions, and unanswerable questions, etc. Pythia [16]

model is used (2018 challenge winner). Results on the

test-dev set of VizWiz are reported in Table 6c,

where our grid features achieve comparable results to the

regions. It is worth pointing out that our grid features run

much faster (23×), which provides great potential to be

deployed in practice, e.g., on cell phones, to better assist

the visually-impaired.

Image captioning. We train the bottom-up attention

model [2] implemented in Pythia [16] taking our features as

input for image captioning on COCO [4]. No CIDEr [41]

optimization [2] is used for fair comparison. Quantitative

results on the test set of Karpathy split [18] are reported

in Table 6d. We use standard evaluation metrics including

BLEU4 [28], METEOR [22], CIDEr, and SPICE [1]. Sim-

ilar to the VQA task, our grid features achieve comparable

results to bottom-up region ones for image captioning while

being significantly faster.

7. Towards End-to-end VQA

Although pre-training on VG, ImageNet, or YFCC pro-

vides useful feature representations for VQA, there are still

potential domain shifts between the pre-training tasks and

the downstream tasks. For example, YFCC contains a lot

of outdoor images [38], which are not present in the VQA

dataset. Instead of using pre-computed fixed feature rep-

resentations, end-to-end training, where the initial feature

representations will be fine-tuned, provides a natural solu-

tion to reducing such domain gaps. Empowered by the dra-

matic simplification of grid features for the VQA pipeline,

we take an initial step towards this goal.

5https://github.com/MILVLG/mcan-vqa
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accuracy
time

(ms)

Pythia [16] 68.31 -

R 68.21 929

G 67.76 39

(a)

accuracy
time

(ms)

MCAN [48] 70.93 -

R 72.01 963

G 72.59 72

(b)

accuracy
time

(ms)

Pythia [16] 54.22 -

R 54.28 874

G 54.17 38

(c)

B4 M C S
time

(ms)

BUTD [2] 36.2 27.0 113.5 20.3 -

R 36.2 27.7 113.9 20.8 1101

G 36.4 27.4 113.8 20.7 240

(d)

Table 6: Generalizations of grid features. From left to right: (a) Different backbone. We use a ResNeXt-101-32x8d instead of a ResNet-50 as the

backbone. (b) Different VQA model. We use MCAN [48] implementation which is the state-of-the-art VQA model. (c) Accuracy on VizWiz using the

same VQA models [16]. (d) Image captioning on COCO Karpathy test split. Abbreviations: BLEU4 (B4), METEOR (M), CIDEr (C), and SPICE (S). Our

grid features generalize well by achieving results at-par with bottom-up region features while being significantly faster.

pre-train task
e2e

PPM

[52]
accuracy ∆

dataset
region

annotations?

VG [21] ✓
66.27 -

✓ 66.47 0.20

✓ ✓ 66.74 0.47

ImageNet [6] ✗
63.21 -

✓ 64.98 1.77

✓ ✓ 65.97 2.76

YFCC [38] ✗
65.04 -

✓ 65.35 0.31

✓ ✓ 66.61 1.57

Table 7: Results of end-to-end trained VQA models with grid features

on the VQA 2.0 test-dev set. End-to-end learning boosts accuracy for

all models and more for ones trained on ImageNet and YFCC. Adding

PPM [52] further improves accuracy.

Training details. We adopt the 22K learning rate sched-

ule [16] to train both the ResNet-50 model and the Pythia

VQA model jointly, with errors from the answering accu-

racy directly back-propagated to the grid convolutional fea-

ture maps. We fix the first two residual blocks and fine-

tune the rest of the model. Since the visual representations

are computed online (not stored on disk), it allows us to

perform data augmentation including color jitter and affine

transformation over the input images to reduce chance of

over-fitting. For more details see supplementary material.

Results. We experiment with three models pre-trained on

VG, ImageNet, and YFCC. Note that while VG uses re-

gion-level annotations, both ImageNet and YFCC only use

image-level ones (human labels or noisy image tags). As

can be seen from Table 7, end-to-end training (denoted as

‘e2e’) can boost accuracy for all three pre-trained models,

with the biggest improvements for ImageNet models.

Flexible network design. As we now have the ability to

train our models end-to-end in a simple manner, it allows

us to introduce more flexible architectural designs for vi-

sion and language tasks [27]. Specifically, on top of the grid

features from the ResNet-50 model, we add a Pyramid Pool-

ing Module (PPM, a component widely used for semantic

segmentation; details in supplementary material) [52, 43]

to aggregate visual information from grid features of differ-

ent spatial resolutions. After adding this module to different

pre-trained models (Table 7, ‘PPM’), the VQA accuracy can

be further improved. Remarkably, for ImageNet and YFCC

pre-trained models, a combination of end-to-end training

and PPM results in close or even better performance than a

VG pre-trained model using pre-computed region features.

This result is particularly desirable as it indicates good VQA

accuracy can be achieved even with zero use of explicit re-

gion (bounding box) annotations.

8. Conclusion

In this paper, we revisit grid features as an alternative to

the widely used bottom-up region features [2] for vision and

language tasks. We show they can in fact achieve on-par

results in terms of accuracy over different VQA tasks and

models and even on captioning. As a result of skipping the

computationally expensive region-related bottlenecks in the

pipeline, we see remarkable speed-ups – often more than an

order of magnitude – to the existing systems that rely on re-

gions. Our experiments show that rather than the ‘format’ of

features (region vs. grids), the semantic content that features

represent is more critical for their effectiveness. Such ef-

fective representation, per our experiment, can be achieved

either by pre-training on object and attribute datasets such

as VG, or more importantly, by end-to-end training of grid

features directly for the end-task. Note that while easy with

grid-features, end-to-end training is not trivial with regions.

Even with limited exploration in this direction, we already

find that given a more flexible design space, grid features

pre-trained without any region-level annotations can in fact

achieve strong performance on VQA. While we are aware

that for tasks like referring expressions [19] where the out-

put itself is a region, modeling region is likely unavoidable,

but we hope our grid features can potentially offer new per-

spectives for vision and language research in general.
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