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Abstract

Motivated by the correlation between the depth and the

geometric structure of a 360◦ indoor image, we propose

a novel learning-based depth estimation framework that

leverages the geometric structure of a scene to conduct

depth estimation. Specifically, we represent the geomet-

ric structure of an indoor scene as a collection of corners,

boundaries and planes. On the one hand, once a depth

map is estimated, this geometric structure can be inferred

from the estimated depth map; thus, the geometric struc-

ture functions as a regularizer for depth estimation. On

the other hand, this estimation also benefits from the geo-

metric structure of a scene estimated from an image where

the structure functions as a prior. However, furniture in in-

door scenes makes it challenging to infer geometric struc-

ture from depth or image data. An attention map is inferred

to facilitate both depth estimation from features of the ge-

ometric structure and also geometric inferences from the

estimated depth map. To validate the effectiveness of each

component in our framework under controlled conditions,

we render a synthetic dataset, Shanghaitech-Kujiale Indoor

360◦ dataset with 3550 360◦ indoor images. Extensive ex-

periments on popular datasets validate the effectiveness of

our solution. We also demonstrate that our method can also

be applied to counterfactual depth.

1. Introduction

Depth estimation is a fundamental task in vision re-

search, with widespread applications from map reconstruc-

tion and navigation in robotics [32] to general scene under-

standing in the 3D world. With the recent emergence of
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Figure 1. The panorama images and their corresponding depth

maps and structures. These two images correspond to the same

room. The number indicates the order of the planes.

portable and compact spherical cameras, estimating depth

data from omnidirectional 1 content is gaining more atten-

tion, as this is a natural solution for many indoor applica-

tions.

Some research [22, 31, 39] has been conducted on depth

estimation from 360◦ imagery. These research adapt the so-

lutions of perspective depth estimation to 360◦ imagery or

propose various types of distortion-aware convolution fil-

ters. However, few have explored the large FOV nature

provided by omnidirectional images — a typical indoor

panoramic image, for example, covers global structural in-

formation contained within the whole room.

Considering these characteristics of 360◦ imagery, we

present a deep learning framework that leverages geometric

structure for indoor depth estimation. Specifically, as shown

in Fig. 1, the geometric structure of an indoor scene, which

is usually characterized by corners, plane-plane intersection

lines and planes, is closely correlated with depth. Depth

within the same geometric primitives show strong patterns;

related to the location and height of the camera; meanwhile,

depth provides a strong clue towards inferring the geometric

1Omnidirectional, spherical and 360
◦ are used interchangeably in this

paper.
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structure of indoor scenes. Thus we propose the estimating

of depth data by facilitating geometric structures with a two-

stage solution. In particular, in the first stage, we extract

the geometric structure from a 360◦ image and use features

corresponding to the geometric structure for depth estima-

tion. Here the geometric structure functions as a prior; in

the second stage, we propose the estimation of this struc-

ture by leveraging the depth map from the first stage, thus

using the geometric structure as a regularizer. However, in-

door scenes usually have furniture, which can affect both

the depth estimation from the structure and the structure es-

timation from depth data. Thus we propose leveraging an

attention module to avoid this, and such a module should

ideally correspond to the confidence on whether a pixel is

occluded by furniture or not.

To facilitate a performance evaluation of our solution,

in addition to using publicly available datasets with real

scenes, we also build a synthetic dataset. Our dataset con-

tains 3550 images corresponding to 1775 rooms, and each

room corresponds to two images whose only difference is

whether the furniture is visible or not. This synthetic dataset

contains RGB omnidirectional images, their correspond-

ing depth data, corners, plane-plane intersection lines and

planes. This synthetic dataset may facilitate the evaluation

of geometric structures as both priors and regularizers.

Apart from depth estimation, another interesting line of

application is counterfactual depth [15]: estimating non-

furniture depth given the object mask. We demonstrate that

our proposed representation is also beneficial for such a

task.

The contributions of this paper are summarized as fol-

lows: i) We propose the representation of an indoor

panorama as a collection of geometric structures with

points, lines and planes. Such representation is benefi-

cial for depth estimation, 3D reconstruction and counter-

factual depth; ii) We propose leveraging geometric struc-

ture as both a prior and a regularizer in a novel framework

for depth estimation; iii) We build a synthetic dataset for

performance evaluation. Extensive experiments on popu-

lar datasets validate the effectiveness of our approach. Our

dataset: Shanghaitech-Kujiale Indoor 360◦ dataset is avail-

able at https://svip-lab.github.io/dataset/indoor 360.html.2

2. Related Work

2.1. Learning in Panorama

CNNs have demonstrated their effectiveness in many vi-

sion tasks not only on planar images, but also on panoramic

images. Unlike planar images, the convolution operation

used on panoramic images must deal with the distortion

problem caused by the equirectangular projection. In [29],

2Besides depth estimation, our dataset can also be used to empty room

synthesis from a furnished room, and layout estimation.

Su et al. propose the use of convolution kernels of differ-

ent sizes at different locations under equirectangular projec-

tions to compensate for this distortion. The computational

overhead of the aforementioned method, however, is high.

Moreover, in [8], Deng et al. apply a deformable convo-

lution [4] and an active convolution [16] to fisheye lenses,

another distortion challenge. In the more recent work of [2],

spherical CNNs are proposed for classification or single

variable regression tasks. Very recently, more efficient re-

projection based approaches have been proposed, including

distortion-aware convolution [3, 9, 31, 37], spherical con-

volutions with crown kernels [36], and spherical convolu-

tions operating on the PHD [22] or unstructured grids [17].

These are designed for various tasks including depth esti-

mation [24, 31, 39], saliency prediction [36], image classi-

fication and object detection [3, 24, 37].

2.2. Geometric Understanding in Panorama

In this work, information on geometric structures con-

sists of three key components — points, lines and planes,

which are related to the so-called “layout” of existing

works. Room layouts specify detailed information regard-

ing the walls in a room. In [6], a dynamic Bayesian net-

work is constructed to reconstruct monocular 3D. In [14],

vanishing points and other structure features are combined

to produce candidate layouts. PanoContext [35] first gener-

ates room layout hypotheses with different image-level evi-

dences and then construct the 3D scene with the global con-

text. Im2Pano3d [28] generates a 360◦ room with a partial

perspective observation as input. More recent work, such

as [5, 23], solve the problem by viewing it as a segmenta-

tion problem in a deep convolutional neural network. In the

360 domain, the layout is represented as a set of corners and

boundary lines. Lately, LayoutNet [40, 41] has formulated

the problem from a regression and post-optimization ap-

proach. HorizonNet [30] has further incorporated an LSTM

model. This approach can be applied to non-cuboid Man-

hattan layouts. In [12], a method is proposed to estimate

the layout of indoor scenes from a panoramic image by ex-

tracting structural lines and vanishing points and combining

them with additional geometric cues. In this work, the main

goal is to apply geometric structures for depth estimation,

as opposed to estimating them.

2.3. Depth Prediction

Perspective depth estimation has been an active research

topic over the past decade. Recently, CNN-based work has

typically achieved state-of-the-art performance, with vari-

ous consecutive up-convolution layers [20], multi-scale net-

works [11] or conditional random fields [19]. In addition,

other researchers have explored the relationship between

depth and other tasks, i.e., segmentation [18] and surface

norm [26].
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Figure 2. Overview of our architecture. (a) Depth estimation predicts depth from a given panorama image. (c) Structure as a prior

takes panorama as inputs, and estimates the structure of the room. (b) Attention Module aims to generate attention map to avoid the

inconsistency between structure and depth map caused by furniture. (d) Structure as a regularizer is designed to regularize the estimated

depth maps by predicting structure from them. We neglect the skip connections in U-Net here for simplicity. Different rectangles with

different colors represent convolution blocks.

Recently, depth estimation in panoramic images has

been gaining popularity. In [31], Keisuke et al. propose

the substitution of convolutions with distortion-aware con-

volutions. In [24], Garanderie et al. propose leveraging

existing perspective datasets to an omnidirectional domain

through a style and projection transfer network in outdoor

autonomous driving scenes. A large-scale dataset for in-

door depth estimation is proposed in [39], consisting of

22,096 re-rendered images from four existing datasets. This

work also proposes two kinds of encoder-decoder networks:

UResNet with strided convolutions and RectNet with di-

lated convolutions. Unlike the above approaches, we use

geometric structural information in 360◦ images to assist

and regularize depth estimation.

3. Method

We represent a spherical indoor image as a collection

of geometric structures including corners, lines and planes.

Due to a lack of annotations, here we only adopt the ma-

jority part of the geometric structure in the room, the room

layout.

3.1. Overall Architecture

Fig. 2 shows the overall depth estimation network archi-

tecture. Given an indoor 360◦ image I ∈ RH×W×3, our

network estimates its depth map M
gt
dep by leveraging geo-

metric structure as both a prior and a regularizer. Our whole

network contains two stages: a geometric structure based

depth estimation module and a geometric regularized depth

estimation module. Further, to make the network robust

to furniture-induced inconsistencies between the depth map

and the geometric structure, an attention module is intro-

duced to help both the depth estimation from the geometric

structure and the inference of the geometric structure from

the depth data. We will introduce these modules in the fol-

lowing sections.

3.2. Geometric Structure Based Depth Estimation

As shown in Fig. 1, for an empty room without furniture,

depth is strongly correlated with the geometric structure of

the scene: corners are located at local maximum depth, and

the depth distribution within the same line or the same plane

exhibits a regular pattern. Thus once the geometric struc-

ture of a scene is given, it can be used as a prior in depth

prediction. We therefore propose leveraging the geomet-

ric structure of rooms when conducting depth estimation.
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Specifically, we represent the geometric structure of a room

as corners, boundaries and planes. Corners are represented

by a heat map Mgt
cor ∈ RH×W×1, where each corner corre-

sponds to a Gaussian centered at a point, with other entries

being zeros. Similarly, the boundaries of the room are also

represented by a heat map M
gt
bou ∈ RH×W×3 where bound-

aries are blurred with a Gaussian. The planar mask is an

array of binary maps M
gt
pla ∈ RH×W×6 where each map

corresponds to one plane. To facility the visualization, we

currently show it with an index map, whose order is listed

in Fig. 1. It is worth noting here that these planes are formu-

lated as semantic segmentation problems rather than surface

norm predictions because regression problems are usually

more difficult than classification problems.

Given a 360◦ image, we feed it to U-Net [27] to extract a

depth feature f1

dep with the same resolution as the input im-

age. We also feed the image to the LayoutNet [40] to pre-

dict geometric structures. Slightly unlike the original Lay-

outNet, we add another branch to predict planes. Shortcuts

are also implemented between the three branches from cor-

ner to boundary, and from boundary to plane. In this way,

we fuse the representations of our geometric structures in a

bottom to top order. We demonstrate that such a represen-

tation is more beneficial for general indoor omnidirectional

learning in later experiments.

We denote our predicted corner map, boundary map and

plane maps at this stage as M
p
pla, Mp

cor and M
p
bou, respec-

tively, and we denote the features before the last output lay-

ers to predict corners, boundaries and planes as f
p
cor, f

p
bou,

and f
p
pla, respectively. Following [40], we arrive at the fol-

lowing loss functions for corners, boundaries and planes

prediction:

L
p
str = Lp

cor + L
p
bou + L

p
pla

=
1

n

∑

c∈M
gt
cor,ĉ∈M

p
cor

(ĉ log(c) + (1− ĉ) log(1− c))

+
1

n

∑

b∈M
gt

bou
,b̂∈M

p

bou

(b̂ log(b) + (1− b̂) log(1− b))

+
1

n

∑

p∈M
gt

pla
,p̂∈M

p

pla

−p̂ log(p) (1)

, where ĉ and b̂ are the single-pixel probabilities for corner

and boundary predictions, p̂ is the plane prediction. c, b and

p are the ground truths respectively. In addition n = W×H

is the total number of pixels. We can then feed the depth fea-

tures and the geometric features into another decoder sub-

network for depth refinement. In real scenarios, however,

rooms are usually filled with furniture, leading to inconsis-

tencies between the depth data and the geometric structures

of the scenes. To tackle this, an attention module is intro-

duced.

3.3. Attention Module

One semantic segmentation branch is added directly af-

ter f1

dep to predict a furniture/non-furniture map Mf. The

map is used as an attention module to remove the negative

influence of the furniture. Given feature maps from f
p
pla,

f1

dep, we generate a refined feature map as

f2

dep = f1

dep ⊕ (f p
pla ∗ M

p
f ) (2)

where ⊕ represents the concatenation operation, and ∗ is the

dot product. The reason for using features corresponding to

planes rather than corners or boundaries is that planes al-

ready contain information on boundaries and corners. Here

we use cross entropy loss for furniture map prediction.

Lf =
1

n

∑

p∈M
gt

f
,p̂∈M

p

f

−p̂ log(p) (3)

Then we concatenate the attention map weighted struc-

ture feature with depth features and feed it to another depth

decoder for depth estimation. We denote the predicted

depth map before and after the attention map as Mdep and

M̂dep; and by comparing it with a ground truth depth map,

we arrive at the following loss function:

Ldep = ‖Mdep − M
gt
dep‖1 + ‖M̂dep − M

gt
dep‖1 (4)

Note that the generated attention map bridges depth data

and structures for real scenes. It can be used for both

structure-based depth estimation and structure-regularized

depth estimation.

3.4. Structure Regularized Depth Estimation

Depth corresponds to the distance between the camera

and the visible regions in a room. For a room without fur-

niture, we can infer the structure of the room based on the

estimated depth map because boundaries and corners cor-

respond to local extremes in the depth data. Inspired by

this, we propose using structures as regularizers by inferring

structures from estimated depth maps. That is, we want our

estimated depth maps to also conserve our geometric infor-

mation.

In practice, however, rooms always contain furniture,

and furniture-occluded areas make depth-based structure

estimation difficult; thus we propose multiplying the depth

map with our inferred attention map Mf. We then feed the

output to an auto-encoder in order to infer structural data.

The auto-encoder architecture here is almost identical to

the auto-encoder in structure-based depth estimation, ex-

cept that it takes a single-channel attention masked depth

map as input.

We denote the predicted corner maps, boundary maps

and plane maps during the structure regularized depth esti-

mation stage as Mr
cor, Mr

bou and Mr
pla respectively. We arrive
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at a similar loss function for corner, boundary and plane

predictions as in Section 3.2.

3.5. Training and Inference

We combine the losses corresponding to the structure-

based depth estimation stage and the structure-regularized

depth estimation stage, arriving at the following objective:

L = Ldep + L
p
str + Lr

str + Lf (5)

In the training stage, we first train the depth and prior

sub-network. Then we use the pretrained parameters as

weights to retrain the whole network with prior and regu-

larizer in an end-to-end learning manner. We find that such

a pre-training is useful in obtaining performance improve-

ment.

It is worth noting that the geometric structure regular-

izer helps in learning a more robust depth estimation net-

work. Once the network is trained, in the inference stage,

the structure only works as a prior for attention map calcu-

lations and depth estimation.

We choose ResNet50 [13] as backbone for depth estima-

tion, and ResNet34 for layout estimation. We implement

our solutions under the PyTorch framework and train our

network with the SGD optimizer, batch size 8, an initial

learning rate 1e-2, weight decay 0.0005 for 30 epochs. We

reduce the learning rate by 0.1 whenever we observe plateau

following [21]. Finally, we fine-tune the whole network for

another 30 epochs. All images are resized to 256*512 with

nearest-neighbor during training and testing as in [31].

4. Experiments

In this section, we evaluate our approaches on various

datasets. We first demonstrate the effectiveness of our

proposed representation on our synthetic dataset. Then

we move on to the realistic Stanford 2D-3D-S [1]. We

demonstrate quality 3D reconstruction results and quanti-

tative numbers with the standard depth metrics from [39].

Finally, we show that our representation can also be applied

to counterfactual depth estimation with some simple modi-

fications.

4.1. Evaluation with Synthetic Dataset

Dataset and experimental setup. Ideally, geometric

structural data offers the best assistance in depth estimation

for empty rooms. Images collected in real scene datasets [1]

always contain furniture. Since there is always furniture

in the indoor scenes of existing datasets, it remains a chal-

lenge to evaluate structure as both a prior and a regular-

izer for depth estimation from 360◦ indoor images. To fa-

cilitate the evaluation of the importance of geometric pri-

ors and geometric regularizers, we built a synthetic dataset

that contains 1775 indoor rooms. Each room has one image

with furniture and without furniture. For each image, there

is a panoramic RGB image, corresponding depth data, as

well as corners, boundaries and planes (as shown in Fig. 3

(a)). With/Without furniture masks are generated by cal-

culating the depth difference between two corresponding

depth maps. The images are synthesized with a photo-

realistic renderer built upon Embree [33], and we use a well-

known path tracing method [25] to achieve realistic render-

ing, following [38]. Different from [38], our data provides

with/without furniture pairs. Fig. 3 (b) and (c) show a com-

parison of the distributions in terms of the depth distances

between our synthetic dataset and existing datasets [1]. We

can see that our synthetic dataset is challenging in terms of

its depth distributions.

We divide this synthetic dataset into two subsets: a sub-

set with furniture (1775 images) and a subset without fur-

niture (1775 images). The images corresponding to 1500

rooms are used for training, and the remaining 275 rooms

for testing. The only difference between the two subsets is

whether furniture exists in the room or not. We denote the

two subsets as w. (with furniture) and w.o. (without furni-

ture) in the following context.

Result. In order to evaluate the effect of structure both

as a prior and a regularizer, as well as the effect of our at-

tention module for depth estimation, we design two groups

for comparison, as shown in Table 1. The first group is de-

signed to evaluate the effect of using geometric structural

information. As shown in the first four rows in Table 1,

we train our method with and without furniture on two sub-

sets, resulting in four experimental results. On the with-

out furniture subset, we remove the attention branch as it is

entirely ones. The refined features here are just a concate-

nation of depth features and layout features. We can see

that the networks trained with structural information per-

form better than our baselines. In addition, incorporating

geometric information brings more improvements over the

with furniture subset. On the without furniture subset, the

network can itself learn geometric information from input

images without further regularization.

In addition, in order to validate the effect of the attention

module, we train three networks as shown in the last three

rows of Table 1. For the models trained on the with furni-

ture subset and tested on the without furniture subset, we

can see that the attention module improves the performance

significantly. It also narrows the gap between the models

trained on subsets with or without furniture and tested on

the subset without furniture. This further demonstrates that

our attention module neglects part of the negative impact of

furniture on the geometric structure.

4.2. Evaluation on the Stanford 2D3DS Dataset

We compare our method with other state-of-the-art ap-

proaches on the Stanford 2D-3D-S [1] dataset. This dataset
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Figure 3. Our synthetic dataset: (a) Some images from our synthetic dataset; (b) and (c) The comparison of the distributions in term of the

depth distances and the difference of depth within the same image between our synthetic dataset and the Stanford 2D-3D-S dataset.

Train set Testing set Structure RMS ↓ Rel ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
w.o. fur w.o. fur 0.668 0.079 0.032 0.948 0.983 0.992

w.o. fur w.o. fur
√

0.642 0.071 0.029 0.958 0.986 0.992

w. fur w. fur 0.721 0.114 0.045 0.894 0.973 0.989

w. fur w. fur
√

0.666 0.103 0.041 0.912 0.978 0.990

Train set Testing set Attention RMS ↓ Rel ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
w.o. fur w.o. fur 0.668 0.079 0.032 0.948 0.983 0.992

w. fur w.o. fur
√

0.730 0.079 0.034 0.943 0.982 0.991

w. fur w.o. fur 0.784 0.089 0.039 0.927 0.979 0.990

Table 1. Performance comparison under controlled condition on our synthetic dataset. The first block (the first four rows) is to evaluate the

effect of the structural information and the second block (the last three rows) aims to validate the effect of the attention module. w.o. fur is

the subset without furniture and w. fur is the subset with furniture. ↑ indicates the higher the better, ↓ the lower the better.

provides a large number of indoor RGB images with corre-

sponding depth data and semantic annotations. In this work,

we only use the subset of equirectangular images with lay-

out annotation from [40], which contains 404 images for

training and 113 images for testing. Note that during the

original layout annotation process, the authors converted the

images into an aligned camera pose with the floor. Here we

rotate all annotations back to the original view for consis-

tency. With/Without furniture masks are generated from the

semantic annotation. We use the ceiling, floor, and wall

masks from the original segmentation ground truths as our

furniture mask.

Baselines. Following pioneering works on depth esti-

mation from 360◦ indoor imagery [39], we compare with

the following state-of-the-art methods. First, we compare

with FCRN [20], one of the state-of-the-art single-model

approaches on perspective depth estimation. Then, for a

fair comparison, we choose methods designed for deal-

ing with the distortion problem, including UResNet and

RectNet [39]. Following [10], we remove the smoothness

branch as it may lead to over-smoothed results. This would

otherwise lead to a performance decay due to the complex-

ity of the Stanford 2D-3D-S dataset. Following [3], we also

replace the planer convolution in FCRN with a spherical

convolution and denote this baseline as spherical FCRN. 3

Result. Table 2 shows the results comparison between

our method and other approaches on the Stanford 2D-3D-

S dataset. All planar approaches are pretrained on Ima-

geNet [7]. For a fair comparison, spherical approaches

are pretrained on our own proposed dataset. RectNet only

achieves 0.269 Rel[m] without pretraining, which further

validates the effectiveness of our synthetic dataset. Sim-

ilar results can be observed with UResNet and Spherical

FCRN. Interestingly, U-Net [27] pretrained on the Ima-

geNet achieves the best results of all these approaches, and

we hence adopt it as our baseline. In general, we believe

that some high-level filters trained from perspective images

are also useful to omnidirectional images with some simple

fine-tunings. That is the reason why an ImageNet pretrained

network can achieve the best performance.

From the tables, we can conclude that the results with

distortion-aware convolutions are better than those with

standard convolutions, which shows the dominating effect

of the distortion-aware convolution in panoramic images.

In addition, our method outperforms other state-of-the-art

3We follow the [40] and use planner convolution rather than spherical

convolution due to its good performance for layout estimation from 360
◦

imagery. Further, spherical convolution requires a large memory caused

by the bi-linear interpolation and leads to out-of-memory issue.
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Methods RMS[m] ↓ Rel[m] ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
FCRN [20] 0.534 0.164 0.073 0.749 0.941 0.986

UResNet [39] 0.590 0.187 0.084 0.711 0.921 0.973

RectNet [39] 0.577 0.181 0.081 0.717 0.929 0.979

Spherical FCRN [31] 0.523 0.145 0.067 0.783 0.948 0.986

Ours-baseline 0.472 0.140 0.062 0.803 0.959 0.991

Ours-full 0.421 0.118 0.053 0.851 0.972 0.993

Table 2. Performance comparison on the Stanford 2D-3D-S dataset.

methods, which validates the effectiveness of our architec-

ture.

IMG 3D

Depth

Figure 4. Quality reconstruction results. From left to right: input

RGB, predicted depth and reconstruction results. The first image

is from the Stanford 2D-3D-S dataset and the last three are from

our own with furniture subset.

4.3. Ablation Study

The effect of geometric structures. To show the im-

portance of corners, boundaries, and planes in geometric

structure, we remove each component in our method one at

a time, and show the results in the first block of Table 3.

We also remove the prior module and regularizer module at

the same time. This corresponds to our simple U-Net base-

line. By comparing these results with our model, we can

see that all of the structure elements used in our solution

contribute to performance improvement. Overall, bound-

aries play the most important part, as they are the linkages

between points and planes. Without boundaries, it can be

difficult to directly infer planes from points.

The effect of structure as a prior and regularizer. To

demonstrate the effectiveness of structure as a prior and a

regularizer, we remove each module separately. The results

are shown in the second block of Table 3. By comparing

these baselines with the baseline, we can see that both con-

tribute to performance improvement.

Visualization We also show the predicted depth map

corresponding to the direct depth regression without struc-

ture (DR), the DR with structure but no regularizer module

(DR+structure) and our full approach (Ours) in Fig. 5. In

general, our model can extract more of a room’s fine de-

tails while still preserving the global structure. We further

demonstrate this with some reconstruction results in Fig. 4.

5. Application on Counterfactual Depth

Counterfactual depth is first proposed in [15]. It refers

to the estimation of non-furniture depth given an image and

object mask as input. We demonstrate that our representa-

tion can also be beneficial to such a task with some simple

modifications. Specifically, in our dataset, the target is to

recover the depth of an empty room given the full room

and full object masks. We remove the attention branch,

and use the object mask directly as input. Object mask is

concatenate with f2dep. We compare our method with the

following approaches: (1) DirectReg. We train a U-Net

with full images as input and non-furniture depth as out-

put. (2) CounterDepth. We follow [15] and concatenate

the object mask with each upsampling block in U-Net. We

also implement LayoutNet [40, 41] by directly appending

a plane parameter branch after the network output. We use

full images as the input and fit the plane parameter ground

truth from empty depth data with RANSAC. The parame-

ter branch does not converge well as is pointed out in the

original paper. LayoutNet only aim to recover the corners

and lines. It is hard to infer the plane parameters without
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Prior Regularizer Point Boundary Plane RMS ↓ Rel ↓ log10 ↓ δ < 1.25 ↑ δ < 1.25
2 ↑ δ < 1.25

3 ↑
× × × × × 0.472 0.140 0.062 0.803 0.959 0.991√ √ × √ √

0.425 0.120 0.055 0.849 0.972 0.993√ √ √ × √
0.436 0.122 0.055 0.838 0.970 0.993√ √ √ √ × 0.429 0.123 0.055 0.845 0.970 0.993√ √ √ √ √
0.421 0.118 0.053 0.851 0.972 0.993

× × × × × 0.472 0.140 0.062 0.803 0.959 0.991√ × √ √ √
0.446 0.127 0.058 0.823 0.968 0.993

× √ √ √ √
0.448 0.129 0.057 0.829 0.964 0.991√ √ √ √ √
0.421 0.118 0.053 0.851 0.972 0.993

Table 3. Ablation study on Stanford 2D-3D-S dataset. The first block (the first five rows) is used to evaluate the effect of each geometric

component, where boundaries contributes the performance improvement most. The second block (the last four rows) is used to evaluate

the effect of structure as a prior and regularizer, respectively

RGB                       DR                       DR+Structure                      Ours                     GT                     

Figure 5. Visualization on the Stanford 2D-3D-S dataset. From left to right: panoramic images, direct regression (DR), DR with structure

(DR+Structure), Ours and ground truth depth (GT).

any prior information with planes. On contrast, our repre-

sentation further includes a plane branch, which makes it

a better choice for general indoor omnidirectional learning.

We demonstrate quality reconstruction results in Fig. 6.

IMG     MASK     3D

GT   Ours   

Figure 6. Two quality counterfactual depth estimation results.

From top left to bottom right: the input with-furniture image,

object mask, ground truth non-furniture depth and our predicted

depth respectively. On the right is the reconstructed result in 3D.

A rough room shape can be recovered from the input image.

Methods RMS ↓ Rel ↓ log10 ↓
DirectReg 0.893 0.112 0.046

CounterDepth[15] 0.845 0.104 0.043

Ours 0.823 0.099 0.040

Table 4. Counterfactual depth estimation.

6. Conclusion

We propose a structure based and regularized frame-

work to estimate depth from 360◦ imagery. In detail, we

present geometric structures as corners, boundaries and

planes. Then we use this structure information as a prior

to help with depth estimation. We build a synthetic dataset

to evaluate the effect of structure and the attention module

under controlled conditions. In the future, if instance-level

object annotation is provided, we can introduce another in-

stance segmentation branch following [34], and this branch

may further improve the performance.

Acknowledgements

The work was supported by National Key R&D Pro-

gram of China (2018AAA0100704), NSFC #61932020,

ShanghaiTech-Megavii Joint Lab and partially by NSFC

#61871262.

896



References

[1] Iro Armeni, Sasha Sax, Amir Roshan Zamir, and Silvio

Savarese. Joint 2d-3d-semantic data for indoor scene under-

standing. CoRR, abs/1702.01105, 2017.
[2] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max
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