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Abstract

Rain streaks in the air appear in various blurring de-

grees and resolutions due to different distances from their

positions to the camera. Similar rain patterns are visi-

ble in a rain image as well as its multi-scale (or multi-

resolution) versions, which makes it possible to exploit such

complementary information for rain streak representation.

In this work, we explore the multi-scale collaborative rep-

resentation for rain streaks from the perspective of input

image scales and hierarchical deep features in a unified

framework, termed multi-scale progressive fusion network

(MSPFN) for single image rain streak removal. For the

similar rain streaks at different positions, we employ re-

current calculation to capture the global texture, thus al-

lowing to explore the complementary and redundant infor-

mation at the spatial dimension to characterize target rain

streaks. Besides, we construct multi-scale pyramid struc-

ture, and further introduce the attention mechanism to guide

the fine fusion of these correlated information from dif-

ferent scales. This multi-scale progressive fusion strategy

not only promotes the cooperative representation, but al-

so boosts the end-to-end training. Our proposed method

is extensively evaluated on several benchmark datasets and

achieves the state-of-the-art results. Moreover, we conduct

experiments on joint deraining, detection, and segmenta-

tion tasks, and inspire a new research direction of vision

task driven image deraining. The source code is available

at https://github.com/kuihua/MSPFN .

1. Introduction

Due to substantial degradation of the image content in

rain images and videos, traditional image enhancement al-

gorithms [27] struggle to make desirable improvements on

image quality. Therefore, developing specialized solution-

s for image deraining is imperative to a wide range of

tasks [12], e.g. object detection and semantic segmentation.
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Figure 1. Demonstration of the collaborative representation of rain

streaks. Specifically, similar rain patterns among rain streaks, both

within the same scale (highlighted in cyan, pink and dark blue box-

es) or cross different scales (highlighted in red, yellow, orange and

green boxes), can help reconstruct the target rain streak (white box

in the original rain image) with the complementary information

(e.g. similar appearance, formation, etc.).

Traditional deraining methods [2, 1, 5, 9, 32] use sim-

ple linear-mapping transformations and are not robust to

variations of the input [11], e.g., rain streaks with vari-

ous directions, densities and sizes. Recently, deep-learning

based methods [6, 35, 16] which operate with convolution-

al and non-linear layers have witnessed remarkable advan-

tages over traditional methods. Despite obvious improve-

ments on feature representation brought by those method-

s [6, 16], their single-scale frameworks can hardly capture

the inherent correlations of rain streaks across scales.

The repetitive samples of rain streaks in a rain image

as well as its multi-scale versions (multi-scale pyramid im-

ages) may carry complementary information (e.g. similar

appearance) to characterize target rain streaks. As illustrat-

ed in Fig. 1, the rain streaks (highlighted in the white box)

in the original rain image share the similar rain patterns with

the rain streaks (highlighted in the cyan, pink and dark blue

boxes) at different positions as well as those (highlighted

in the red, yellow, orange and green boxes) in the 1/2 s-

cale rain image. Therefore, rain streaks both from the same

scale (solid arrows) and across different scales (dashed ar-
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rows) encode complementary or redundant information for

feature representation, which would help deraining in the

original image. This correlation of image contents across s-

cales has been successfully applied to other computer vision

tasks [10, 33]. Recently, authors in [8, 44] construct pyra-

mid frameworks to exploit the multi-scale knowledge for

deraining. Unfortunately, those exploitations fail to make

full use of the correlations of multi-scale rain streaks (al-

though restricted to a fixed scale-factor of 2 [10]). For ex-

ample, Fu et al. [8] decompose the rain image into different

pyramid levels based on its resolution, and then individu-

ally solve the restoration sub-problems at the specific scale

space through several parallel sub-networks. Such decom-

position strategy is the basic idea of many recurrent derain-

ing frameworks [19]. Unlike [8] completing the deraining

task from each individual resolution level, Zheng et al. [44]

present a density-specific optimization for rain streak re-

moval in a coarse-to-fine fashion, and gradually produce the

rain-free image stage-by-stage [15]. However, there are no

direct communications of the inter-level features across cas-

caded pyramid layers except for the final outputs, thus fail-

ing to take all-rounded advantages of the correlated infor-

mation of rain streaks across different scales. Consequent-

ly, these methods [8, 44] are still far from producing the

desirable deraining results with the limited exploitation and

utilization of multi-scale rain information.

To address these limitations of the prior works, we ex-

plore the multi-scale representation from input image scales

and deep neural network representations in a unified frame-

work, and propose a multi-scale progressive fusion net-

work (MSPFN) to exploit the correlated information of rain

streaks across scales for single image deraining. Specifi-

cally, we first generate the Gaussian pyramid rain images

using Gaussian kernels to down-sample the original rain

image in sequence. A coarse-fusion module (CFM) (§3.1)

is designed to capture the global texture information from

these multi-scale rain images through recurrent calculation

(Conv-LSTM), thus enabling the network to cooperatively

represent the target rain streak using similar counterparts

from global feature space. Meanwhile, the representation

of the high-resolution pyramid layer is guided by previous

outputs as well as all low-resolution pyramid layers. A fine-

fusion module (FFM) (§3.2) is followed to further integrate

these correlated information from different scales. By us-

ing the channel attention mechanism, the network not only

discriminatively learns the scale-specific knowledge from

all preceding pyramid layers, but also reduces the feature

redundancy effectively. Moreover, multiple FFMs can be

cascaded to form a progressive multi-scale fusion. Finally,

a reconstruction module (RM) is appended to aggregate the

coarse and fine rain information extracted respectively from

CFM and FFM for learning the residual rain image, which is

the approximation of real rain streak distribution. The over-

all framework is outlined in Fig. 2. The main contributions

of this paper are as follows:

• We uncover the correlations of rain streaks in an image

and propose a novel multi-scale progressive fusion net-

work (MSPFN) which collaboratively represents rain

streaks from multiple scales via the pyramid represen-

tation.

• To better characterize rain streaks of different scales,

we devise three basic modules, coarse-fusion module

(CFM), fine-fusion module (FFM) and reconstruction

module (RM), to effectively extract and integrate the

multi-scale information. In these modules, the com-

plementary information of similar patterns with rain

streaks, both within the same scale or across differ-

ent scales (pyramid layers), is progressively fused to

characterize the rain streaks distribution in a collabo-

rative/cooperative manner.

• Apart from achieving the state-of-the-art deraining

performance in terms of the conventional quantitative

measurements (e.g. PSNR and SSIM), we build sever-

al synthetic rain datasets based on COCO [3] and BD-

D [38] datasets for joint image deraining, detection and

segmentation tasks. To the best of our knowledge, we

are the first to apply mainstream vision-oriented tasks

(detection and segmentation) for comprehensively e-

valuating the deraining performance.

2. Related Work

In the last few years, substantial improvements [24, 18,

4, 17] have been observed on rain image restoration. In this

work, we mainly focus on single image deraining because

it is more challenging.

2.1. Single Image Deraining

Previous traditional methods for single image derain-

ing [5, 14] fail under the complex rain conditions and pro-

duce degraded image contents due to the limited linear-

mapping transformation. Very recently, deep-learning

based approaches [24, 29, 39] have emerged for rain streak

removal and demonstrated impressive restoration perfor-

mance. For example, Fu et al. [6] introduce a three-layer

convolutional neural network (CNN) to estimate and re-

move rain streaks from its rain-contaminated counterpart.

To better represent rain streaks, Zhang et al. [40] take the

rain density into account and present a multi-task CNN for

joint rain density estimation and deraining. Later, Zhang et

al. [41] further incorporate quantitative, visual and discrim-

inative performance into the objective function, and propose

a conditional generative adversarial network for rain streak

removal. In order to alleviate the learning difficulty, recur-

rent frameworks [19, 36, 26] are designed to remove rain

streaks in a stage-wise manner.
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Figure 2. Outline of the proposed multi-scale progressive fusion network (MSPFN). We set the pyramid level to 3 as an example. MSPFN

consists of four parts: initial feature extraction, coarse fusion, fine fusion, and rain streak reconstruction, which are combined to regress

the residual rain image I
∗

R. We produce the rain-free image IDerain by subtracting I
∗

R from the original rain image IRain. The goal is to

make IDerain as close as possible to the rain free image IClean.

2.2. Multi­scale Learning

Rain streaks in the air show the apparent self-similarity,

both within the same scale or across different scales, which

makes it possible to exploit the correlated information

across scales for rain streak representation. However, most

existing deraining methods [16, 40] ignore the underlying

correlations of rain streaks across different scales. Only a

few attempts [8, 44] have been made to exploit the multi-

scale knowledge. Fu et al. [8] decompose the restoration

task into multiple subproblems and employ a set of paral-

lel subnetworks to individually estimate the rain informa-

tion in a specific pyramid scale space. However, it does not

exploit and utilize the correlated information among these

pyramid layers. Different from the parallel pyramid frame-

work in [8], Zheng et al. [44] propose the cascaded pyramid

network, which is similar to LapSRN [15], to iteratively re-

move rain streaks. However, only the high-level features

are used to help the adjacent pyramid representation, which

results in losing some useful hierarchical and scale features

in a deep cascaded network. The significance of these fea-

tures produced at different stages has been verified on image

reconstruction tasks [28, 43].

Different from these methods [8, 44], in this work we

introduce a novel framework MSPFN to achieve the collab-

orative representation of rain streaks across different scales,

where the rich multi-scale rain information extracted from

the Gaussian pyramid images is progressively aggregated

along the pyramid layers and stages of the network. As a

result, our predicted rain streak distribution is more accu-

rate via the multi-scale collaborative representation.

3. Proposed Method

Fig. 2 shows the overall pipeline of our proposed multi-

scale progressive fusion network (MSPFN) for image de-

raining by excavating and exploiting the inherent correla-

Pixel-wise SummationSkip ConnectionConvolution

Conv-LSTM
Initial 
Features

: Input Gate : Hidden State in t : Output Gate: Hidden State in t+1

Figure 3. Pipeline of the proposed residual recurrent units (RRU).

tions of rain streaks across different scales. We present the

details of each building block and the loss function in the

following.

3.1. Multi­scale Coarse Fusion

For a given rain image, our method first generates the

Gaussian pyramid rain images using Gaussian kernels to

down-sample the original rain image into different scales,

e.g. 1/2 and 1/4. The network takes as input the pyramid

rain images and extracts the shallow features through mul-

tiple parallel initial convolution layers (see the first block of

“initial layer” in Fig. 2). Based on the initial features from

each scale, the coarse-fusion module (CFM) then performs

the deep extraction and fusion of multi-scale rain informa-

tion through several parallel residual recurrent units (RRU),

as shown in Fig. 3. The reasons for designing CFM are three

folds: (a) To exploit the repetition of rain streaks under the

same scale, we apply the recurrent calculation and residual

learning to capture the global texture information, making it

possible to cooperatively represent target rain streaks. More

accurately, we introduce Conv-LSTM to model the infor-

mation flow of context textures at spatial dimension with

the recursive memory, where the contextual texture corre-

lations are transformed into structured cyclic dependencies

to capture the complementary or redundant rain information

(e.g. the solid arrows in Fig. 1). (b) The multi-scale struc-

ture provides an alternative solution to greatly increase the

receptive filed to cover more contents while maintaining a

8348



N Channels F Filter Size

Stride Convolution

Deconvolution

Skip Connection

Channel Attention Unit  (CAU)

S Stride

CAU ······ CAUF3N64S2 F3N64S2

F3N64 F3N64 GAP F1N16 F1N64

Convolution

Global Average Pooling

Element-wise ProductSigmoid Function

Figure 4. Pipeline of our proposed U-shaped residual attention

block (URAB). URAB is composed of several cascaded channel

attention units (CAUs) to promote the fusion of the multi-scale

rain information and reduce the feature redundancy by focusing

on the most useful channels.

shallow depth. (c) The high-resolution representations ben-

efit from the outputs of previous stages as well as all low-

resolution pyramid layers via iterative sampling and fusion.

3.2. Multi­scale Fine Fusion

The outputs of CFM go through the fine-fusion module

(FFM) to refine the correlated information from different

scales. As shown in Fig. 2, FFM enjoys the similar multi-

scale structure with CFM for convenience. Unlike CFM,

we introduce the channel attention unit (CAU) to enhance

the discriminative learning ability of the network through

focusing on the most informative scale-specific knowledge,

making the cooperative representation more efficient. To

alleviate the computation burden, we apply the strided con-

volution to reduce the spatial dimension of features, and

finally utilize the deconvolution layer to increase the res-

olution to avoid losing resolution information, resulting in

the U-shaped residual attention block (URAB). As depicted

in Fig. 4, URAB is composed of several CAUs, along with

the short skip connections to help the fine representation of

multi-scale rain information. Moreover, long skip connec-

tions are used between cascaded FFMs to achieve progres-

sive fusion of multi-scale rain information as well as to fa-

cilitate the effective backward propagation of the gradient.

3.3. Rain Streak Reconstruction

To learn the final residual rain image, we further inte-

grate both low- and high-level multi-scale features respec-

tively from CFM and FFM via a reconstruction module (R-

M), schematically depicted in Fig. 2. Specifically, the out-

puts from CFM are concatenated with the outputs from the

last FFM, and then a convolution layer is used to learn the

channel interdependence and rescale the feature values from

the two modules. Similarly, the iterative sampling and fu-

sion of rain information across different pyramid layers are

implemented to estimate the residual rain image.

3.4. Loss Function

Mean squared error (MSE) is the commonly used loss

to train the network [40, 34]. However, it usually produces

blurry and over-smoothed visual effect with the loss of high-

frequency textures due to the squared penalty. In this work,

we perform the successive approximation to the real rain

streak distribution IR with the guidance of the Charbonnier

penalty function [15], which is more tolerant of small errors

and holds better convergence during training. The function

is expressed as

Lcon =
√

(I∗R − IR)2 + ε2. (1)

In Equation (1), I∗R denotes the predicted residual rain im-

age. The predicted rain-free image IDerain is generated

by subtracting I∗R from its rain-contaminated counterpart

IRain. The penalty coefficient ε is empirically set to 10−3.

In order to further improve the fidelity and authentici-

ty of high-frequency details while removing rain streaks,

we propose the additional edge loss to constrain the high-

frequency components between the ground truth IClean and

the predicted rain-free image IDerain. The edge loss is de-

fined as

Ledge =
√

(Lap(IClean)− Lap(IDerain))2 + ε2. (2)

In Equation (2), Lap(IClean) and Lap(IDerain) denote the

edge maps respectively extracted from IClean and IDerain

via the Laplacian operator [13]. Then, the total loss function

is given by

L = Lcon + λ× Ledge, (3)

where the weight parameter λ is empirically set to 0.05 to

balance the loss terms.

4. Experiments and Discussions

We conduct extensive experiments on several synthetic

and real-world rain image datasets [7, 41, 29] to evaluate the

restoration performance of our proposed MSPFN as well as

six state-of-the-art deraining methods. These representative

methods include DerainNet [6], RESCAN [19], DIDMD-

N [40], UMRL [37], SEMI [31] and PreNet [26]. There

is no unified training datasets for all competing method-

s in this paper, e.g. PreNet refers to JORDER [35] and

uses 1254 pairs for training. UMRL refers to [40] and

uses 12700 images for training. Therefore, directly tak-

ing the results from their papers is unfair and meaning-

less. To this end, we collect about 13700 clean/rain image

pairs from [41, 7] for training our network as well as oth-

er competing methods for a fair comparison. In particular,

these competing methods are retrained in the experiments

with their publicly released codes and follow their original

settings under the unified training dataset. Separately, the
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Table 1. Dataset description. A total of 13712 clean/rain image

pairs are used for training. There are additional 4300 labeled ref-

erence samples as well as 200 real-world scenarios for testing.
Datasets Training Samples Testing Samples Name

Rain14000 [7] 11200 2800 Test2800

Rain1800 [35] 1800 0 Rain1800

Rain800 [41] 700 100 Test100

Rain100H [35] 0 100 Rain100H

Rain100L [35] 0 100 Rain100L

Rain1200 [40] 0 1200 Test1200

Rain12 [20] 12 0 Rain12

Real200 [29, 31] 0 200 Real200

RID/RIS [18] 0 2495/2348 RID/RIS

Total Count 13712 9343 -

Table 2. Evaluation of the basic components in our baseline M-

SPFN on Test100 dataset. We obtain the average inference time

of deraining on images with size of 512× 384.

Models Model1 Model2 Model3 Model4 Model5 Model6 MSPFN

PSNR 26.56 27.01 23.69 26.75 26.48 26.88 27.29

SSIM 0.861 0.864 0.831 0.863 0.862 0.865 0.869

FSIM 0.921 0.923 0.905 0.923 0.921 0.923 0.925

Ave. inf. time (s) 0.192 0.224 0.113 0.238 0.141 0.180 0.308

Par. (Millions) 5.53 11.30 2.29 11.75 5.60 8.45 13.22

detailed descriptions of the used datasets are tabulated in

Table 1. In order to quantitatively evaluate the restoration

quality, we adopt the commonly used evaluation metrics,

such as Peak Signal to Noise Ratio (PSNR), Feature Simi-

larity (FSIM) [42], and Structural Similarity (SSIM) [30].

4.1. Implementation Details

In our baseline, the pyramid levels are set to 3, i.e. the

original scale, 1/2 scale and 1/4 scale. In CFM, the filter

numbers of each recurrent Conv-LSTM are respectively set

to 32, 64, and 128, corresponding to the gradually increas-

ing resolution. The depths/numbers of FFM (M) and CAU

(N) are set to 10 and 3, respectively. We use Adam optimiz-

er with batch size of 8 for training on one NVIDIA Titan

Xp GPU. The learning rate is initialized to 2 × 10−4 and

reduced by half at every 20000 steps till 1× 10−6. We train

the network for 30 epochs with the above settings.

4.2. Ablation Studies

Validation on Basic Components. Using our base-

line model (M = 10, N = 3), we design six comparison

models to analyze the effects of the proposed basic mod-

ules (CFM and FFM), multi-scale pyramid framework, and

multi-scale progressive fusion scheme on deraining perfor-

mance. Quantitative results on Test100 dataset are listed

in Table 2. From the results, our baseline MSPFN exhibit-

s great superiority over its incomplete versions, including

Model1 (single-scale framework with only the original in-

put), Model2 (removing CFM from MSPFN), and Mod-

el3 (removing all FFMs from MSPFN), surpassing them by

0.73dB, 0.28dB, and 3.60dB (PSNR), respectively. More-

over, we construct Model4 by applying the fusion strategy

in [8] to verify the effectiveness of the proposed multi-scale

progressive fusion scheme. It is evident that MSPFN gains

a significant improvement over Model4 by 0.54dB with an

acceptable complexity increase. Model5 (M = 5, N = 1)

and Model6 (M = 6, N = 3) are the simplified variants

of MSPFN with smaller depths. When compared with the

single-scale framework (Model1), Model5 has the approxi-

mately equal amount of parameters but achieves faster infer-

ence speed with the multi-scale pyramid framework. Mod-

el6 has the similar computation complexity but more pa-

rameters as compared with Model1. The results show that

Model5 achieves the comparable performance while it’s a

quarter more efficient. Model6 gains the better scores over

Model1 by 0.32dB while keeping the similar computation

complexity. We attribute these advantages to the effective

cooperative representation of rain streaks among different

pyramid layers and stages of the network.

Parameter Analysis on M and N . We assess the in-

fluence of the depth of FFM (M) and the number of CAU

(N) on deraining performance. Based on our baseline

(M = 10, N = 3), we construct three comparison mod-

els, i.e. MSPFNM17N1, MSPFNM13N2 and MSPFNM8N5,

while keeping approximately the same number of parame-

ters. As shown in Table 3, the performance declines with

the reduction of M. This indicates the important role of

FFM for exploiting the multi-scale rain information in a

progressive fashion. When increasing the number of CAU

(MSPFNM17N2), it yields a slight improvement (0.13dB),

but with additional 30% of the parameters. We also add

two models MSPFNM30N1 and MSPFNM5N1 for compar-

ison. The former is designed to pursue a better deraining

performance with more FFMs to enhance multi-scale fu-

sion, while the latter is a lightweight model with smaller

depth (M = 5, N = 1) and width (all filter channels =
32). Meanwhile, the strided convolution and deconvolution

are employed twice in our proposed U-shaped residual at-

tention block (URAB) of MSPFNM5N1 to further alleviate

the computation burden. As we expected, MSPFNM30N1

achieves the best scores for all the metrics. MSPFNM5N1

still obtains the acceptable performance, although being a

much lighter network. Considering the tradeoff between ef-

ficiency and deraining performance, we set M and N to 17

and 1 respectively in the following experiments.

4.3. Comparisons with State­of­the­arts

4.3.1 Synthesized Data

We compare our MSPFN (M = 17, N = 1) with other six

top-performing deraining methods [6, 19, 40, 37, 31, 26]

on five synthetic datasets. Quantitative results are shown

in Table 4. One can see that MSPFN achieves remarkable

improvements over these state-of-the-art methods. For ex-

ample, MSPFN surpasses DerainNet [6] and DIDMDN [40]
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Table 3. Evaluation of the depth of FFM (M), the number of CAU (N), as well as the model parameters on Test100 dataset. MSPFNMaNb

denotes the model with M = a and N = b.
Models MSPFNM30N1 MSPFNM17N1 MSPFNM17N2 MSPFNM13N2 MSPFNM10N3 MSPFNM8N5 MSPFNM5N1

PSNR 27.91 27.50 27.63 27.42 27.29 27.13 24.99

SSIM 0.879 0.876 0.877 0.874 0.869 0.867 0.850

SSIM 0.929 0.928 0.928 0.927 0.925 0.924 0.916

Par. (Millions) 21.81 13.35 17.20 13.63 13.22 14.56 1.65

DerainNet RESCANDIDMDN PreNetSEMI UMRL MSPFN (Ours)Rain Image Ground Truth

Figure 5. Restoration results on synthetic datasets, including Rain100H, Rain100L, Test100, and Test1200.

by 9.01dB and 2.74dB, respectively, in terms of PSNR on

Test1200 dataset. Visual results on different rain condi-

tions (diverse rain streak orientations and magnitudes) are

presented in Fig. 5. MSPFN exhibits impressive restora-

tion performance on all scenarios, generating results with

rich and credible image textures while removing main rain

streaks. For other comparison methods, they tend to blur the

image contents, or still leave some visible rain streaks. For

example, only our MSPFN restores the clear and credible

image details in the “Giraffe” image, while the competing

methods fail to remove rain streaks and their results have

obvious color distortion.

4.3.2 Real-world Data

We conduct additional comparisons on three real-world

datasets, including Real200 [40], Rain in Driving (RID) and

Rain in Surveillance (RIS) datasets [18], to further veri-

fy the generalization capability of MSPFN. RID and RIS

cover 2495 and 2348 samples, collected from car-mounted

cameras and networked traffic surveillance cameras in rainy

days respectively. Moreover, we use another two quan-

titative indicators, Naturalness Image Quality Evaluator

(NIQE) [23] and Spatial-Spectral Entropy-based Quality

(SSEQ) [22], to quantitatively evaluate the reference-free

restoration performance. The smaller scores of SSEQ and

NIQE indicate better perceptual quality and clearer con-

tents. The results are listed in Table 5. As expected, our

proposed MSPFN has the best average scores on 200 real-

world samples, outperforming the state-of-the-art deraining

methods [19, 37, 26] by a large margin. Moreover, we show

four representative deraining examples in Fig. 6 for visu-

al comparison. In the last image, obvious rain streaks are

observed in the results of other deraining methods, but our
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Table 4. Comparison results of average PSNR, SSIM and FSIM on several widely used rain datasets, including Rain100H, Rain100L,

Test100, Test2800, and Test1200. MSPFNw/o Eloss denotes our model without the edge constraint in the loss function.

Methods
Test100 Rain100H Rain100L Test2800 Test1200 Average

PSNR/SSIM/FSIM PSNR/SSIM/FSIM PSNR/SSIM/FSIM PSNR/SSIM/FSIM PSNR/SSIM/FSIM PSNR/SSIM/FSIM

DerainNet [6] 22.77/0.810/0.884 14.92/0.592/0.755 27.03/0.884/0.904 24.31/0.861/0.930 23.38/0.835/0.924 22.48/0.796/0.879

RESCAN [19] 25.00/0.835/0.909 26.36/0.786/0.864 29.80/0.881/0.919 31.29/0.904/0.952 30.51/0.882/0.944 28.59/0.857/0.917

DIDMDN [40] 22.56/0.818/0.899 17.35/0.524/0.726 25.23/0.741/0.861 28.13/0.867/0.943 29.65/0.901/0.950 24.58/0.770/0.876

UMRL [37] 24.41/0.829/0.910 26.01/0.832/0.876 29.18/0.923/0.940 29.97/0.905/0.955 30.55/0.910/0.955 28.02/0.880/0.927

SEMI [31] 22.35/0.788/0.887 16.56/0.486/0.692 25.03/0.842/0.893 24.43/0.782/0.897 26.05/0.822/0.917 22.88/0.744/0.857

PreNet [26] 24.81/0.851/0.916 26.77/0.858/0.890 32.44/0.950/0.956 31.75/0.916/0.956 31.36/0.911/0.955 29.42/0.897/0.934

MSPFNw/o Eloss (Ours) 26.93/0.865/0.924 28.33/0.842/0.883 32.18/0.928/0.939 32.70/0.928/0.964 32.22/0.914/0.958 30.51/0.895/0.934

MSPFN (Ours) 27.50/0.876/0.928 28.66/0.860/0.890 32.40/0.933/0.943 32.82/0.930/0.966 32.39/0.916/0.960 30.75/0.903/0.937

RESCAN PreNetUMRL MSPFN (Ours)Rain Image

Figure 6. Comparison results on four real-world scenarios with RESCAN [19], UMRL [37] and PreNet [26].

MSPFN can well preserve more realistic and credible image

details while effectively removing main rain streaks.

Table 5. Comparison results of average NIQE/SSEQ on real-world

datasets (Real200, RID, and RIS). The smaller scores indicate

better perceptual quality.
Methods RESCAN [19] UMRL [37] PreNet [26] MSPFN (Ours)

Real200 4.724/30.47 4.675/29.38 4.620/29.51 4.459/29.26

RID 6.641/40.62 6.757/41.04 7.007/43.04 6.518/40.47

RIS 6.485/50.89 5.615/43.45 6.722/48.22 6.135/43.47

4.3.3 Other Applications

Image deraining under complex weather conditions can be

considered as an effective enhancement of image content.

It can potentially be incorporated into other high-level vi-

sion systems for applications such as object detection and

segmentation. This motivates us to investigate the effect of

restoration performance on the accuracy of object detection

and segmentation based on some popular algorithms, e.g.

YOLOv3 [25], Mask R-CNN [12], and RefineNet [21]. To

this end, we randomly select a total of 850 samples from

Table 6. Comparison results of joint image deraining, object de-

tection, and semantic segmentation on COCO350, BDD350, and

BDD150 datasets. MSPFN∗ denotes the lightweight model with

lighter depth and width comparing to MSPFN.

Methods Rain input RESCAN [19] PreNet [26] MSPFN∗ (Ours) MSPFN (Ours)

Deraining; Dataset: COCO350/BDD350; Image Size: 640× 480/1280× 720

PSNR 14.79/14.13 17.04/16.71 17.53/16.90 17.74/17.38 18.23/17.85

SSIM 0.648/0.470 0.745/0.646 0.765/0.652 0.773/0.678 0.782/0.761

Ave.inf.time (s) –/– 0.55/1.53 0.22/0.76 0.08/0.23 0.58/1.24

Object Detection; Algorithm: YOLOv3 [25]; Dataset: COCO350/BDD350; Threshold: 0.6

Precision (%) 23.03/36.86 28.74/40.33 31.31/38.66 30.99/39.91 32.56/41.04

Recall (%) 29.60/42.80 35.61/47.79 37.92/48.59 37.99/49.74 39.31/50.40

IoU (%) 55.50/59.85 59.81/61.98 60.75/61.08 61.06/61.90 61.69/62.42

Deraining; Dataset: BDD150; Image Size: 1280× 720

PSNR 18.00 20.96 21.52 21.73 22.48

SSIM 0.722 0.859 0.886 0.887 0.904

Ave.inf.time (s) – 1.53 0.76 0.23 1.24

Semantic Segmentation; Algorithm: RefineNet [21]; Dataset: BDD150

mPA (%) 33.29 45.34 50.28 50.25 52.96

mIoU (%) 20.49 31.52 33.42 33.74 35.90

COCO [3] and BDD [38] datasets to create three new syn-

thetic rain datasets COCO350 (for detection), BDD350 (for

detection), and BDD150 (for segmentation) through Pho-

toshop. These rain images are of diverse streak orienta-

tions and magnitudes, and at the same time have complex
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Rain Image RESCAN PreNet MSPFN*(Ours) MSPFN (Ours) Ground Truth
Figure 7. Examples of joint deraining, object detection and segmentation. The first row denotes the instance segmentation results of Mask

R-CNN [12] on BDD150 dataset. The second and third rows are the comparison results of semantic segmentation by RefineNet [21] on

BDD150 dataset. We use YOLOv3 [25] for object detection on COCO350 dataset and the results are shown in the last two rows. MSPFN∗

denotes the lightweight model with lighter depth and width comparing to MSPFN.

imaging conditions such as night scenes. By using our pro-

posed deraining algorithm MSPFN as well as other top-

performing deraining methods [19, 26], the restoration pro-

cedures are directly implemented on these three datasets to

produce the rain-free images. And then we apply the pub-

lic available pre-trained models of YOLOv3 (for detection),

Mask R-CNN (for instance segmentation), and RefineNet

(for semantic segmentation) to perform the the downstream

tasks. Qualitative results, including the deraining perfor-

mance as well as the precision of the subsequent detection

and segmentation tasks, are tabulated in Table 6. In addi-

tion, visual comparisons are shown in Fig. 7.

It is obvious that rain streaks can greatly degrade the

detection accuracy and segmentation precision, night sce-

narios in particular, i.e. by missing targets and producing

low detection or segmentation confidence (mean pixel ac-

curacy (mPA) and mean Intersection of Union (mIoU)). In

addition, the detection precision of the produced rain-free

images by MSPFN shows a notable improvement over that

of original rain inputs by nearly 10%, and MSPFN achieves

the best results of 52.96% mPA as well as 35.90% mIoU for

semantic segmentation task on BDD150. When compared

with other top-performing deraining models, the rain-free

images generated by MSPFN show more credible contents

with more details, which effectively promote the detection

and segmentation performance. Moreover, we also evalu-

ate our lightweight deraining model MSPFN∗ with lighter

depth (M = 5, N = 1) and width (with all filter channel-

s of 32) since computation efficiency is crucial for mobile

devices and applications require real-time throughput such

as autonomous driving. MSPFN∗ still achieves competitive

performance compared with other models [19, 26] while it’s

a half more efficient in terms of inference time.

5. Conclusion

In this paper, we propose a novel multi-scale progressive

fusion network (MSPFN) to exploit the multi-scale rain in-

formation to cooperatively represent rain streaks based on

the pyramid framework. To achieve this goal, we design

several basic modules (CFM, FFM and RM) along with our

proposed multi-scale progressive fusion mechanism to ex-

plore the inherent correlations of the similar rain patterns a-

mong multi-scale rain streaks. Consequently, our predicted

rain streak distribution is potentially more correct due to the

collaborative representation of rain streaks across different

scales. Experimental results on several synthetic deraining

datasets and real-world scenarios, as well as several down-

stream vision tasks (i.e. object detection and segmentation)

have shown great superiority of our proposed MSPFN algo-

rithm over other top-performing methods.
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