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Abstract

Advanced object detectors usually adopt a backbone net-

work designed and pretrained by ImageNet classification.

Recently neural architecture search (NAS) has emerged to

automatically design a task-specific backbone to bridge

the gap between the tasks of classification and detection.

In this paper, we propose a two-phase serial-to-parallel

architecture search framework named SP-NAS towards a

flexible task-oriented detection backbone. Specifically, the

serial-searching round aims at finding a sequence of se-

rial blocks with optimal scale and output channels in the

feature hierarchy by a Swap-Expand-Reignite search algo-

rithm; the parallel-searching phase then assembles several

sub-architectures along with the previous searched back-

bone into a more powerful parallel-structured backbone.

We efficiently search a detection backbone by exploring a

network morphism strategy on multiple detection bench-

marks. The resulting architectures achieve SOTA results,

i.e. top performance (LAMR: 0.055) on the automotive

detection leaderboard of EuroCityPersons benchmark, im-

proving 2.3% mAP with less FLOPS than NAS-FPN on

COCO, and reaching 84.1% AP50 on VOC better than Det-

NAS and Auto-FPN in terms of both accuracy and speed.

1. Introduction

Object detection is one of the core computer vision tasks

to localize and classify multiple objects in an image and has

been widely used in real-world applications [29, 28, 7, 2].

Recent works, like FPN [19] and RetinaNet [20], directly

use networks for ImageNet classification as backbone fea-

ture extractors, e.g., ResNet [15], which is neither task-

specific nor data-specific. The backbone designs for ob-

ject detection should be different from those for image clas-

sification, because the former need to localize and clas-

sify various objects at different scales in the feature hier-

archy simultaneously while the latter only need to output
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Model Dataset Task
Search space

Component Size Operator

ResNet [15] ImageNet Cls Backbone - -

DetNet [18] COCO Det Backbone - -

HRNet [42] COCO Det Backbone - -

AmoebaNet [32] ImageNet Cls Backbone Fixed
Inter-block

Connection

NAS-FPN [12] COCO Det Neck Fixed
Inter-block

Connection

Auto-FPN [46]
COCO BDD

Det
Neck

Fixed
Inter-block

VOC Head Connection

DetNAS [9]
COCO

Det Backbone
Fixed

Kernel size
VOC ≈ 10

12

SP-NAS
COCO BDD

Det Backbone
Growing #blocks Channels

ECP VOC > 10
20 Downsampling

Table 1. Comparison of our SP-NAS and other backbone designs.

1) We directly search for a backbone on the detection dataset. 2)

Our backbone keeps growing during search with a flexible and

much bigger search space. 3) We search for the whole structure of

backbone instead of the inter-block structure only.

the image-level labels by averaging the last feature map.

Consequently, designing a capable backbone for object de-

tection is more challenging and usually needs much human

effort. Furthermore, some hand-crafted detection-specific

backbone networks [38, 42, 19] are usually targeted at the

COCO [21] dataset which cannot guarantee the adaptation

to other detection tasks like in autonomous driving.

Recently, Neural Architecture Search (NAS) algorithms

demonstrate promising results on discovering top-accuracy

architectures for image classification, which surpasses the

performance of hand-crafted networks and saves human’s

efforts [49, 23, 45, 25, 31, 40, 30, 41]. However, NAS for

object detection is usually more challenging due to the dif-

ficulty of fast evaluating the candidate models in the search

space. Since the architecture of the backbone keeps chang-

ing during the search, one needs to pretrain the backbone on

ImageNet [35] repeatedly, which is computationally infea-

sible. As a result, most NAS works do not directly search on

the backbone for detection. For example, Zoph et al. [49]

transfer the searched architecture from classification to de-

tection backbone. NAS-FPN [12] and Auto-FPN [46] focus
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on improving the feature fusion module (neck) by NAS.

To our knowledge, DetNAS [9] is the only work search-

ing for the better backbone of detection (Table 1). It

avoids repeated ImageNet training by creating a pre-trained

weight-sharing super-net. By sampling different paths in

the super-net, DetNAS can select the best child architecture

without training. However, the weight-sharing diagram cre-

ates a vast gap between the performance of sampled child

networks and the fully training result [36]. Thus the search-

ing results may not reflect the true performance of the archi-

tectures (minor improvement compared to random search).

Moreover, the pre-defined and fixed super-net greatly limits

the backbone’s search space (only changing of kernel size)

while ignoring other key factors of backbones such as the

number of blocks, downsampling rate and channel sizes. In

contrast, our work aims to develop an efficient and flexible

NAS scheme to find an optimal data-specific backbone for

object detection.

In this work, we propose a novel architecture search

framework named SP-NAS towards a flexible and data-

oriented detection backbone. By observing the state-of-the-

art design of the backbone detection, two components are

important: a) proper allocation of computation on different

backbone stages and proper receptive fields and spatial reso-

lution for each feature level (e.g. extra stage and higher spa-

tial resolution in DetNet [9]); b) better fusion of high-level

and low-level features (e.g. repeated fusion across multi-

resolution sub-networks in [42]). Thus, we propose a serial-

to-parallel searching strategy: 1) the serial-searching phase

aims at finding a sequence of serial blocks with optimal res-

olution, receptive fields and output channels in each stage of

the feature hierarchy; 2) the parallel-searching phase then

assembles several searched serial architectures into a more

powerful parallel-structured backbone with a better fusion

of high-level and low-level features.

Inspired by recent advances in network morphism [43,

10], we adopt a “swap-expand-reignite” search strategy in

the serial-level searching phase which allows continuous

growth of the backbone until reaching the optimal design.

At each iteration, we apply a set of modifications including

“swap” and “expand” to the current network and train the

resulting networks in parallel on multiple computing nodes

with short training time. Then we choose the best mod-

ification among the nodes with the biggest improvement

of performance. Both operations follow the network mor-

phism. The backbone can keep training and growing while

avoiding the repeated pretraining on ImageNet. We also

find that when the morphed architecture deviates far from

the original ImageNet pretrained backbone, the algorithm

may get stuck with no further improvement of the perfor-

mance. Thus, we use a “reignite” strategy by re-training on

ImageNet for the stuck architecture to reignite the searching

process. We found this “swap-expand-reignite” search algo-

rithm works well and keeps increasing the detection perfor-

mance efficiently and moves to an optimal serial backbone

usually with only 1˜2 rounds of ImageNet pretraining.

For the parallel-level searching phase, we aim at finding

an optimal parallel-level structure with the different num-

ber of subnets along with each backbone stage for a better

fusion and extraction of high-level and low-level features.

Since the search space is relatively small, we use random

search with a resource-constraint sampling.

Extensive experiments are conducted on the widely used

detection benchmarks, including Pascal VOC [11], COCO

[21], BDD [47] and ECP [3]. The proposed method out-

performs current state-of-the-art detection methods, i.e.,

achieving state-of-the-art performance on the automotive

detection EuroCityPersons leaderboard. We also observe

consistent performance gains over the hand-crafted back-

bone structure with the same setting of block structures.

In particular, our method outperforms NAS-FPN by 2.5%

mAP with less FLOPS and achieves higher performance

with similar inference time than Cascade RCNN on COCO,

and reaches 84.1% AP50 on VOC better than DetNAS and

Auto-FPN in accuracy and speed.

2. Related Work

Object Detection. Modern anchor-based detection ap-

proaches such as Faster RCNN [34] and FPN [19] usually

consist of several modules: backbone, feature fusion neck,

region proposal network, and RCNN head. Most of the

works on object detection directly use the backbone net-

work designed and pretrained for the ImageNet classifica-

tion task, e.g., ResNet [15]. Since the performance of object

detectors highly relies on features extracted by backbones,

recent advances focus on developing a specific backbone

for detection. For example, DetNet [18] tries to develop

a backbone for detection by using a higher spatial resolu-

tion in the later stage and a dilated bottleneck. However,

those manually designed backbones are not data-specific

(e.g. backbone designed for COCO may be sub-optimal for

other datasets) and require great human expert’s labors.

Neural Architecture Search. The goal of NAS is to

automatically find an optimal network architecture and re-

lease humans from this tedious network architecture engi-

neering. Most previous works [25, 5, 23, 39, 45] search

basic CNN architectures for a classification model while a

few of them focus on more complicated high-level vision

tasks such as semantic segmentation and object detection

[8, 22, 9, 12]. Baker and Zoph et al. [1, 49, 4, 48] apply

reinforcement learning to train an RNN policy controller to

generate a sequence of actions to specify a CNN architec-

ture, which requires massive samples to converge. Real and

Liu et al. [33, 24] try to “evolve” CNN architectures by

mutating the current best architectures. Liu, Xie and Cai

et al. [25, 45, 5] try to introduce architecture parameters
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……… …

Parallel-level search phase 

… ………

Expand Evaluate arch 

or

Re-ignite (if no 
improvement for 𝑛𝑠𝑡𝑢𝑐𝑘 rounds)

Serial-level search phase 

Stage1 Stage2 Stage3 StageL-1

… … … …

… ………

StageL

different channels

parallel subnet 𝑝𝑙𝑘
fusion connections

Stage1 Stage2 Stage3 StageL-1

Swap 𝑝11Parallel1

ParallelK

SerialNet

after Swap/Expand

𝑝𝑙𝑘
𝑝1𝐾

𝑝31 𝑝𝐿−11 𝑝𝐿1

𝑝2𝐾 𝑝3𝐾
Figure 1. An overview of our SP-NAS towards a flexible and data-oriented backbone. Our algorithm can be decoupled into two phases.

a) For serial-level search, we adopt a “swap-expand-reignite” strategy which allows continuous growth of the backbone until reaching an

optimal design. The output model of this phase is called SerialNet. b) Parallel-level search aims at finding an optimal parallel-level structure

with the different number of subnets pkl along with each stage in SerialNet for a better fusion and extraction of multi-scale features.

for continuous relaxation of the discrete search space, thus

allowing weight-sharing and differentiable optimization of

the CNN architectures. However, those classification based

search methods do not generalize well to object detection

due to the requirement of computationally intensive Ima-

geNet pretraining.

For the detection task, Zoph et al. [49] transfer the

searched architecture from classification to the detector

backbone which cannot guarantee optimal adaptation to any

detection dataset. NAS-FPN [12] and Auto-FPN [46] focus

on improving the feature fusion neck by NAS to find a better

feature fusion from different feature levels while ignoring

the backbone. DetNAS [9] searches for better backbones

for detection on a pre-trained weight-sharing super-net with

an evolutionary search algorithm. On the contrary, our work

aims to develop an efficient and flexible NAS scheme to find

an optimal data-specific backbone for object detection.

3. SP-NAS Pipeline

We propose a serial-to-parallel searching pipeline: 1)

serial-level searching aims at finding a sequence of serial

blocks with an optimal depth, resolution, receptive fields

and output channels in each stage of the feature hierarchy.

2) parallel-level searching then assembles several searched

stage architectures (parallel subnets) to a more powerful

parallel backbone with better refinement and fusion of dif-

ferent semantic level features. An overview of our SP-NAS

is shown in Figure 1. Our SP-NAS algorithm can be used

to improve any detectors. Moreover, we adopt a “swap-

expand-reignite” search strategy to explore novel backbone

architectures without repeatedly pretraining on ImageNet.

3.1. Serial­level Search

The commonly used backbones of the detection network

include VGG [37], ResNet [15], and ResNeXt [44]. Those

networks are mainly designed for ImageNet classification

Basic Block (BB) Bottleneck Block (BNB) ResNeXt Block (XB)

conv3x3(In=n,out=n) conv1x1(In=4n,out=n) conv1x1(In=4n,out=2n)

conv3x3(In=n,out=n) conv3x3(In=n,out=n) conv3x3(In=2n,out=2n,group=32)

conv1x1(In=n,out=4n) conv1x1(In=2n,out=4n)

+ residual connection + residual connection + residual connection

Table 2. Detailed structures of our chosen blocks.

and thus it is sub-optimal to localize multiple objects at var-

ious scales in the feature hierarchy. Generally speaking,

high-level feature layers strongly respond to entire objects

thus are more discriminative while the low-level feature is

more likely to be activated by local textures and patterns,

and contains more spatial information. Thus, most hand-

crafted detection-specific backbone networks [38, 42, 18]

follows a serial structure and try to leverage and preserve the

spatial information by adding dilation and a higher spatial

resolution in the later stage (DetNet [18]), or preserving and

refining features of different resolutions (FishNet [38]). In

this work, we propose a serial-level backbone search space

that contains a sequence of serial blocks with a flexible set-

ting of blocks, resolution and output channels in each stage

of the feature hierarchy.

Search Space. As shown in Figure 1, the serial-level

backbone search space consists of a sequence of blocks.

Each part of the backbone could be divided into several

stages according to the resolution of the output features

where stage refers to a number of blocks fed by the features

with the same resolution. In this paper, we consider three

kinds of blocks: basic block, bottleneck block in ResNet

[15] and ResNeXt block [44] as shown in Table 2. The

number of blocks in the backbone varies from 8 to 60. The

number of stages can be chosen from 5 to 7 and each stage is

gradually down-sampled with factor 2. We allow a different

number of blocks in each stage thus the allocation of com-

putation is flexible. Firstly, the input image is feed into a

stem architecture following [16, 42], which consists of two

3 × 3 convolutions (stride=2) decreasing the resolution to 1
4 ,
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Algorithm 1: Serial_to_parallel Search

Input: Stop condition nstuckS, nstuckP, number of reignition nr
Baseline model f0 & ImageNet pretrained weight θ0𝑎𝑐𝑐𝑏𝑒𝑠𝑡 , 𝜃𝑏𝑒𝑠𝑡 ← 𝑡𝑟𝑎𝑖𝑛_𝑒𝑣𝑎𝑙(𝑓0, 𝜃0) #initialize network

Serial_level: While 𝑖 < 𝑛𝑟 do𝑐𝑜𝑢𝑛𝑡f ← 0
While 𝑐𝑜𝑢𝑛𝑡f < 𝑛𝑠𝑡uc𝑘S do #network morphism𝑓, 𝜃𝑖𝑛𝑖𝑡 ← 𝑠𝑤𝑎𝑝(𝑓𝑏𝑒𝑠𝑡 , 𝜃𝑏𝑒𝑠𝑡)𝑓, 𝜃𝑖𝑛𝑖𝑡 ← 𝑒𝑥𝑝a𝑛𝑑(𝑓, 𝜃𝑖𝑛𝑖𝑡)𝑎𝑐𝑐, 𝜃 ← 𝑡𝑟𝑎𝑖𝑛_𝑒𝑣𝑎𝑙(𝑓, 𝜃𝑖𝑛𝑖𝑡)

if 𝑎𝑐𝑐 > 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 then #update best network 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 , 𝑓𝑏𝑒𝑠𝑡 , 𝜃𝑏𝑒𝑠𝑡 ← 𝑎𝑐𝑐, 𝑓, 𝜃𝑐𝑜𝑢𝑛𝑡f ← 0
end

end𝜃𝑏𝑒𝑠𝑡 ← 𝑟𝑒𝑖𝑔𝑛𝑖𝑡e(𝑓𝑏𝑒𝑠𝑡)
end

Parallel_level: 𝑐𝑜𝑢𝑛𝑡p ← 0𝑝𝑏𝑒𝑠𝑡 ← 𝑖𝑛𝑖𝑡(𝑓𝑏𝑒𝑠𝑡)𝑎𝑐𝑐𝑏𝑒𝑠𝑡 , 𝜔𝑏𝑒𝑠𝑡 ← 𝑡𝑟𝑎𝑖𝑛_𝑒𝑣𝑎𝑙(𝑝𝑏𝑒𝑠𝑡 , 𝜃𝑏𝑒𝑠𝑡)
While 𝑐𝑜𝑢𝑛𝑡p < 𝑛𝑠𝑡𝑢𝑐𝑘P do𝑝 ←random search  𝑎𝑐𝑐, 𝜔 ← 𝑡𝑟𝑎𝑖𝑛_𝑒𝑣𝑎𝑙(𝑝, 𝜔𝑏𝑒𝑠𝑡)

if 𝑎𝑐𝑐 > 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 then  #update best network 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 , 𝑝𝑏𝑒𝑠𝑡 , 𝜔𝑏𝑒𝑠𝑡 ← 𝑎𝑐𝑐, 𝑝, 𝜔𝑐𝑜𝑢𝑛𝑡p ← 0
end

end

Output: 𝑝𝑏𝑒𝑠𝑡 , 𝜃𝑏𝑒𝑠𝑡
and the number of base channels in main body is equal to

the number of output channels of the stem. In the original

ResNet, the channel size is doubled at each downsampling

block. However, since the channel size will greatly affect

the feature representation capability and computation cost,

we also search for the position where the channel size is

doubled in the whole sequence.

A complete architecture is encoded like

“BNB(11,1d1,111,1d11,11d1)”. The first placeholder

encodes the block setting (BB: basic block, BNB: bottle-

neck block, XB: ResNeXt block). “,” separates each stage

with different resolution. “1” means regular block with no

change of channels while “d” indicates the number of base

channels is doubled in this block. For example, ResNet50

can be encoded as “BNB(111,d111,d11111,d11)”.

Swap-Expand-Reignite Search Strategy. Since we

change the architecture of the backbone during the search,

we cannot use the ImagNet [35] pretrained model. Most of

the detection models require the initialization from the Ima-

geNet pretrained models during training. Although He et al.

[13] have shown that ImageNet pretraining is not indispens-

able for detection, a much longer training (11×) is required

as a compensation, which makes it computationally difficult

to search on the backbone directly.

Inspired by recent advances on network morphism [43,

10], we adopt a “swap-expand-reignite” search strategy in

the serial-searching phrase to avoid the repeated training

1 1 , d 1 , d 1 , d 1

R
e
s1
8

S
w
a
p

block1 block2 block3 block4 block5 block6 block8block7

( )

block1 block2 block3 block4 block5 block6 block8block7

1 , 1 d 1 d , 1 , d 1( )

Figure 2. Illustrating the “swap” operation on ResNet18. The

number of blocks in the second stage increases from 2 to 4 af-

ter the “swap”. The previous model’s weights are reused in the

new architecture.

while keeping the “effect of ImageNet pretraining”. At

each search step, we apply a set of modifications including

“swap” and “expand” to the current network f .

As shown in Figure 1, for the “expand” operation, we

add a new block between two existing blocks by IdMorph

[43] while the number of input/output channels remains the

same. The weight of the convolution in the new block is

initialized as an identity matrix. For the “swap” opera-

tion, we just interchange the stride of the neighboring block

while keeping the weight unchanged, as shown in Figure

2. Both modifications on the current network will maintain

the output unchanged as much as possible at initialization,

which keeps the “effect of ImageNet pretraining”. Starting

from a commonly used network with ImageNet pretraining,

the backbone network can grow bigger and explore a wide

range of architectures in the search space by iteratively “ex-

pand” and “swap” on the current network.

Detailed “swap-expand-reignite” search strategy can be

found in Algorithm . Starting from a small base network

(such as ImageNet pretrained ResNet or ResNeXt), we ap-

ply several sets of modifications including “swap” and “ex-

pand” to the current network at each iteration, and train the

resulting networks on multiple nodes with a short training

time (e.g. 3 epochs). Then we evaluate those architec-

tures and choose the best-updated model by the most signif-

icant improvement of performance as the current model. In

practice, we find that when the current architecture deviates

from the original ImageNet pretrained backbone too much,

the iterative search algorithm may get stuck at finding no

modification that can further improve the performance. As

a result, we use a “reignite” strategy by pre-training the Ima-

geNet for the current stuck architecture again to re-ignite the

searching process. We define the “stuck” status as repeated

trying for nstuck times with no further improvement. Em-

pirically, we found this “swap-expand-reignite” works well

and keeps increasing the performance of the detector effi-

ciently and moves to a local optimal serial backbone with

only 1˜2 rounds of ImageNet pretraining (i.e., in Algorithm

1, nr can be set to 1 or 2).

This algorithm greatly reduces the times of ImageNet

pretraining while it remains a flexible search space and can

run in parallel on multiple computing nodes efficiently. The

output architecture of serial-level search is called SerialNet.
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% Method Backbone Input Size train epoch AP AP50 AP75 APS APM APL Inf Time (fps) FLOPS (G)
C

O
C

O
DetNet [18] DetNet-59 800× 1333 24 37.9 60.1 41.2 22.7 41.2 48.3 - 292.9

FishNet [38] FishNet-150 800× 1333 24 40.6 - - 23.3 43.9 53.7 - 294.9

HRNet [42] HRNet-W40 800× 1333 24 41.6 62.5 45.6 23.8 44.9 53.8 12.0 (V100) 380.7

Cascade RCNN [6] ResNet101 800× 1333 24 42.8 62.1 46.3 23.7 45.5 55.2 10.2 (V100) 323.3

TridentNet [17] ResNet101 800× 1333 24 42.7 63.6 46.5 23.9 46.4 55.6 1.7 (V100) -

CBNet w Cascade [27] ResNet101-TB 800× 1333 24 44.9 63.9 48.9 - - - 5.5 (V100) 860.2

DetNAS [9] DetNAS 800× 1333 24 40.0 61.5 43.6 23.3 42.5 53.8 - 289.4

AmoebaNet w FPN [31] AmoebaNet 1280× 1280 50 43.4 - - - - - 4.7 (P100) 655.5

NAS-FPN (7@384) [12] AmoebaNet 1280× 1280 150 48.0 - - - - - 3.6 (P100) 1317

SPNetCOCO(BNB) SPNet-BNB 800× 1333 24 45.6 64.3 49.6 28.4 48.4 60.1 10.2 (V100) 391.1

SPNetCOCO(XB) SPNet-XB 800× 1333 24 47.4 65.7 51.9 29.6 51.0 60.4 5.6 (V100) 654.5

SPNetCOCO(XB) SPNet-XB 1280× 1280 50 49.1 67.1 53.5 31.0 52.6 63.7 2.1 (V100) 949.0

Table 3. Comparison of mAP and inference time of the state-of-the-art hand-crafted networks and NAS for detectors on COCO. Our

searched SPNetCOCO backbone stacked on Cascade RCNN outperforms hand-crafted and automatically designed backbones with similar

or faster inference speed. The bold result is based on longer training and additional mask supervision.

Method
LAMR

mAP
Reasonable Small Occluded All

ECP

ResNet50 w FPN [19] 0.088 0.193 0.337 0.228 88.4

ResNet101 w FPN [19] 0.089 0.194 0.340 0.226 87.8

HRNet-W40 [42] 0.067 0.132 0.272 0.181 88.1

HRNet-W18 [42] 0.067 0.132 0.284 0.187 88.7

SPNetECP 0.054 0.110 0.252 0.165 89.6

Table 4. Comparison of LAMR and mAP of the state-of-the-art

single-model on ECP. LAMR is the official metric (smaller is bet-

ter). Our searched model currently reaches TOP 1 performance on

the ECP leaderboard (see the dataset website).

3.2. Parallel­level Search

Recently, more works focus on a parallel structure

stacked on the original backbone and aiming at better utiliz-

ing and fusing the information from all feature levels with

different resolutions in the backbone feature hierarchy. This

is due to the limit of the information barrier between dif-

ferent stages in serial-kind structure. For example, PANet

[26] enhances the entire feature hierarchy with accurate lo-

calization signals in lower layers by a parallel bottom-up

path augmentation. HRNet [42] combines multiple paral-

lel high-to-low resolution subnets with repeated informa-

tion exchange across multi-resolution subnetworks. To pur-

sue a high-performance backbone structure, we consider a

parallel-level search for the subnet structures based on the

searched backbone SerialNet in the serial-level search as

shown in Figure 1.

Search Space. The parallel-level backbone is stacked on

the result (i.e., SerialNet) in serial-level search. The search

space includes a series of subnets along with each stage of

the searched backbone architecture. Initialization of each

subnet is the copy of the corresponding stage of the trained

SerialNet. The parallel-level structure enables better feature

extraction and fusion.

As shown in Figure 1, the SerialNet backbone comprises

% Method Input Size AP AP50 AP75 Inf Time (fps)

B
D

D

ResNet50 w FPN [19] 1920× 1024 36.3 61.2 36.8 12.4

ResNet101 w FPN [19] 1920× 1024 37.1 61.3 37.9 9.2

Auto-FPN [46] 1920× 1024 33.9 - - 3.1

SPNetBDD 1920× 1024 38.7 63.2 39.2 3.7

V
O

C

ResNet18 w FPN [19] 600× 1333 - 77.6 - 30.4

Auto-FPN [46] 600× 1333 - 81.8 - 10.6

DetNAS [9] 600× 1333 - 81.5 - -

SPNetV OC 600× 1333 - 84.1 - 19.9

Table 5. Comparison of Average Precision and frames per second

(fps) during inference on BDD and PASCAL VOC. SPNetBDD

starts from ResNet50 with bottleneck block and SPNetV OC is

based on ResNet18 with basic block.

L stages: s1 to sL the l-th stage sl takes the output (denoted

as xl−1) of the previous sl−1 stage as input, which can be

expressed as: xl = sl(xl−1). For each stage sl, we consider

adding a series of parallel subnets p1l to pKl to enhance the

features representation. To be more specific, the output fea-

tures of the previous stage is feed into pi1 to pik iteratively

in a recurrent way. Taken xl−1 as the output feature of the

previous stage, the recurrent operation of the subnets p1l to

pKl can be written as xk
l = pkl (x

k
l−1 + upsample(xk−1

l ))
where k = 1, ...,K, x0

l = xl, p
0
l = sl, and upsample(·)

consists of a 1x1 conv and an upsampling operation to

constrain the channels and the resolutions to be consistent

with xl−1. As a result, the output features of the subnet

pkl becomes the input of pk−1
l at the same layer by the

upsample(·). For the network structure inside the subnets,

we directly copy the corresponding stage found by our Se-

rialNet to the subnets, e.g. pkl = sl. Note that we also copy

the weight parameters from sl. Thus we can make fully use

of both the training of detection dataset and the ImageNet

pretraining in the previous phase.

The original input feature maps xl−1 at the l-th stage

will go through multiple subnets for better feature extrac-

tion. Moreover, by going through multiple upsample(·)
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BDD (mAP) ECP (LAMR) VOC (AP50)

baseline 36.5 0.088 77.1

serial-level round1 37.2+0.7 0.064−0.024 81.2+4.1

serial-level round2 38.0+0.8 0.061−0.003 83.5+2.3

parallel-level 38.7+0.7 0.054−0.007 84.1+0.6

Table 6. Ablation studies during the serial-to-parallel search. The

serial-level search is under two rounds of reignition. The BDD

and ECP are searched from ResNet50 and use mAP and LAMR

for evaluation respectively.

and downsampling in the subnet, the parallel-level search

space enables a complete fusion of different level features.

We encode parallel-level search space as a list consisting of

the number of subnets for each stage. For example, if the

SerialNet has 4 stages, “(0,2,1,3)” indicates the number of

parallel subnets for each stage, e.g. “0” denotes no addi-

tional subnet in this stage. “3” means we copy the last stage

3 times to become the subnets of the final backbone.

Search Strategy. The parallel search space is relatively

small with comparison to the one in the serial search: total

(K+1)L of unique combinations where K is the maximum

number of subnets (K = 3 in this paper) and L is the num-

ber of stages found by the previous round of search (usually

4˜6). Since we reuse the weights of the backbone in serial-

level search as the initialization of the parallel subnets, the

training of the parallel-level backbone is efficient. Thus, in

the parallel-level search, we just use a random search with

a resource-constraint sampling to find the optimal combina-

tion of the parallel subnets. The sampling of the encoding is

not uniform. The probability of adding one additional sub-

net is proportional to the inverse of FLOPS for each subnet

which avoids adding too heavy subnets in the backbone.

At the end of the parallel-level search, the best perfor-

mance architecture is named SPNet.

4. Experiments

Datasets and Evaluation Metrics. To evaluate our

methods on different domains, we conduct architecture

search on PASCAL VOC [11], COCO [21], ECP [3], BDD

[47] for common object detection and autonomous driving

detection. COCO [21] is a common object detection dataset

containing 80 classes with 118K images for training, 5K for

evaluation. PASCAL VOC (VOC) [11] contains 20 object

classes. Training data is the union of VOC 2007 trainval

and VOC 2012 trainval (10K images) and evaluation is on

VOC 2007 test (4.9K images). We only report mAP scores

using IoU at 0.5 as common practice. EuroCity Persons

Dataset (ECP) [3] is an autonomous driving dataset for

pedestrian detection. ECP contains about 24K training im-

ages and 4.3K validation images. Berkeley Deep Drive

(BDD) [47] is an autonomous driving dataset with 10 ob-

ject classes. BDD contains about 70K images for training

and 10K for evaluation.

For the evaluation metrics, we adopt the metrics from

COCO detection evaluation criteria [21] which is mean

Average Precision (mAP) across IoU thresholds from 0.5

to 0.95 with an interval of 0.05 and different scales (small,

medium, big). Additionally, in order to compare the perfor-

mance on the ECP leader-board, we use the Log Average

Miss-Rate (LAMR) with ignoring regions under different

cases (reasonable, small, occluded, all) [3] as: LAMR =
exp( 19

∑
f log(mr(argmaxfppi(c)≤ffppi(c)))), where

fppi(c) is the number of false positives per image under

confidence level c, mr = 1 − recall(c). Thus, the lower

LAMR the better performance of the detector.

4.1. Implementation Details & Intermediate Results

Implementation Details for Serial-level Search. For

each dataset, we choose an ImageNet pretrained model for

the starting architecture, VOC: ResNet18 [15], BDD and

ECP: ResNet50, COCO: ResNet50 and ResNeXt101 [44].

To propose a new architecture, we adopt 3 random mod-

ifications (“swap” and “expand”) on the current backbone

architecture as well as the weight initialization and feed the

new architecture into a “fast training scheme”. This training

scheme only trains the network for 3 epochs with SGD op-

timizer with cosine decay learning rate 0.02 to 0.0001, mo-

mentum 0.9, batch size= 2 × 8 and 10−4 as weight decay.

All the backbone parameters are updated during the training

phase. We train and test the new architectures in parallel

on 4 computing nodes, and each has 8 Nvidia V100 GPU

cards. Empirically, we found that training with 3 epochs al-

ready can separate good models from bad models. It takes

about 3 hours on COCO, 4 hours on BDD, 1 hours on ECP

and 0.5 hours on VOC to finish evaluating one architecture.

nr is set to be 2 and nstuck = 20 . Since the whole architec-

ture is continuously growing, the search space is very big,

containing more than 1020 possible paths.

Implementation Details for Parallel-level Search.

During parallel-level search, we first use the SerialNet ob-

tained at serial-level search as the base backbone and add

RPN and RCNN head on the backbone as a common two-

stage detector. Then we randomly sample a parallel-level

encoding and construct the subnets structure. Each subnet

is initialized by the corresponding weights from the Serial-

Net. We also use the same “fast training scheme” to obtain

an estimate of the accuracy on validation. Since the model

is very big, we use a batch size 1 × 8 on 8 GPUs (one im-

age per GPU). We allow the maximum number of subnets

K = 3. The search space is relatively small, containing less

than 4× 103 unique candidates.

Analysis of Intermediate Results. Figure 3 shows the

performance trajectories (blue line) on the ECP dataset dur-

ing serial-level search and parallel-level search. It can be

found that both searching rounds can consistently boost

performance by discovering new architectures. Since the
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Dataset block type Start backbone Serial-level Parallel-level

VOC BB ResNet18 (11, d1, d1, d1) (11d, 1111, d111111111, d111, 1, 1111) (0, 0, 0, 0, 0, 1)

ECP (111d1111, d1111, 11d, 1111, 1111) (0, 2, 1, 1, 0)

BDD BNB ResNet50 (111, d111, d11111, d11) (1111111111d, 11111111111111111, d11111111111111111, d111111, 111, 1) (0, 1, 2, 3, 0, 0)

COCO (1111d1, 11111111d, 11, 11111111111111111d, 111111111111, 1) (0, 0, 0, 1, 0, 0)

COCO XB
ResNeXt101 32x4d

(1111, d1111, d111111111111111111111111, d11, 1) (1, 0, 2, 1, 2)
(111, d111, d11111111111111111111111, d11)

Table 7. The detailed backbones searched by SP-NAS on ECP, BDD, COCO and VOC.
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Figure 3. The performance trajectories during serial-level search

and parallel-level search on the ECP dataset. The red points are

the current best models with highest performance during search.

Our search algorithm can consistently boost the performance in

both phases.

network morphism in serial-level search is also a weight-

sharing method, we want to examine whether the per-

formance ranking found by our search method is consis-

tent with the fully training with ImageNet pretrained back-

bone models. Figure 4 (a) shows the performance of our

serial-level searched models compared with fully training

on VOC. It can be found that our searching method can

maintain the same performance ranking with the standard

training scheme with ImageNet initialization. Fully train-

ing with random initialization can only yield confusion re-

sults. Thus our “swap-expand” strategy is a good proxy to

the detection task and avoids huge computation resources

of repeated training.

Ablation Study. Intermediate results during the parallel-

level phase and serial-level phase are shown in Table 6. For

the BDD dataset (starting from ResNet50), mAP is used for

evaluation and the serial-level search is under two rounds

of reignition. AP50 is used for evaluating VOC (starting

from ResNet18) and LAMR is used for ECP (starting from

ResNet50). We can find that the first reignition has the

greatest improvement for VOC and BDD. The results show

continuous improvement with further reignition.

4.2. Object Detection Results

After identifying the optimal architecture on each

dataset, we fully train the model since the “fast training

scheme” only has trained 3 epochs on that architecture.

Since the model is already very big, we can only train it

with one image per GPU with SGD. For all the datasets,

0%

20%

40%

60%

80%

100%

ECP BDD VOC COCO

(b) Different computation allocation on backbone 

stages among different datasets

Stage1 Stage2 Stage3 Stage4 Stage5 Stage6

0%

20%

40%

60%

80%

1 2 3 4 5 6 7

Fully train with ImageNet pretrain Serial-level searching (1epoch)

Fully train with random initialization Serial-level searching (3epoch)

A
P

5
0

(a) Performance Order for Different Training Strategies

Figure 4. (a) Comparison of the performance between fully train-

ing with ImageNet pretraining and our serial-level searching on

VOC. The solid blue line is actual serial-level searching trajec-

tories with a fast training scheme. Each point on the line is the

local optimal architecture during each searching round. We fully

train those architectures with ImageNet pretrained/random initial-

ization. (b) The computational allocation (FLOPS) on the back-

bone stages of the searched architectures. The COCO with more

complex objects needs more computation on the larger receptive

fields, while others focus on the preceding stages.

we train 24 epochs if not otherwise stated. The initial

learning rate is 0.02, and reduces two times (×0.1) dur-

ing fine-tuning; 10−4 as weight decay; 0.9 as momentum.

During training, image flipping is used for data augmenta-

tion. Only for COCO, 0.8× ∼ 1.2× multi-scale training is

used. During testing, multi-scale testing is not used. Pixel

size=800×1333 is used for COCO (VOC: 600×1333, ECP:

1920× 1024, BDD: 1920× 1080).

Detailed Final Searched Architectures. Table 7 shows

the detailed architecture of the final searched models

for VOC, COCO, ECP and BDD. Unlike hand-crafted

ResNet/ResNeXt and automatic searched DetNAS series

improve network capability for different tasks by simply

stacking blocks in the same backbone stage or increasing

width over the whole network, the proposed SP-NAS can

grow a network for task-specific feature level and proper

receptive fields. We found that for ECP, all raising channels

happen at early stages which means that lower-level feature

plays an important role for localization. For the parallel-

level structure, it can be found that the output feature from

stage1 is important for ECP and BDD thus more subnets

are added in the following stages. For a thorough under-

standing, we illustrate the proportion of computation allo-

cation (FLOPS) of the searched SPNets on different back-

bone stages in Figure 4 (b). More computation power is al-
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Method
ImageNet Cls Det w FPN on COCO

FLOPs Accuracy mAP

ResNet50 [15] 3.8G 76.1 36.5

ResNet101 [15] 7.6G 77.4 39.4

DetNAS [9] 1.3G 77.2 40.0

DetNet-59 [18] 4.8G 76.5 40.2

FishNet-150 [38] 6.8G 78.1 40.6

HRNet-W40 [42] 11.8G 78.9 41.6

SPNet∗COCO(BNB) 9.5G 79.1 41.7

Table 8. Comparison of performance on ImageNet Classification

task and COCO object detection task with existing backbone net-

works. The FPN detector is used for all backbone networks. *

means only serial-level search.

located to stage5 and stage6 with a larger recptive field due

to complex scene and category scales in COCO. However,

for less categories and autonomous driving scenes, feature

representation in early stages (stage1-3) is more important.

Comparison with the State-of-the-art. To measure the

inference speed, we run 2000 testing images on one V100

GPU and take the last 1000 images to compute the aver-

age of the inference time for comparison. Tables 3, 4 and 5

show the results of the architecture searched from COCO,

ECP, BDD and VOC by SP-NAS. SPNet achieves signif-

icant gains than the baseline FPN on all detection bench-

marks. In Table 3, we make a detailed comparison with ex-

isting hand-crafted detectors which most focus on backbone

design: DetNet [18], FishNet [38], HRNet [42], Cascade

RCNN [6], TridentNet [17], CBNet [27] and NAS for de-

tectors: DetNAS [9], NAS-FPN [12] and AmoebaNet [31].

The inference time is tested on single V100 GPU (some

models marked with other GPU devices follow the origi-

nal papers). We list those methods with reported results

without multi-scale testing and the reported SPNetCOCO is

based on Cascade RCNN. Our searched models dominate

most SOTA models on speed/FLOPS and accuracy trade-

off. For example, SPNetCOCO(BNB) performs 2.8% bet-

ter than Cascade RCNN [6] with the same inference time

and outperforms NAS-FPN [12] with less FLOPS and train-

ing epochs. It is worth noting that simply increasing net-

work depth from ResNet50 to ResNet101 has 0.6% mAP

drop on ECP in Table 4, and extending network width from

HRNet-W18 to HRNet-W40 is also useless. This reflects

the backbone gap between common detection and automo-

tive datasets. In contrast, our SPNetECP achieves 0.067

LAMR compared to 0.088 on ECP [3] validation set and

achieves SOTA on the final leaderboard. Table 5 shows the

searched SPNetBDD is faster than Auto-FPN [46] with bet-

ter performance. SPNetV OC achieves 84.1% AP50 com-

pared to 77.6% on VOC.

Comparison with Other Backbone Networks. Ta-

ble 8 shows the comparison of FLOPS and accuracy on

classification and detection tasks with other backbones.

SPNet∗COCO(BNB) is the result from the serial-level
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Figure 5. (a) Comparison of mAP vs. Latency on different com-

mon backbones with FPN on COCO. SPNet(BNB) is our searched

network with the bottleneck block, XB: ResNeXt block. (b) Com-

parison of different backbones with several advanced detectors.

phase, which already achieves superior performance both

on ImageNet and COCO than common-used backbone

ResNet and other automatic/handcrafted designed detection

backbone networks. In terms of latency and mAP, our SP-

Net dominates others in Figure 5 (a). We further com-

pare our SPNet and common-used backbones with different

detectors: Faster RCNN with FPN [19], Cascade RCNN

[6] and Cascade Mask RCNN [14] in Figure 5 (b). The

searched SPNet can boost far more performance than hand-

crafted backbone networks ResNet [15], ResNeXt [44] and

HRNet-w32/48 [42] by replacing different detectors, and

surpass them in terms of FLOPS/mAP.

Comparison of search efficiency with other NAS

methods. The searching time of our method and other NAS

methods can be found in Table 9. We randomly sample 10

networks as the baseline, which has the same number of

blocks and stages with SPNetV OC and is trained with Im-

ageNet pretraining. The results show that our method is

much more efficient than random sample by avoiding the

repeated pretraining and can find better architectures with

much less time than DetNAS [9] and NAS-FPN [12].

Search #Searched Total Search Average/Best mAP

Method Architecture Time (GPU days) of searched arch

Random 10 ˜ 76 76.4/80.3

Auto-FPN [46] 1 ˜ 0.8 81.8

NAS-FPN [12] 8000 ≫100 82.1

DetNAS [9] 1000 ˜68 81.5

SP-NAS 500 ˜ 26 83.5

Table 9. Comparison on NAS search efficiency on VOC.

5. Conclusion

In this paper, we propose a novel serial-to-parallel NAS

search (SP-NAS) pipeline towards a flexible and task-

oriented detection backbone. The search is efficient by

reusing the weights during iterative training and keeps con-

sistent performance ranking of searched networks with fully

training models. The searched SPNet networks achieve

state-of-the-art accuracy/speed trade-off on multiple detec-

tion benchmarks.
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