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Abstract

Instance segmentation is an important task for scene un-

derstanding. Compared to the fully-developed 2D, 3D in-

stance segmentation for point clouds have much room to

improve. In this paper, we present PointGroup, a new end-

to-end bottom-up architecture, specifically focused on bet-

ter grouping the points by exploring the void space between

objects. We design a two-branch network to extract point

features and predict semantic labels and offsets, for shift-

ing each point towards its respective instance centroid. A

clustering component is followed to utilize both the original

and offset-shifted point coordinate sets, taking advantage

of their complementary strength. Further, we formulate

the ScoreNet to evaluate the candidate instances, followed

by the Non-Maximum Suppression (NMS) to remove dupli-

cates. We conduct extensive experiments on two challeng-

ing datasets, ScanNet v2 and S3DIS, on which our method

achieves the highest performance, 63.6% and 64.0%, com-

pared to 54.9% and 54.4% achieved by former best solu-

tions in terms of mAP with IoU threshold 0.5.

1. Introduction

Instance segmentation is a fundamental and challenging

task that requires to predict not only the semantic labels

but also the instance IDs for every object in the scene. It

has drawn much interest recently, given the potential appli-

cations for both outdoor and indoor environment regarding

autonomous driving, robot navigation, to name a few.

Convolutional neural networks has boosted the perfor-

mance of 2D instance segmentation [10, 17, 29, 5]. How-

ever, given unordered and unstructured 3D point clouds, 2D

methods cannot be directly extended to 3D points and make

the latter remains very challenging [49, 19, 53]. In this

paper, we address the challenging 3D point cloud instance

segmentation task by exploring the void space between 3D

objects, along with the semantic information, to better seg-

ment individual objects.

∗Equal Contribution.

Input Instance Prediction

Figure 1: Example of 3D instance segmentation by our

method from ScanNet v2. Instances are in different colors.

Specifically, we design a bottom-up end-to-end frame-

work named PointGroup for 3D instance segmentation,

with the key target of better grouping of points. Our pipeline

is to first extract per-point semantic prediction and con-

duct efficient point grouping to harvest candidate object in-

stances. We utilize a semantic segmentation backbone to

extract descriptive features and predict a semantic label for

each point. Parallel to the segmentation head, we adopt an

offset branch to learn a relative offset to bring each point to

its respective ground-truth instance centroid. By this means,

we shift points of the same object instance towards the same

centroid and gather them closer, thus enabling better group-

ing of points into objects and separation of nearby objects

of the same class.

With the predicted semantic labels and offsets, we then

adopt a simple and yet effective algorithm to group points

into clusters. For each point, we take its coordinates as a

reference, group it with nearby points of the same label,

and expand the group progressively. Importantly, we con-

sider two coordinate sets in two separate passes – the orig-

inal point positions and those shifted by the predicted off-

sets. We call the process “Dual-Set Point Grouping.” The

two types of results complement each other for accomplish-

ing better performance. Further, we design the ScoreNet

to evaluate and pick candidate groups. Non-maximum sup-

pression is finally adopted to remove duplicate predictions.

We conduct extensive experiments on the challenging

ScanNet v2 [8] and S3DIS [2] datasets. PointGroup

achieves the highest accuracy on both of them. For Scan-
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Net v2, our performance on the test set is 63.6% in terms

of mAP50, which is 8.7% higher than the former best solu-

tion [23]. For S3DIS, we accomplish 64.0% mAP50, 69.6%

mPrec50, and 69.2% mRec50, outperforming all previous

approaches by a large margin.

In summary, our contribution is threefold.

• We propose a bottom-up 3D instance segmentation

framework, named PointGroup, to deal with the chal-

lenging 3D instance segmentation task.

• We propose a point clustering method based on dual

coordinate sets, i.e., the original and shifted sets.

Along with the new ScoreNet, object instances can be

better segmented out.

• The proposed method achieves state-of-the-art results

on various challenging datasets, demonstrating its ef-

fectiveness and generality.

2. Related Work

Deep Learning in 3D Scenes 2D image pixels are in reg-

ular grids, thus can be naturally processed by convolutional

neural networks [24, 22, 42, 46, 18]. In contrast, 3D point

clouds are unordered and scattered in 3D space, causing ex-

tra difficulty in point cloud scene understanding [37, 41].

Several approaches handle data irregularity. The Multi-

Layer Perception (MLP)-style networks, e.g., PointNet [35,

37], directly apply MLP together with max-pooling to grab

local and global structures in 3D. The learned features are

then used for point cloud classification and segmentation.

Other approaches [51, 48, 57, 52, 21] enhance feature learn-

ing on local regions by dynamic context aggregation and

attention modules.

Besides working directly on the irregular input, several

approaches transform the unordered point set to an ordered

one to apply the convolution operations. PointCNN [26]

learns the order transformation for points reweighting and

permutation. Some other approaches [30, 43, 47, 39, 13, 7]

align and voxelize point cloud to produce regular 3D or-

dered tensors for 3D convolution. Multi-view strategies [36,

44, 45] are also widely explored, where 3D point clouds are

projected into 2D views for view-domain processing.

2D Instance Segmentation Instance segmentation aims

to find the foreground objects in a scene and mark each ob-

ject instance with a unique label. Overall, there are two ma-

jor lines. The first is detection- or top-down-based, which

directly detects object instances. Early works [14, 15] use

proposals from MCG [1] for feature extraction. Methods of

[9, 10, 16] adopt pooled features for faster processing. Mask

R-CNN [17] is widely known as an effective approach with

the extra segmentation head in the detection framework, like

Faster R-CNN [38]. Further works [29, 6, 5] enhance the

feature learning for instance segmentation.

The other line is segmentation- or bottom-up-based,

where pixel-level semantic segmentation is performed fol-

lowed by grouping of pixels to find object instances.

Zhang et al. [56, 55] utilize MRF for local patch merg-

ing. Arnab and Torr [3] use CRF. Bai and Urtasun [4] com-

bine the classical watershed transform and deep learning to

produce energy maps to distinguish among individual in-

stances. Liu et al. [28] employ a sequence of neural net-

works to construct objects from pixels.

3D Instance Segmentation With available large-scale 3D

labeled datasets [8, 2], instance segmentation of 3D point

clouds becomes important. Similar to 2D cases, current 3D

methods can also be grouped into two lines.

Detection-based methods extract 3D bounding boxes,

and inside each box, utilize a mask learning branch to pre-

dict the object mask. Yang et al. [53] present the 3D-

BoNet that directly predicts 3D bounding boxes and point-

level masks simultaneously per instance. Li et al. [54] pro-

pose GSPN, which takes an analysis-by-synthesis strategy

to generate proposals for instance segmentation. Hou et

al. [19] combine multi-view RGB input with 3D geometry

to jointly infer object bounding boxes and corresponding

instance masks in an end-to-end manner.

Contrarily, segmentation-based methods predict the se-

mantic labels, and utilize point embedding to group points

into object instances. Wang et al. [49] design SGPN by

clustering points based on the semantic segmentation pre-

dicted by backbones such as PointNet++. Liu and Fu-

rukawa [27] predict both the semantic labels and affinity be-

tween adjacent voxels in different scales to group instances.

Phm et al. [33] develop a multi-task learning framework

with a multi-value CRF model to jointly reason over both

the semantic and instance labels. Wang et al. [50] learn

a semantic-aware point-level instance embedding to bene-

fit learning of both the semantic and instance tasks. La-

houd et al. [23] introduce a multi-task learning strategy

where points of the same instance are grouped closer and

different clusters are more separated from each other.

Different from the above methods, we present a new ap-

proach named PointGroup to tackle the 3D instance seg-

mentation task. Our proposed model mainly contains two

parts – that is, (i) learning to group points into different

clusters based on their semantic predictions in both the orig-

inal coordinate space and shifted coordinate space, and (ii)

ScoreNet to learn to predict the score for selecting proper

clusters. The overall framework is differentiable. It can be

jointly optimized and trained in an end-to-end manner.

3. Our Method

3.1. Architecture Overview

To obtain instance-level segmentation labels for 3D ob-

jects, we consider two problems. The first is to separate
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Figure 2: Illustration of the network architecture. It has three main components – (a) backbone network, (b) clustering part,

and (c) ScoreNet. First, we use the backbone network to extract per-point features F, followed by two branches to produce

offset vectors O = {oi} and semantic labels S = {si}. Then, we introduce a clustering method to group points into candidate

clusters on dual coordinate sets, i.e., the original set P and the shifted Q, which produce Cp and Cq respectively. Lastly, we

use ScoreNet to produce cluster scores Sc. The set of color f = {fi} serves as the input feature to the backbone.

the contents in the 3D space into individual objects, and the

second is to determine the semantic label of each object.

Unlike 2D images, there is no view-occlusion problem in

the 3D scenes, and objects scattered in 3D are usually natu-

rally separated by void space. Hence, we propose leverag-

ing these characteristics of 3D objects to group 3D content

into object instances according to the semantic information.

Fig. 2 overviews the architecture of our approach, which has

three main components, i.e., the backbone, the point clus-

tering part, and ScoreNet.

The input to the backbone network (Fig. 2(a)) is a point

set P of N points. Each point has a color fi = (ri, gi, bi)
and 3D coordinates pi = (xi, yi, zi), where i ∈ {1, ..., N}.

The backbone extracts feature Fi for each point. We denote

the output feature of the backbone as F = {Fi} ∈ R
N×K ,

where K is the number of channels. We then feed F into

two branches, one for semantic segmentation and the other

for predicting a per-point offset vector to shift each point

towards the centroid of its respective object instance. Let

si and oi = (∆xi,∆yi,∆zi) denote the predicted semantic

label and offset vector of point i, respectively.

After obtaining the semantic labels, we begin to group

points into instance clusters based on the void space be-

tween objects. In the point clustering part (Fig. 2(b)), we

introduce a clustering method to group points that are close

to each other into the same cluster, if they have the same

semantic label. However, clustering directly based on the

point coordinate set P = {pi} may fail to separate same-

category objects that are close to each other in the 3D space

and mis-group them, for example, two pictures that hang

side-by-side on the wall.

Thus, we use the learned offset oi to shift point i towards

its respective instance centroid and obtain the shifted coor-

dinates qi = pi+oi ∈ R
3. For points belonging to the same

object instance, different from pi, the shifted coordinates qi

clutter around the same centroid. So by clustering based on

shifted coordinate set Q = {qi}, we separate nearby objects

better, even though they have the same semantic labels.

However, for points near object boundary, the predicted

offsets may not be accurate. So, our clustering algorithm

employs “dual” point coordinate sets, i.e., the original co-

ordinates P and the shifted coordinates Q. We denote the

clustering results C as the union of Cp = {Cp
1 , ..., C

p
Mp

}

and Cq = {Cq
1 , ..., C

q
Mq

}, which are the clusters discov-

ered based on P and Q, respectively. Here, Mp and Mq

denote the number of clusters in Cp and Cq , respectively,

and M = Mp +Mq denotes the total.

Lastly, we construct the ScoreNet (Fig. 2(c)) to process

the proposed point clusters C = Cp ∪ Cq and produce a

score per cluster proposal. NMS is then applied to these

proposals with the scores to generate final instance predic-

tion. In the following, we denote the instance predictions as

G = {G1, ..., GMpred
} ⊆ C and the ground-truth instances

as I = {I1, ..., IMgt
}. Here, Gi and Ii are subsets of P,

while Mpred and Mgt denote the number of instances in G

and I, respectively. Also, we use N I
i and NG

i to represent

the number of points in Ii and Gi, respectively.

3.2. Backbone Network

We may use any point feature extraction network to serve

as the backbone network (Fig. 2(a)). In our implementation,

we voxelize the points and follow the procedure of [13] to

construct a U-Net [25, 40] with Submanifold Sparse Convo-

lution (SSC) and Sparse Convolution (SC). We then recover

points from voxels to obtain the point-wise features. The

contextual and geometric information is well extracted by

the U-Net, which provides discriminative point-wise fea-

tures F for subsequent processing. Afterwards, we con-

struct two branches based on the point-wise features F to

predict semantic label si and offset vector oi for each point.
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Semantic Segmentation Branch We apply an MLP to

F to produce semantic scores SC = {sc1, ..., scN} ∈
R

N×Nclass for the N points over the Nclass classes, and

regularize the results by a cross entropy loss Lsem. The

predicted semantic label si for point i is the class with the

maximum score, i.e., si = argmax(sci).

Offset Prediction Branch The offset branch encodes F

to produce N offset vectors O = {o1, ..., oN} ∈ R
N×3 for

the N points. For points belonging to the same instance, we

constrain their learned offsets by an L1 regression loss as

Lo reg =
1

∑

i mi

∑

i

||oi − (ĉi − pi)|| ·mi, (1)

where m = {m1, ...,mN} is a binary mask. mi = 1 if

point i is on an instance and mi = 0 otherwise. ĉi is the

centroid of the instance that point i belongs to, i.e.,

ĉi =
1

N I
g(i)

∑

j∈Ig(i)
pj , (2)

where g(i) maps point i to the index of its corresponding

ground-truth instance, i.e., the instance that contains point

i. N I
g(i) is the number of points in instance Ig(i).

The above mechanism looks similar to the vote genera-

tion strategy in VoteNet [34]. However, rather than regress-

ing the bounding boxes based on the votes of a few subsam-

pled seed points, we predict an offset vector per point to

gather the instance points around a common instance cen-

troid, in order to better cluster relevant points into the same

instance. Also, we observe that the distances from points to

their instance centroids usually have small values (0 to 1m).

Fig. 3b gives the statistical analysis on the distribution of

such distances in the ScanNet dataset. Considering diverse

object sizes of different categories, we find it is hard for the

network to regress precise offsets, particularly for boundary

points of large-size objects, since these points are relatively

far from the instance centroids. To address this issue, we

formulate a direction loss to constrain the direction of pre-

dicted offset vectors. We follow [23] to define the loss as a

means of minus cosine similarities, i.e.,

Lo dir = −
1

∑

i mi

∑

i

oi

||oi||2
·

ĉi − pi

||ĉi − pi||2
·mi. (3)

Such loss is irrelevant to the offset vector norm and ensures

that the points move towards their instance centroids.

3.3. Clustering Algorithm

Given the predicted semantic labels and offset vectors,

we are ready to group the input points into instances. To

this end, we introduce a simple and yet effective clustering

algorithm. It is detailed in Algorithm 1.

Algorithm 1 Clustering algorithm. N is the number of

points. M is the number of clusters found by the algorithm.

Input: clustering radius r;

cluster point number threshold Nθ;

coordinates X = {x1, x2, ..., xN} ∈ R
N×3; and

semantic labels S = {s1, ..., sN} ∈ R
N .

Output: clusters C = {C1, ..., CM}.

1: initialize an array v (visited) of length N with all zeros

2: initialize an empty cluster set C

3: for i = 1 to N do

4: if si is a stuff class (e.g., wall) then

5: vi = 1

6: for i = 1 to N do

7: if vi == 0 then

8: initialize an empty queue Q

9: initialize an empty cluster C

10: vi = 1; Q.enqueue(i); add i to C

11: while Q is not empty do

12: k = Q.dequeue()

13: for j ∈ [1, N ] with ||xj − xk||2 < r do

14: if sj == sk and vj == 0 then

15: vj = 1; Q.enqueue(j); add j to C

16: if number of points in C >Nθ then

17: add C to C

18: return C

The core step of our algorithm is that for point i, we get

points within the ball of radius r centered at xi (the coordi-

nate of point i) and group points with the same semantic la-

bels as point i into the same cluster. Here, r serves as a spa-

tial constraint in the clustering, so that two intra-category

objects at a distance larger than r are not grouped. Here,

we use the breadth-first search to group points of the same

instance into a cluster. In our implementation, for points

in the scene, neighboring points within an r-sphere can be

found in parallel in advance of the clustering to boost speed.

As presented in Sec. 3.1, we apply the clustering algo-

rithm separately on the “dual” set, i.e., the original coordi-

nate set P and the shifted set Q, to produce cluster sets Cp

and Cq . Clustering on P may mis-group nearby objects of

the same class, while clustering on Q does not have this

problem but may fail to handle the boundary points of large

objects. We collectively employ P and Q to find candidate

clusters due to their complementary properties. Analysis on

the clustering performance of using P alone, Q alone, or

both P and Q is presented in Sec. 4.2.2.

3.4. ScoreNet

The input to ScoreNet is the set of candidate clusters

C = {C1, ..., CM}, where M denotes the total number of

candidate clusters, and Ci denotes the i-th cluster. Also, we

use Ni to represent the number of points in Ci. The goal of
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Figure 3: (a) Structure of ScoreNet. (b) Distribution of distances from points to their respective instance centroids in the

ScanNet dataset [8] (including the training and validation sets).

ScoreNet is to predict a score for each cluster to indicate the

quality of the associated cluster proposal, so that we could

precisely reserve the better clusters in NMS and thus com-

bine strength of Cp and Cq .

To start, for each cluster, we gather the point features

from F ∈ R
N×K (the features extracted by the backbone)

and form FCi
= {Fh(Ci,1), ..., Fh(Ci,Ni)} for cluster Ci,

where h maps the point index in Ci to corresponding point

index in P. Similarly, we express the coordinates for points

in Ci as PCi
= {ph(Ci,1), ..., ph(Ci,Ni)}.

To better aggregate the cluster information, we take FCi

and PCi
as the initial features and coordinates, and vox-

elize the clusters the same way as we do at the beginning

of the backbone network. The feature for each voxel is

average-pooled from the initial features of points in that

voxel. We then feed them into a small U-Net with SSC and

SC to further encode the features. A cluster-aware max-

pooling is then followed to produce a single cluster feature

vector fCi
∈ R

1×Kc per cluster. The final cluster scores

Sc = {sc1, ..., s
c
M} ∈ R

M are obtained as

Sc = Sigmoid(MLP(FC)), (4)

where FC = {fC1
, ..., fCM

} ∈ R
M×Kc . The structure of

ScoreNet is illustrated in Fig. 3a.

Inspired by [25, 20], to reflect the quality of clusters in

the scores, we use a soft label to replace a binary 0/1 label

to supervise the predicted cluster score as

ŝci =











0 ioui < θl

1 ioui > θh
1

θh−θl
· (ioui − θl) otherwise

, (5)

where θl and θh are empirically set to 0.25 and 0.75 respec-

tively in our implementation, and ioui is the largest Inter-

section over Union (IoU) between cluster Ci and ground-

truth instances as

ioui = max ({IoU(Ci, Ij) | Ij ∈ I}) . (6)

We then use the binary cross-entropy loss as our score loss,

which is formulated as

Lc score = −
1

M

M
∑

i=1

(ŝci log(s
c
i )+(1−ŝci )log(1−sci )). (7)

3.5. Network Training and Inference

Training We train the whole framework in an end-to-end

manner with the total loss as

L = Lsem + Lo dir + Lo reg + Lc score. (8)

Inference In the inference process, we perform NMS on

clusters C with predicted scores Sc to obtain the final in-

stance predictions G ⊆ C. The IoU threshold is empir-

ically set as 0.3. Since we cluster based on the semantic

information, the semantic label of a cluster is exactly the

category that the cluster points belong to.

4. Experiments

Our proposed PointGroup architecture is effective for

instance segmentation of 3D point clouds. To demon-

strate its effectiveness, we conduct extensive experiments

on two challenging point cloud datasets, ScanNet v2 [8]

and S3DIS [2]. On both of them, we achieve state-of-the-art

performance on the 3D instance segmentation task.

4.1. Experimental Setting

Datasets The ScanNet v2 [8] dataset contains 1,613 scans

with 3D object instance annotations. The dataset is split into

training, validation, and testing sets, each with 1,201, 312,

and 100 scans, respectively. 18 object categories are used

for instance segmentation evaluation. For ablation studies,

we train on the training set and report results on the valida-

tion set. To compare with other approaches, we train on the

training set and report results on the testing set.

The S3DIS [2] dataset has 3D scans across six areas with

271 scenes in total. Each point is assigned one label out of

13 semantic classes. All the 13 classes are used in instance
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SGPN [49] 0.143 0.208 0.390 0.169 0.065 0.275 0.029 0.069 0.000 0.087 0.043 0.014 0.027 0.000 0.112 0.351 0.168 0.438 0.138

3D-BEVIS [11] 0.248 0.667 0.566 0.076 0.035 0.394 0.027 0.035 0.098 0.099 0.030 0.025 0.098 0.375 0.126 0.604 0.181 0.854 0.171

R-PointNet [54] 0.306 0.500 0.405 0.311 0.348 0.589 0.054 0.068 0.126 0.283 0.290 0.028 0.219 0.214 0.331 0.396 0.275 0.821 0.245

DPC [12] 0.355 0.500 0.517 0.467 0.228 0.422 0.133 0.405 0.111 0.205 0.241 0.075 0.233 0.306 0.445 0.439 0.457 0.974 0.23

3D-SIS [19] 0.382 1.000 0.432 0.245 0.190 0.577 0.013 0.263 0.033 0.320 0.240 0.075 0.422 0.857 0.117 0.699 0.271 0.883 0.235

MASC [27] 0.447 0.528 0.555 0.381 0.382 0.633 0.002 0.509 0.260 0.361 0.432 0.327 0.451 0.571 0.367 0.639 0.386 0.980 0.276

PanopticFusion [32] 0.478 0.667 0.712 0.595 0.259 0.550 0.000 0.613 0.175 0.250 0.434 0.437 0.411 0.857 0.485 0.591 0.267 0.944 0.35

3D-BoNet [53] 0.488 1.000 0.672 0.590 0.301 0.484 0.098 0.620 0.306 0.341 0.259 0.125 0.434 0.796 0.402 0.499 0.513 0.909 0.439

MTML [23] 0.549 1.000 0.807 0.588 0.327 0.647 0.004 0.815 0.180 0.418 0.364 0.182 0.445 1.000 0.442 0.688 0.571 1.000 0.396

PointGroup (Ours) 0.636 1.000 0.765 0.624 0.505 0.797 0.116 0.696 0.384 0.441 0.559 0.476 0.596 1.000 0.666 0.756 0.556 0.997 0.513

Table 1: 3D instance segmentation results on ScanNet v2 testing set with AP50 scores. Our proposed PointGroup approach

yields the highest average AP50, outperforming all state-of-the-art methods by a large margin. All numbers are from the

ScanNet benchmark on 15/11/2019.

evaluation. Overall, we evaluate our model under two set-

tings: (i) Area 5 is adopted for testing, whereas all the others

are used for training; and (ii) six-fold cross validation that

each area is treated as the testing set once.

Evaluation Metrics We use the widely-adopted evalua-

tion metric – mean average precision (mAP). Specifically,

AP25 and AP50 denote the AP scores with IoU threshold

set to 25% and 50%, respectively. Also, AP averages the

scores with IoU threshold set from 50% to 95%, with a step

size of 5%. Besides, approaches of [50, 53] reported perfor-

mance of mean precision (mPrec) and mean recall (mRec)

on S3DIS, we also include these results for comparison.

Implementation Details We set the voxel size as 0.02m.

In the clustering part, we set the clustering radius r as 0.03m

and the minimum cluster point number Nθ as 50. In the

training process, we use the Adam solver with a base learn-

ing rate of 0.001. For each scene in the dataset, we set the

maximum number of points as 250k, due to GPU memory

limit. If the scene has more than 250k points, we randomly

crop part of the scene and gradually adjust the crop size,

according to the number of points in the cropped area. Dur-

ing the testing process, we feed the whole scene into the

network without cropping.

Specifically, scenes in S3DIS have high point density.

Some scenes are even with millions of points. Hence, for

each S3DIS scene, we randomly sub-sample ∼1/4 points

before each cropping.

4.2. Evaluation on ScanNet

4.2.1 Benchmark Results

We first report performance of our PointGroup model on the

testing set of ScanNet v2, as listed in Table 1. PointGroup

accomplishes the highest AP50 score of 63.6%, outperform-

ing all previous methods by a large margin. Compared with

the former best solution [23], which obtains 54.9% AP50

score, our result is 8.7% higher (absolute) and 15.8% better

(relative). For detailed results on each category, PointGroup

ranks the 1st place in 13 out of 18 classes in total.

4.2.2 Ablation Studies

We conduct ablation studies on the ScanNet validation set to

analyze the design and parameter choice in our PointGroup.

Clustering based on Different Coordinate Sets Table 2

shows the comparison using the original coordinates P

alone, the shifted coordinates Q alone, and both P and Q

in the clustering. Clustering on points with P alone may

mis-group two close objects with the same semantic label

into the same instance. Hence, for categories, in which two

objects are likely to be very close to each other (e.g., chairs

and pictures), clustering on P alone does not perform well.

Clustering on Q solves the problem in part by gathering

instance points around the instance centroids and enlarg-

ing the space between clusters. However, due to inaccuracy

in offset prediction, especially for boundary points of large

objects (e.g., curtains and counters), clustering on Q alone

does not perform perfectly.

Fig. 4 shows the qualitative results with models trained

with clusters from different coordinate sets – (i) P only, (ii)

Q only, and (iii) both P and Q. We could observe that the

problem in (i) is the mistakenly grouped pictures on the wall

in one cluster. The case of (ii) successfully separates the

pictures into individual instances. Nevertheless, it suffers

from inaccuracy around the object boundary areas. The case

of (iii) takes strength of both (i) and (ii). Clustering on dual

point sets (both P and Q) along with the precise scores from

ScoreNet to select the final instance clusters, we combine

the advantages of clustering on P and on Q to attain the

best performance.

Ablation on the Clustering Radius r We use different

values of r in the clustering algorithm. The performance

varies as shown in Table 3. A small r is sensitive to point

density. The scan for an object may have inconsistent point

density in different parts. Clustering with such an r may

not be able to grow in low-density parts. On the contrary, a

large r increases the risk of grouping two nearby same-class

objects into one. We empirically set r to 0.03 (meter).
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Original P

AP 0.283 0.414 0.327 0.244 0.167 0.493 0.083 0.269 0.089 0.193 0.286 0.205 0.207 0.373 0.226 0.361 0.251 0.684 0.231

AP50 0.507 0.692 0.647 0.481 0.347 0.685 0.231 0.508 0.308 0.384 0.453 0.359 0.301 0.632 0.537 0.660 0.531 0.961 0.413

AP25 0.659 0.840 0.764 0.597 0.496 0.791 0.588 0.614 0.686 0.529 0.600 0.432 0.401 0.660 0.775 0.777 0.721 0.995 0.601

Shifted Q

AP 0.328 0.499 0.383 0.248 0.217 0.713 0.008 0.241 0.165 0.216 0.318 0.211 0.238 0.422 0.292 0.383 0.362 0.799 0.194

AP50 0.529 0.738 0.694 0.550 0.435 0.884 0.035 0.389 0.410 0.413 0.501 0.363 0.366 0.617 0.590 0.648 0.571 0.948 0.375

AP25 0.677 0.863 0.795 0.699 0.617 0.931 0.426 0.541 0.697 0.538 0.623 0.446 0.366 0.765 0.826 0.848 0.669 0.999 0.533

Both P & Q

AP 0.348 0.597 0.376 0.267 0.253 0.712 0.069 0.266 0.140 0.229 0.339 0.208 0.246 0.416 0.298 0.434 0.385 0.758 0.275

AP50 0.569 0.805 0.696 0.549 0.481 0.877 0.224 0.449 0.416 0.420 0.530 0.377 0.372 0.644 0.611 0.715 0.629 0.983 0.462

AP25 0.713 0.865 0.795 0.744 0.673 0.925 0.648 0.616 0.741 0.548 0.654 0.482 0.383 0.711 0.828 0.851 0.742 1.000 0.636

Table 2: Ablation results using different coordinate sets on the ScanNet v2 validation set. Adopting both the original and

shifted coordinates for clustering yields the best 3D instance segmentation performance.

Input (i) P Only (ii) Q Only (iii) P and Q Shifted Coord.

Figure 4: Instance predictions produced by models trained with clustering on (i) P only, (ii) shifted coordinates Q only, and

(iii) both. The last column shows the predicted instances of (iii) represented with Q, where stuff points are ignored.

Method avg AP avg AP50 avg AP25

r = 2cm 0.285 0.501 0.651

r = 3cm 0.348 0.569 0.713

r = 4cm 0.337 0.552 0.700

r = 5cm 0.342 0.552 0.699

Table 3: Ablation results for clustering with different radii

r on the ScanNet v2 validation set.

Ablation for the ScoreNet We also ablate the ScoreNet,

which is used to evaluate the quality of each candidate clus-

ter (see Sec.3.4). Here, we directly use the output scores

from ScoreNet to rank instances for calculating the AP.

Apart from regressing the instance quality, an alterna-

tive way is to directly use the averaged semantic prob-

ability of the related instance category inside an in-

stance as the quality confidence. By this means, the re-

sults in terms of AP/AP50/AP25 are 30.2/51.9/68.9(%),

which are worse than those with ScoreNet where results

are 34.8/56.9/71.3(%). This indicates that the proposed

ScoreNet is vital and necessary for improving the instance

segmentation results by providing precise scores for NMS.

4.2.3 Runtime Analysis

Our method takes a whole scene as input per pass. Its run-

time depends on the number of points and scene complex-

ity. For runtime analysis, we sampled four scenes randomly

from the ScanNet v2 validation set and tested them 100

times on a Titan Xp GPU to get an average runtime per

scene. Table 4 reports the runtime breakdown. Clustering

#Points
Total

Time
BB

Clustering on P and Q
SCN NMS

BQp CLp BQq CLq

1 239,261 865 332 95 16 95 70 176 82

2 45,557 261 177 5 2 5 5 52 14

3 186,857 567 281 44 9 45 31 95 62

4 60,071 271 180 6 3 7 15 55 6

avg 132,937 491 243 38 8 38 30 95 41

Table 4: Inference time (ms). BB denotes backbone + two

branches; BQ denotes ballquery; subscripts p and q denote

clustering on P and Q respectively; CL denotes our cluster-

ing algorithm; and SCN denotes ScoreNet.

Method AP50 mPrec50 mRec50
SGPN† [49] - 0.360 0.287

ASIS† [50] - 0.553 0.424

PointGroup† 0.578 0.619 0.621

SGPN‡ [49] 0.544 0.382 0.312

PartNet‡ [31] - 0.564 0.434

ASIS‡ [50] - 0.636 0.475

3D-BoNet‡ [53] - 0.656 0.476

PointGroup‡ 0.640 0.696 0.692

Table 5: Instance segmentation results on the S3DIS vali-

dation set. Methods marked with † are evaluated on Area 5;

those marked with ‡ are on the 6-fold cross validation.

on Q (shifted) usually takes more time than clustering on P

(original), as shifted points could have more neighbors.

4.3. Evaluation on S3DIS

We also evaluate our proposed PointGroup model on the

S3DIS dataset. Apart from adopting AP50 as an evaluation
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Input Semantic GT Semantic Pred. Instance GT Instance Pred.

Figure 5: Visualization of the semantic and instance segmentation results on ScanNet v2 (top) and S3DIS (bottom). For

instance predictions, different colors represent separate instances, and the semantic results indicate the categories of instances.

metric, we also include the mPrec50 and mRec50 results in

Table 5, where we use a score threshold of 0.2 to remove

some low-confidence clusters.

PointGroup reaches the highest performance in terms of

all three evaluation metrics. For results on Area 5, Point-

Group gets 57.8% on AP50, 61.9% on mPrec50 and 62.1%

on mRec50. The mPrec50 and mRec50 are 6.6 and 19.7

points higher than ASIS [50], respectively. For the results

on 6-fold cross validation, PointGroup is 9.6 points higher

than SGPN [49] regarding AP50, which is a big margin. The

mPrec50 and mRec50 scores are 4 and 21.6 points higher

than the second-best solution [53].

The large improvement of PointGroup over the for-

mer best approaches across different challenging datasets

demonstrate its effectiveness and generality. Several visual

illustrations of PointGroup over these two datasets are in-

cluded in Fig. 5. We observe that the proposed approach

well captures the 3D geometry information and obtains pre-

cise instance segmentation masks.

5. Conclusion

We have proposed PointGroup for 3D instance segmen-

tation, with a specific focus of better grouping points by

exploring the in-between space and point semantic labels

among the object instances. Considering the situation that

two intra-category objects may be very close to each other,

we design a two-branch network to respectively learn a per-

point semantic label and a per-point offset vector for mov-

ing each point towards its respective instance centroid. We

then cluster points based on both the original point coordi-

nates and the offset-shifted point coordinates. It combines

the complementary strength of the two coordinate sets to

optimize point grouping precision. Further, we introduced

the ScoreNet to learn to evaluate the generated candidate

clusters, followed by the NMS to avoid duplicates before

we output the final predicted instances. PointGroup accom-

plished the best ever results.

In our future work, we plan to further introduce a pro-

gressive refinement module to relieve the semantic inaccu-

racy problem that affects the instance grouping and explore

the possibility of incorporating weakly- or self-supervision

techniques to further boost the performance.
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