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Abstract

Recovering sharp video sequence from a motion-blurred

image is highly ill-posed due to the significant loss of mo-

tion information in the blurring process. For event-based

cameras, however, fast motion can be captured as events at

high time rate, raising new opportunities to exploring effec-

tive solutions. In this paper, we start from a sequential for-

mulation of event-based motion deblurring, then show how

its optimization can be unfolded with a novel end-to-end

deep architecture. The proposed architecture is a convolu-

tional recurrent neural network that integrates visual and

temporal knowledge of both global and local scales in prin-

cipled manner. To further improve the reconstruction, we

propose a differentiable directional event filtering module

to effectively extract rich boundary prior from the stream

of events. We conduct extensive experiments on the syn-

thetic GoPro dataset and a large newly introduced dataset

captured by a DAVIS240C camera. The proposed approach

achieves state-of-the-art reconstruction quality, and gener-

alizes better to handling real-world motion blur.

1. Introduction

Motion blur happens commonly due to the exposure time

required by modern camera sensors, during which scenes

are recorded at different time stamps and accumulated into

averaged (blurred) signal. The inverse problem called de-

blurring, which unravels the underlying scene dynamics be-

hind a motion-blurred image and generates a sequence of

sharp recovery of the scene, is still challenging in computer

vision. While simple motion patterns (e.g. camera shake)

have been well modelled [29, 22, 6, 8, 47, 12, 51, 2], for-

mulating more sophisticated motion patterns in real world,

however, is much more difficult.

To model general motion blur, recent deep learning ap-

proaches propose to recover a blurred image by observing

lots of sharp images and their blurred versions [42, 11, 52,

25, 15, 43]. Despite their success in certain scenarios, they
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Figure 1. Motivation of our approach. A severe motion-blurred im-

age (a) is difficult to deblur by observing its ambiguous appearance

only even with state-of-the-art deep architecture [50] (c). Though

events (b) provide dense temporal cues, the physical reconstruc-

tion approach [31] still presents unaddressed blur due to the noisi-

ness of events (d). The proposed deep motion deblurring learns to

recover plausible details from imperfect image and events (e).

may fail reconstructing the scene plausibly for severe mo-

tion blur (e.g. Fig. 1), which is common for handheld, vehi-

cle or drone-equipped cameras. In this case, hallucinating

the scene details is hardly possible due to the significant loss

of temporal order and visual information.

Instead of purely relying on computational architectures,

this work adopts event-based cameras to alleviate this prob-

lem at data capture stage. Event cameras are biologically in-

spired sensors adept at recording the change of pixel inten-

sities (called events) with microsecond accuracy and very

low power consumption. The hybrid model of such sensors

(e.g. [5]) allows the events being temporally calibrated with

the image. As a result, such data naturally encodes dense

temporal information that can facilitate motion deblurring.

As shown in Fig. 1 (a) and (b), although the image under-

goes significant blur, the accompanying events are tempo-

rally dense and reveal clear moving pattern of the scene.

Despite the high potential of event-based motion deblur-

ring, a critical issue is that events are lossy and noisy signals

triggered only if pixel intensity changes up to certain thresh-

old that can vary with the change of scene conditions [35].

Such discrete and inconsistent sampling makes textures and
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contrast difficult to restore. As shown in Fig. 1 (d), state-of-

the-art physical deblurring method [31] still has difficulty

reconstructing the image plausibly. Our solution is to plug

deeply learned priors into event-based deblurring process,

so as to surpass the imperfectness of data.

In details, this work starts from a sequential formulation

of event-based deblurring. By reinterpreting its optimiza-

tion with deep networks, we propose a novel recurrent ar-

chitecture trainable end-to-end. For each time step, coarse

reconstructions are obtained from previous reconstruction

as well as the local temporal events. Fine details are then

supplied by network predictions, guided by appearance and

temporal cues at both global and local scales. To further

improve the quality of reconstruction, we propose a differ-

entiable Directional Event Filtering (DEF) module, which

effectively aggregates the motion boundaries revealed by

events and produces sharp deblurring prior. To evaluate the

proposed approach, we compile a large outdoor dataset cap-

tured using the DAVIS240C camera [5]. Extensive experi-

ments on this dataset and the synthetic GoPro dataset [25]

show that the proposed approach outperforms various state-

of-the-art methods, either image-based or event-based, and

generalizes better to handling real-world motion blur.

Contributions of this paper are summarized as follows.

1) We propose a novel recurrent deep architecture for event-

based motion deblurring, which achieves state-of-the-art re-

sults on two large benchmarks. 2) We propose directional

event filtering to generate sharp boundary prior from events

for motion deblurring. 3) We compile a new event dataset

with real-world motion blur to facilitate future research.

2. Related Work

Blind motion deblurring aims to resolve a blurry im-

age without knowing the blurring kernel. Early works have

designed various blurring-aware indicators, such as color

channel statistics [29, 47], patch recurrence [22] and “out-

lier” image signals [8], to define latent image priors. Sev-

eral works propose to learn motion kernels [39, 28], restora-

tion functions [45, 11] and image priors [55, 42] from data.

More complex motion patterns compounded by different

objects were also addressed [16, 37]. Richer prior knowl-

edge such as scene geometry was proven useful [30, 32].

A recent trend is to approach all the complexities of mo-

tion deblurring with deep neural networks. Various kinds of

effective network designs are proposed, including enlarging

the receptive field [52], multi-scale fusion [25, 27], feature

distangling [26], and recurrent refinement [44]. There was

also research on decoding the motion dynamics of a blurred

image to a sharp video sequence [15]. Despite these ad-

vances, the considerable combinations of real-world light-

ings, textures and motions, which are severely missing in a

blurred image, are still difficult to be plausibly recovered.

Event cameras [19, 5] are a special kind of sensors that

detect intensity changes of the scene at microsecond level

with slight power consumption. They find applications in

various vision tasks, such as visual tracking [34, 23], stereo

vision [54, 1] and optical flow estimation [20, 48]. A related

branch is to explore the corrupted event signals to restore

high frame rate image sequences [38, 24, 40]. Recently,

Pan et al. [31] formulates event-based motion blurring with

a double integral model. Yet, the noisy hard sampling mech-

anism of event cameras often introduces strong accmulated

noise and loss of scene details/contrast.

This work shares the insight of recent works on event-

to-video translation [33, 17, 36] that surpasses the imper-

fect event sampling by learning plausible details from data.

While [33] addresses future frame prediction, [17, 36] trans-

late events to plausible intensity images in streaming man-

ner depending on local motion cues. Instead, this work ex-

plores both long-term, local appearance/motion cues as well

as novel event boundary priors to solve motion deblurring.

3. Learning Event-Based Motion Deblurring

Given a motion-blurred image Ī, our objective is to re-

cover a sharp video sequence with T frames, I = {Ii}
T
i=1.

We assume that a set of events E1∼T are also captured by

hybrid image-event sensors during the exposure, where the

tilde denotes the time interval. Each event E ∈ E1∼T has

the form Ex,y,t, meaning that it is triggered at image coor-

dinate (x, y) and time point t ∈ [1, T ]. Note here t does not

need to be an integer, but can be fractional due to the high

temporal resolution (i.e. microsecond-level) of event cam-

era. A polarity px,y,t is recorded for Ex,y,t indicating the

change of local intensity. Formally, it is defined as [19, 5]

px,y,t =

⎧

⎨

⎩

+1, if log
(

It(x,y)
It−∆t(x,y)

)

> τ,

−1, if log
(

It(x,y)
It−∆t(x,y)

)

< −τ,
(1)

Eqn. (1) shows that, events are triggered if the instant im-

age at time point t, namely It, has pixel intensity changed

up to a threshold ±τ in a small time period ∆t. Without loss

of generality, we assume that px,y,t takes zero in case that

log
(

It(x,y)
It−∆t(x,y)

)

is in [−τ, τ ]. For adjacent latent images

Ii and Ii−1, the following relationship can be derived:

Ii (x, y) ≈ Ii−1 (x, y)·exp

(

τ

∫ i

t=i−1

px,y,t✶ (Ex,y,t) dt

)

,

(2)

The indicator function ✶ (·) equals 1 if the event Ex,y,t ex-

ists, or 0 otherwise.

One should note that the approximation error of (2) is

getting lower when ∆t, τ → 0, which implies denser events

according to (1). However, with inconsistent τ affected by

various kinds of noise, the approximation is mostly insuffi-

cient in practice, leading to loss of contrast and details. To
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address this issue, we propose a joint framework that learns

to reconstruct clean images from data, by reinterpreting a

sequential deblurring process.

Deep sequential deblurring. Event-assisted deblurring

can be formulated under Maximum-a-Posteriori:

I
∗ = argmax

I

P
(

I|Ī,E1∼T

)

. (3)

To solve the combinatorial problem (3) we make the follow-

ing simplifications. For the joint posterior P
(

I|Ī,E1∼T

)

,

we make use of the temporal relations between adjacent la-

tent images (2), and assume a Markov chain model:

P
(

I|Ī,E1∼T

)

≈P
(

IT |Ī,E1∼T

)

×

T−1
∏

i=1

P
(

Ii|Ii+1, Ī,E1∼T

)

,
(4)

in which P
(

Ii|Ii+1, Ī,E1∼T

)

= P
(

Ii|Ii+1, Ī,Ei∼i+1

)

with Markov assumption. Note that this simplified model

first estimates IT , then perform sequential reconstruction in

backward order. According to Bayesian rule, the maximizer

of a backward reconstruction step equals to:

I∗
i = argmax

Ii

P
(

Ii+1, Ī,Ei∼i+1|Ii
)

P (Ii) . (5)

Here, the prior term P (Ii) imposes desired distributions of

the latent image, e.g. ℓ1 gradient [3] or manifold smooth-

ness [24] in recent event-based image reconstruction. To

model the likelihood term, we assume that there is an initial

estimate from previous reconstruction, via (2):

Îi = Ii+1 ⊙ exp
(

−τSi
i+1

)

, (6)

where ∀x, y,Si
i+1 (x, y) =

∫ i+1

t=i
px,y,t✶ (Ex,y,t) dt, and ⊙

denotes Hadamard product. Since the time interval is small,

we assume constant τ which introduces only small drift and

provides good initialization. To solve I∗
i , several works as-

sume simple distributions centered around Î∗
i to define the

likelihood term in (5), e.g. in [24] a Poisson distribution is

used. In this manner, Eqn. (5) can be treated as a well-

studied denoising problem.

Instead of using simple image prior, we borrow from re-

cent research on learning deep denoising prior [53, 50]. In

particular, we plug a deep network N as a learned denoiser,

I∗
i = N

(

Îi, Ii+1, , Ī,Ei∼i+1

)

. (7)

As such, prior of latent image P (Ii) is not explicitly de-

fined but implicitly learned from training data. To reduce

parameter size and prevent overfitting, we use the same net-

work governed by the same set of parameters for each de-

blurring step of (5), leading to a recurrent architecture.

The remaining problem of solving (4) is how to get the

initial latent image, i.e. IT . We use the fact that the blurred

image Ī roughly equals the average of the instant images in

the exposure process. Combining this fact with (6), we have

Ī ≈
1

T

T
∑

i=1

Ii = IT ⊙
1

T

(

1 +

T
∑

t=2

t−1
∏

i=1

BT−i
T−i+1

)

, (8)

where Bi
i+1 = exp

(

−τSi
i+1

)

and Si
i+1 is defined in (6).

It provides an initial estimation of IT , namely ÎT , using

the blurred image Ī and events. Thus, we also treat solv-

ing IT a denoising problem, centered around ÎT , and use

a network to approximate it. We note, however, the accu-

mulative operator in (8) introduces more drift unlike the se-

quential deblurring steps. We thus correct ÎT via a sepa-

rate and more powerful network: I∗
T = N0

(

ÎT , Ī,E1∼T

)

.

The full deblurring process is summarized in Alg. 1. Note

that by design (7), the latent image is conditioned on both

local and long-term cues from the image and events.

Algorithm 1 Event-assisted Deep Motion Deblurring

Require: the blurred image Ī, events E1∼T

1: Get initial estimate ÎT by solving (8)

2: Deblurring: I∗
T = N0

(

ÎT , Ī,E1∼T

)

3: Initialize counter: i = T − 1
4: while i ≥ 1 do

5: Get initial estimate Îi by solving (2)

6: Deblurring: I∗
i = N

(

Îi, Ii+1,Ei∼i+1, Ī,E1∼T

)

7: i ← i− 1
8: end while

9: return Deblurred sequence I
∗ = {Ii}

T
i=1

4. Network Architecture

Fig. 2 shows the proposed event-based motion deblurring

architecture, which contains: a read network that traverses

over the events and generates a single representation of the

global scene motion, an initialize network that couples ap-

pearance and motion to generate the initial latent image, and

the recurrent process network sequentially deblurring all the

latent images1. The read and initialize networks instantiates

N0 while the process network implements N in Alg. 1.

The read network reads all the event data and generate a

joint representation that accounts for the global event mo-

tion. To accomplish that, events during the exposure are

first binned into equal-length time intervals (3 intervals in

Fig. 2). In each time interval, events are represented with

stacked event frames [17], through further dividing an in-

terval into 8 equal-size chunks, summing over the polarities

of events falling into each chunk, and stacking the results

along channel dimension. The read network is a recurrent

1Due to space limit we briefly describe the component design and refer

the detailed layer/parameter configurations to our supplementary material.
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Conv. Encoder Conv. Decoder Feature tensor Conv. LSTM DEF: Directional Event FilteringMC: Motion Compensation Positive/negative events

Motion 

features

Image

features

+

Concat

Eq. (6)

ProcessNet ProcessNet ProcessNet

Eqn. (8)

Result 

Blurred

Directional Event Filtering (DEF) 

Event frames 4→3 Event frames 3→2 Event frames 2→1

Eq. (6)
Eq. (6)

Event frames 2→1 Event frames

q. (6)))

Spatially-adaptive filtering coefficients

…

Figure 2. The proposed learning framework for event-based motion deblurring. For better visualization, we only assume 4 sharp frames

are recovered from the blurred image. Detailed layer and parameter configurations are referred to the supplementary material. Note that

the Motion Compensation (MC) module is not illustrated due to the lack of space. See text for detailed description of the architecture.

encoder consisting of convolutional blocks and a convolu-

tional LSTM [41] on top to accumulate features along time.

The initialize network decodes the appearance from the

blurred image and couples it with the global motion to solve

the latent image I∗
T . It takes as input both the blurred im-

age Ī and the initial estimate ÎT (via solving Eqn. (8)) and

processes them with a convolutional encoder, concatenates

the encodings with the accumulated global motion features

from the read network, and feeds the joint features into a

decoder to get the result.

Given the initial result, the process network then sequen-

tially deblurs the remaining latent images. In the ith step,

it consumes both image and event-based observations. The

image part include: 1) the initial estimate Îi as obtained

by Eqn. (6) using the previous reconstruction Ii+1, 2) the

local historical image by transforming the previous result

Ii+1 with the Motion Compensation (“MC” in Fig. 2) mod-

ule, and 3) the boundary guidance map given by the Di-

rectional Event Viltering (“DEF” in Fig. 2) module. These

two modules will be explained further shortly after. Input

images are processed by convolutional layers and concate-

nated with the per-step event features extracted from the

read network via latent fusion. The fused features are pro-

cessed and fed to another convolutional LSTM to propagate

temporal knowledge along time. Finally, a decoder takes

the joint features and generates the deblurred image.

Motion compensation. We use a motion compensation

module to warp previous deblurring result Ii+1 and gener-

ate an initialization of the ith time step. Although Eqn. (6)

achieves this by event integration, we find it more effective

to predict a flow field from which we directly warp the clean

result Ii+1 as additional guidance. Motion compensation

for events have already been discussed in [10]. For effi-

ciency, we adopt a FlowNetS architecture [9] to take events

Ei∼i+1 as input and directly regress forward flows from i to

i+ 1. Warping is implemented with a differentiable spatial

transformer layer [18, 14].

Directional event filtering. The initial estimates Îi may

suffer unaddressed blur due to the naive blurring model (8)

and the noisiness of events. We alleviate this issue with the

aid of sharp boundary prior, a widely explored image prior

for blind deblurring [7, 46], extracted from events Ei∼i+1.

Events indicate local change of scene illuminace and re-

veal physical boundaries. However, as scene boundaries are

moving, at a specific time they are only spatially aligned

with the latest events triggered at their positions. As a toy

example, Fig. (3) shows after the imaging the top and bot-

tom lines correspond to events at two different time points.

It gives that one can generate scene boundary prior by sam-

pling events at proper space-time positions. Note that due

to variation of scene depth, different scene parts may have

distinct motion, and position-adaptive sampling is essential.

Besides, as events are sparse, noisy, and non-uniformly

distributed signals, a robust sampling process should decide

both where (i.e. center) and how many (i.e. scale) to sam-

ple. We learn this task from data via differentiable sampling

and filtering. For each image position p, a temporal center

c (p) and a set of 2k + 1 filtering coefficients {αi}
k
i=−k,

where k is the support of filtering kernel, are predicted with

a small network from the events, satisfying ∀i, αi ≥ 0 and
∑k

i=−k αk = 1. The filtered result is obtained by

G (p) =
k

∑

i=−k

αks (p+ λkd (p, c (p)) , c (p) + λk) , (9)
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Figure 3. Motivation of adaptive event sampling. (a) A toy scene

where the top line moves down first, after which the bottom line

moves up. Events with positive and negative polarities are shown

as red and green dots, respectively. (b) The projected image of the

scene after the imaging process. Scene boundaries correspond to

the latest triggered events, which may vary for different positions,

as indicated by arrows. (c) The accumulation map of events.

where λ defines sampling stride (we use k = 2, λ =
1), s (·, ·) denotes a sampling function in space-time do-

main. For the stacked event frame representation of events

E
i+1
i , one can apply the trilinear kernel for continuous sam-

pling [21]. Note that the velocity d should follow the direc-

tion of local motion of events at space-time point (p, c (p))
to filter along the density surface of events but not across it.

To get local velocity, we reuse the flow vectors predicted

by motion compensation module. We assume object veloc-

ity stays constant, which is roughly true in this context as

there is just a fraction of time duration (i.e. only 1/ (T − 1)
the exposure). Motion compensation gives the velocities of

all the positions p0 ∈ P at time i, d (p0, i). At time c (p), a

pixel p0 would be shifted by the flows to a new position:

n (p0) = p0 + (c (p)− i)d (p0, i) . (10)

Note that n (p0) inherits the velocity of p0 under the local

constancy assumption: d (n (p0) , c (p)) = d (p0, i).

However, the intersected positions at time plane c (p),
namely {n (p0) |p0 ∈ P}, does not ensure complete sam-

pling of the image space. Thus, we resample the velocity at

a given target p with a Nadaraya-Watson estimator [4]:

d (p, c (p)) =

∑

p
0
∈P

κ (n (p0)− p)d (n (p0) , c (p))
∑

p
0
∈P

κ (n (p0)− p)
,

(11)

where the kernel κ is simply defined with a standard Gaus-

sian. This in spirit shares similarity with the “gather” ap-

proach in computer graphics for surface rendering [49].

Eqn. (11) uses all p0s to estimate each position p, which

is inefficient. In practice we only use samples located within

a local L×L window centered around p. The window size

L should account for the maximal spatial displacement of

pixels, which we find L = 20 sufficient. All of the proposed

steps are differentiable, and can be plugged into the network

for end-to-end training.

Loss Function. We use the following joint loss function:

Ltotal = Lcontent + λaLadv + Lflow + λtLtv, (12)

Here, Lcontent is the photometric ℓ1 loss 1
T

∑T

i=1‖I
∗
i −

Ig
i ‖, where Ig

i is the groundtruth clean image. To improve

sharpness of the result, we also incorporate an adversarial

loss Ladv . We use the same PatchGAN discriminator [13]

and follow its original loss definitions strictly.

The flow network introduces two other loss terms. The

first Lflow is the photometric reconstruction loss:

Lflow =
1

T − 1

T−1
∑

i=1

‖ω
(

I∗
i+1,Fi→i+1

)

− Ig
i ‖, (13)

where ω (·, ·) is a backward warping function using forward

flows Fi→i+1, and Ltv = 1
T−1

∑T−1
i=1 ‖∇Fi→i+1‖ is the to-

tal variation loss for flow field smoothing. For these terms,

we follow the same definitions of [14]. The weights λa and

λt are set to 0.01 and 0.05, respectively.

5. Experiments

5.1. Experimental Settings

Dataset preparation. We use two datasets for evalua-

tion. First, we evaluate on the GoPro [25] dataset which is

widely adopted for image motion deblurring and recently

used by [31] to benchmark event-based deblurring. To syn-

thesize events reliably, we use the open ESIM event simula-

tor [35]. We follow the suggested training and testing split.

The blurred image is also provided officially by averaging

nearby (the number varies from 7 to 13) frames.

As there lacks a large-scale dataset for evaluating event-

based motion deblurring in real-world scenarios, we capture

a novel dataset of urban environment, called Blur-DVS, with

a DAVIS240C camera. It hybrids a high speed event sensor

with a low frame-rate Active Pixel Sensor (APS) record-

ing intensity images at 180 × 240 . Thus, APS may suffer

motion blur in fast moving. We collect two subsets for eval-

uation. The slow subset consists of 15246 images captured

with slow and stable camera movement of relatively static

scenes, thus motion blur rarely happens. We synthesize mo-

tion blurs by averaging nearby 7 frames, resulting into 2178
pairs with blurred image and sharp sequence. In this man-

ner, we can conduct quantitative benchmarkings. We select

1782 pairs for training, and 396 for testing. The fast sub-

set consists of additional 8 sequences with 740 frames in

total, captured under fast camera movement of fast moving

scenes to investigate how the proposed approach general-

izes to real motion blur. However, there is no groundtruth

data available on this subset.

Method comparison. We conduct extensive compar-

isons with recent motion deblurring methods with available
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Table 1. Single-image motion deblurring performance on the GoPro dataset.

Models DCP [29] MBR [42] FLO [11] EVS [15] SRN [43] SVR [52] DMS [25] MPN [50] BHA [31] Ours

PSNR 23.50 25.30 26.05 26.98 30.26 29.18 29.08 31.50 29.06 31.79

SSIM 0.834 0.851 0.863 0.892 0.934 0.931 0.914 0.948 0.943 0.949

Input MPN BHA Ours GT

Figure 4. Visual comparisons on the GoPro dataset. From left to right, we show two examples with the blurred image, results of MPN [50],

BHA [31] and our approach, as well as groundtruth sharp image, respectively. Zoom in for better view.

Table 2. Video reconstruction performance on the GoPro dataset.

Models CIE [38] CIE+SRN∗ EVS [15] BHA [31] Ours

PSNR 25.84 26.34 25.62 28.49 29.67

SSIM 0.790 0.809 0.856 0.920 0.927

*A hybird baseline that adopts CIE to reconstruct images first,

then SRN to deblur each image. See [31] for details.

results and/or codes. They include image-based methods:

DCP [29], MBR [42], FLO [11], DMS [25], EVS [15],

SRN [43], SVR [52] and MPN [50], and the state-of-the-art

event-based motion deblurring method BHA [31]. We also

compare with three event-based video reconstruction meth-

ods, including CIE [38], MRL [24] and the state-of-the-art

learning-based approach ETV [36]. PSNR and SSIM met-

rics are used for quantitative evaluation.

Implementation details. For both datasets, our training

adopts a batch size of 2 training pairs and Adam optimizer.

The network is trained for 400 epochs, with a learning rate

10−4 at the beginning and linearly decayed to zero starting

from the 200th epoch. All the components of the network

are jointly trained from scratch.

5.2. Comparisons with State-of-the-Art Models

On the GoPro dataset, we report the results on both sin-

gle image deblurring (i.e. only recovering the middle frame)

and video reconstruction (i.e. recover all the sharp frames)

in Table 1 and 2, respectively. Numbers of other approaches

are directly taken from papers. Our approach achieves the

top place in both tasks, demonstrating the advantages of

event-assisted deblurring than purely relying on images,

and the superiority of the proposed framework over physical

reconstruction model. We show visual comparisons on two

fast moving scenes in Fig. 4: while image-based method

MPN cannot well address such blur, BHA is sensitive to the

noise of events especially along object edges. Our approach

generates cleaner and sharper results.

Note that GoPro dataset mainly presents small to mod-

erate motion blur, thus the blurred input is of good qual-

ity and improvement from events is marginal. Thus recent

powerful architectures SRN and MPN get very promising

results though they do not see events. For this reason, we

compare our approach with state-of-the-art methods on the

proposed Blur-DVS dataset, in which severe motion blur

are more universal. Again, we report results on single im-

age deblurring (Table 3) and video reconstruction (Table 4)

tasks. Note that for fair comparisons, The learning-based

methods SRN, MPN and ETV are finetuned on the training

set of Blur-DVS. We also compare with their enhanced ver-

sions that see both image and events: for image-based meth-

ods SRN and MPN, we concatenate the input blurred image

with all the 48 (8 binned frames in each time interval and

(7−1) intervals) event frames. For the event-based method

ETV, we also feed the blurred image along with the events

to each of its recurrent reconstruction step. We denote these

variants as SRN+, MPN+ and ETV+, respectively.

In Table 3 and 4, the proposed approach achieves the

best results. It also outperforms all the enhanced variants,

demonstrating the effectiveness of the proposed framework.

Fig. 5 illustrates that: 1) in case of fast motion, image-

based cues alone are not sufficient, limiting performance

of MPN; 2) the physical model BHA is prone to noise and

presents unaddressed blur due to the lossy sampling mecha-

nism of events; 3) event-based reconstruction methods CIE,

MRL and ETV do not restore scene contrast correctly due

to the lack of image guidance and/or the simplified phys-

ical model. Our approach does not suffer the mentioned

issues, and presents sharper results even than the enhanced

image+event variants equipped with powerful architectures.

Finally, we analyse the generalization behavior to real-

world motion blur. As shown in Fig. 6, the proposed ap-
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Table 3. Single-image deblurring performance on the Blur-DVS dataset.

Models DMS [25] SRN [43] SRN+∗ MPN [50] MPN+∗ CIE [38] MRL [24] ETV [36] ETV+∗ BHA [31] Ours

PSNR 20.48 20.21 24.92 23.52 26.08 19.02 10.59 16.89 24.81 22.43 26.48

SSIM 0.572 0.567 0.821 0.753 0.831 0.478 0.195 0.597 0.790 0.715 0.839

*SRN+, MPN+ and ETV+ denote enhanced versions of SRN, MPN, ETV respectively. See text for details.

Input MPN+MPN

Ours

ETV ETV+

CIE MRL BHAGT

Input MPN+MPN ETV ETV+

OursCIE MRL BHAGT

Figure 5. Representative results of two examples generated by different approaches on the slow subset of Blur-DVS dataset. More results

can be found in our supplementary material. Zoom in for better view.

Table 4. Video reconstruction performance on Blur-DVS dataset.

Models CIE [38] MRL [24] ETV [36] ETV+ BHA [31] Ours

PSNR 18.94 10.57 16.60 24.10 22.06 25.33

SSIM 0.473 0.194 0.587 0.777 0.699 0.827

proach achieves the best visual quality. We suspect that the

explicit modeling of motion deblurring and introduction of

strong deblurring priors may alleviate the learning difficulty

and avoid potential overfitting in more black-box architec-

tures. In practice we find such improvement consistent on

real data, as demonstrated by more results on the fast subset

provided in our supplementary material.

5.3. Performance Analysis

Analysing different components. We isolate the impor-

tant algorithm components to see ther contributions to the

final performance, and summarize the results in Table 5 and

Fig. 7. As it shows, each component is necessary to improve

the PSNR and SSIM of the results. Using image appearance

only without events (App.) cannot deblur the image well.

Using events only, on the other hand, recovers plenty of de-

tails but intensity contrast is not well recovered (see Fig. 7

Table 5. Component analysis on the Blur-DVS dataset. “App.”

and “event” denotes using the blurred image appearance and event

data as input, respectively. “MC” and “DEF” refer to the motion

compensation and directional event filtering modules, respectively.

App. Event +MC +DEF PSNR SSIM

✓ ✗ ✗ ✗ 16.50 0.418

✗ ✓ ✓ ✗ 16.38 0.560

✓ ✓ ✗ ✗ 23.39 0.760

✓ ✓ ✓ ✗ 24.71 0.786

✓ ✓ ✓ ✓ 25.33 0.827

(b)). Using both input signals (App. + event) achieves better

results, but the reconstructed image is not very smooth due

to noise (e.g. the ground in Fig. 7 (c)). Further incorporating

motion compensation (+MC) helps in these aspects as it im-

poses temporal smoothness. Finally, further introducing the

directional event filtering module (+DEF), sharper results

and richer details can be generated thanks to the learned

boundary guidance.

Justification of the DEF module. In Table 6, we jus-

tify the necessity of the proposed directional event filter-

ing module. Here, “w/o guid.” does not include bound-

ary guidance in the whole pipeline. On the contrary, “guid
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BHAMPN+

MPN

ETV+

ETV Ours

MRL

CIE

Input

Events

Figure 6. Representative results generated by different approaches on the fast subset (real-world motion blur) of Blur-DVS dataset. More

results can be found in our supplementary material. Zoom in for better view.

(a) App.

(d) +MC

(b) Event

(e) +DEF

(c) App. + Event

(f) GT

Figure 7. Visually analysing the contributions of different compo-

nents on the DVS-Blur dataset. See text for details.

Table 6. Analysing the directional event filtering module on the

DVS-Blur dataset. See text for details.

Models guid. only w/o guid. full +param.

PSNR 25.16 24.71 25.33 24.64

SSIM 0.816 0.786 0.827 0.788

only.” discards event features in each sequential deblurring

step while using boundary guidance only as additional cue.

We further design a variant “+param.”, which does not in-

corporate DEF but has additional convolution layers in the

encoder of process network which exceeds the current pa-

rameter size. Results show that the learned boundary guid-

ance greatly improves the estimation (from 0.786 to 0.827
in SSIM), and itself without other cues can already leads to

promising results. Simply enlarging the network size, how-

ever, does not observe meaningful improvement.

In Fig. 8, we visualize the impact of learned boundary

guidance. Note how the network learns to select different

time centers according to the scene’s motion (Fig. 8 (c)).

Boundary guidance improves the sharpness of the scene sig-

nificantly and recovers missing details (Fig. 8 (e) and (f)).

Low-light photography. A potential application of the

proposed approach is low-light photography, as shown in

Fig 9. The short-exposure (13ms) image is light-starved.

The long-exposure (104ms) one, however, may suffer se-

vere motion blur. Leveraging event cues, our approach gen-

erates natural results without such blur.

(f) Ground Truth

(b) Boundary guidance(a) Accumulated events

(e) Result w/ guidance(d) Result w/o guidance

(c) Temporal centers

Figure 8. Visualizing learned boundary guidance. Note how mo-

tion boundaries from different time stamps are selected in the at-

tention map (c) (red for large value and blue for small values).

(a) Short exposure (b) Long exposure (c) Events (d) Our result

Figure 9. Low-light photography using our approach. Images and

events are captured with DAVIS240C camera in an indoor scene.

6. Conclusion

In this work, we propose to extract a video from a severe

motion-blurred image under the assistance of events. To

this end, a novel deep learning architecture is proposed to

effectively fuse appearance and motion cues at both global

and local granularity. Furthermore, sharp event boundary

guidance is extracted to improve reconstructed details with

a novel directional event filtering module. Extensive eval-

uations show that the proposed approach achieves superior

performance than various existing image and event-based

methods, on both synthetic and real-world datasets.
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