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Abstract

Monocular depth estimation has become one of the most

studied applications in computer vision, where the most ac-

curate approaches are based on fully supervised learning

models. However, the acquisition of accurate and large

ground truth data sets to model these fully supervised meth-

ods is a major challenge for the further development of

the area. Self-supervised methods trained with monocular

videos constitute one the most promising approaches to mit-

igate the challenge mentioned above due to the wide-spread

availability of training data. Consequently, they have been

intensively studied, where the main ideas explored consist

of different types of model architectures, loss functions, and

occlusion masks to address non-rigid motion. In this pa-

per, we propose two new ideas to improve self-supervised

monocular trained depth estimation: 1) self-attention, and

2) discrete disparity prediction. Compared with the usual

localised convolution operation, self-attention can explore

a more general contextual information that allows the in-

ference of similar disparity values at non-contiguous re-

gions of the image. Discrete disparity prediction has been

shown by fully supervised methods to provide a more ro-

bust and sharper depth estimation than the more common

continuous disparity prediction, besides enabling the esti-

mation of depth uncertainty. We show that the extension of

the state-of-the-art self-supervised monocular trained depth

estimator Monodepth2 with these two ideas allows us to de-

sign a model that produces the best results in the field in

KITTI 2015 and Make3D, closing the gap with respect self-

supervised stereo training and fully supervised approaches.

1. Introduction

Perception of the 3D world is one of the main tasks in

computer/robotic vision. Accurate perception, localisation,

mapping and planning capabilities are predicated on having

access to correct depth information. Range finding sensors

such as LiDAR or stereo/multi-camera rigs are often de-

ployed to estimate depth for use in robotics and autonomous

systems, due to their accuracy and robustness. However, in

Figure 1. Self-supervised Monocular Trained Depth Estima-

tion using Self-attention and Discrete Disparity Volume. Our

self-supervised monocular trained model uses self-attention to im-

prove contextual reasoning and discrete disparity estimation to

produce accurate and sharp depth predictions and depth uncertain-

ties. Top: input image; Middle Top: estimated disparity; Mid-

dle Bottom: samples of the attention maps produced by our sys-

tem (blue indicates common attention regions); Bottom: pixel-wise

depth uncertainty (blue: low uncertainty; green/red: high/highest

uncertainty).

many cases it might be unfeasible to have, or rely solely on

such expensive or complex sensors. This has led to the de-

velopment of learning-based methods [49, 50, 20], where

the most successful approaches rely on fully supervised

convolutional neural networks (CNNs) [9, 8, 10, 15, 35].
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Figure 2. Overall Architecture The image encoding processes is highlighted in part a). The input monocular image is encoded using a

ResNet encoder and then passed through the Self-Attention Context Module. The computed attention maps are then convolved with a 2D

convolution with the number of output channels equal to the number dimensions for the Discrete Disparity Volume (DDV). The DDV is

then projected into a 2D depth map by performing a softargmax across the disparity dimension resulting in the lowest resolution disparity

estimation (Eq. 4). In part b) the pose estimator is shown, and part c) shows more details of the Multi-Scale decoder. The low resolution

disparity map is passed through successive blocks of UpConv (nearest upsample + convolution). The DDV projection is performed at

each scale, in the same way as in the initial encoding stage. Finally, each of the outputs are upsampled to input resolution to compute the

photometric reprojection loss.

While supervised learning methods have produced out-

standing monocular depth estimation results, ground truth

RGB-D data is still limited in variety and abundance when

compared with the RGB image and video data sets avail-

able in the field. Furthermore, collecting accurate and large

ground truth data sets is a difficult task due to sensor noise

and limited operating capabilities (due to weather condi-

tions, lighting, etc.).

Recent studies have shown that it is instead possible

to train a depth estimator in a self-supervised manner us-

ing synchronised stereo image pairs [11, 13] or monocu-

lar video [62]. While monocular video offers an attrac-

tive alternative to stereo based learning due to wide-spread

availability of training sequences, it poses many challenges.

Unlike stereo based methods, which have a known camera

pose that can be computed offline, self-supervised monoc-

ular trained depth estimators need to jointly estimate depth

and ego-motion to minimise the photometric reprojection

loss function [11, 13]. Any noise introduced by the pose

estimator model can degrade the performance of a model

trained on monocular sequences, resulting in large depth

estimation errors. Furthermore, self-supervised monocu-

lar training makes the assumption of a moving camera in

a static (i.e., rigid) scene, which causes monocular models

to estimate ’holes’ for pixels associated with moving visual

objects, such as cars and people (i.e., non-rigid motion). To

deal with these issues, many works focus on the develop-

ment of new specialised architectures [62], masking strate-

gies [62, 14, 52, 32], and loss functions [13, 14]. Even

with all of these developments, self-supervised monocu-

lar trained depth estimators are less accurate than their

stereo trained counterparts and significantly less accurate

than fully supervised methods.

In this paper, we propose two new ideas to im-

prove self-supervised monocular trained depth estimation:

1) self-attention [54, 51], and 2) discrete disparity vol-

ume [22]. Our proposed self-attention module explores

non-contiguous (i.e., global) image regions as a context for

estimating similar depth at those regions. Such approach

contrasts with the currently used local 2D and 3D con-

volutions that are unable to explore such global context.

The proposed discrete disparity volume enables the esti-

mation of more robust and sharper depth estimates, as pre-

viously demonstrated by fully supervised depth estimation

approaches [22, 29]. Sharper depth estimates are important

to improving accuracy, and increased robustness is desirable

to allow self-supervised monocular trained depth estimation

to address common mistakes made by the method, such as

incorrect pose estimation and matching failures because of

uniform textural details. We also show that our method can

estimate pixel-wise depth uncertainties with the proposed

discrete disparity volume [22]. Depth uncertainty estima-

tion is important for refining depth estimation [10], and in

safety critical systems [21], allowing an agent to identify

unknowns in an environment in order to reach optimal deci-

sions. As a secondary contribution of this paper, we lever-

age recent advances in semantic segmentation network ar-

chitectures that allow us to train larger models on a single

GPU machine. Experimental results show that our novel ap-

proach produces the best self-supervised monocular depth

estimation results for KITTI 2015 and Make3D. We also

show in the experiments that our method is able to close the

gap with self-supervised stereo trained and fully supervised

depth estimators.
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2. Related Work

Many computer vision and robotic systems that are used

in navigation, localization and mapping rely on accurately

understanding the 3D world around them [37, 16, 7, 1].

Active sensors such as LiDAR, Time of Flight cameras,

or Stereo/Multi camera rigs are often deployed in robotic

and autonomous systems to estimate the depth of an image

for understanding the agent’s environment [7, 1]. Despite

their wipe-spread adoption [45], these systems have sev-

eral drawbacks [7], including limited range, sensor noise,

power consumption and cost. Instead of relying on these

active sensor systems, recent advances leveraging fully su-

pervised deep learning methods [9, 8, 10, 15, 35] have made

it possible to learn to predict depth from monocular RGB

cameras [9, 8]. However, ground truth RGB-D data for su-

pervised learning can be difficult to obtain, especially for

every possible environment we wish our robotic agents to

operate. To alleviate this requirement, many recent works

have focused on developing self-supervised techniques to

train monocular depth estimators using synchronised stereo

image pairs [11, 13, 41], monocular video [62, 14] or binoc-

ular video[60, 14, 32].

2.1. Monocular Depth Estimation

Depth estimation from a monocular image is an inher-

ently ill-posed problem as pixels in the image can have

multiple plausible depths. Nevertheless, methods based on

supervised learning have been shown to mitigate this chal-

lenge and correctly estimate depth from colour input im-

ages [50]. Eigen et al. [9] proposed the first method based

on Deep Learning, which applies a multi-scale convolution

neural network and a scale-invariant loss function to model

local and global features within an image. Since then, fully

supervised deep learning based methods have been contin-

uously improved [10, 15, 35]. However these methods are

limited by the availability of training data, which can be

costly to obtain. While such issues can be mitigated with

the use of synthetic training data [35], simulated environ-

ments need to be modelled by human artists, limiting the

amount of variation in the data set. To overcome fully su-

pervised training set constraint, Garg et al. [11] propose

a self-supervised framework, where instead of supervising

using ground truth depth, a stereo photometric reprojection

warping loss is used to implicitly learn depth. This loss

function is a pixel-based reconstruction loss that uses stereo

pairs, where the right image of the pair is warped into the

left using a differentiable image sampler [19]. This loss

function allows the deep learning model to implicitly re-

cover the underlying depth for the input image. Expanding

on this method, Godard et al. [13] add a left-right consis-

tency loss term which helps to ensure consistency between

the predicted depths from the left and right images of the

stereo pair. While capable of training monocular depth es-

timators, these methods still rely on stereo-based training

data which can still be difficult to acquire. This has moti-

vated the development of self-supervised monocular trained

depth estimators [62] which relax the requirement of syn-

chronized stereo image pairs by jointly learning to predict

depth and ego-motion with two separate networks, enabling

the training of a monocular depth estimator using monocu-

lar video. To achieve this, the scene is assumed to be static

(i.e., rigid), while the only motion is that of the camera.

However, this causes degenerate behaviour in the depth es-

timator when this assumption is broken. To deal with this

issue, the paper [62] includes a predictive masking which

learns to ignore regions that violates the rigidity assump-

tions. Vijayanarasimhan et al. [52] propose a more com-

plex motion model based on multiple motion masks, and

GeoNet model [58] decomposes depth and optical flow to

account for object motion within the image sequence. Self-

supervised monocular trained methods have been further

improved by constraining predicted depths to be consistent

with surface normals [57], using pre-computed instance-

level segmentation masks [3] and increasing the resolution

of the input images [41]. Godard et al. [14] further close

the performance gap between monocular and stereo-trained

self-supervision with Monodepth2 which uses multi-scale

estimation and a per-pixel minimum re-projection loss that

better handles occlusions. We extend Monodepth2 with our

proposed ideas, namely self-attention and discrete disparity

volume.

2.2. Self­attention

Self-attention has improved the performance of natural

language processing (NLP) systems by allowing a better

handling of long-range dependencies between words [51],

when compared with recurrent neural networks (RNN) [47],

long short term memory (LSTM) [18], and convolutional

neural nets (CNN) [27]. This better performance can be ex-

plained by the fact that RNNs, LSTMs and CNNs can only

process information in the local word neighbourhood, mak-

ing these approaches insufficient for capturing long range

dependencies in a sentence [51], which is essential in some

tasks, like machine translation. Self-attention has been pro-

posed in computer vision for improving Image Classifica-

tion and Object Drection [2, 39]. Self-attention has also

improved the performance of computer vision tasks such as

semantic segmentation [59] by addressing more effectively

the problem of segmenting visual classes in non-contiguous

regions of the image, when compared with convolutional

layers [4, 61, 6], which can only process information in

the local pixel neighbourhood. In fact, many of the re-

cent improvements in semantic segmentation performance

stem from improved contextual aggregation strategies (i.e.,

strategies that can process spatially non-contiguous image

regions) such as the Pyramid Pooling Module (PPM) in

PSPNet [61], and the Atrous Spatial Pyramid Pooling [4].

In both of these methods, multiple scales of information

are aggregated to improve the contextual representation by

the network. Yuan et al. [59] further improve on this area

with OCNet, which adds to a ResNet-101 [17] backbone a
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self-attention module that learns to contextually represent

groups of features with similar semantic similarity. There-

fore, we hypothesise that such self-attention mechanisms

can also improve depth prediction using monocular video

because the correct context for the prediction of a pixel

depth may be at a non-contiguous location that the standard

convolutions cannot reach.

2.3. Discrete Disparity Volume

Kendall et al. [22] propose to learn stereo matching

in a supervised manner, by using a shared CNN encoder

with a cost volume that is refined using 3D convolutions.

Liu et al. [29] investigate this idea further by training a

model using monocular video with ground truth depth and

poses. This paper [29] relies on a depth probability volume

(DPV) and a Bayesian filtering framework that refines out-

liers based on the uncertainty computed from the DPV. Fu

et al. [10] represent their ground-truth depth data as discrete

bins, effectively forming a disparity volume for training. All

methods above work in fully-supervised scenarios, showing

advantages for depth estimation robustness and sharpness,

allied with the possibility of estimating depth uncertainty.

Such uncertainty estimation can be used by autonomous

systems to improve decision making [21] or to refine depth

estimation [10]. In this paper, we hypothesis that the exten-

sion of self-supervised monocular trained methods with a

discrete disparity volume will provide the same advantages

observed in fully-supervised models.

3. Methods

In the presentation of our proposed model for self-

supervised monocular trained depth estimation, we focus

on showing the importance of the main contributions of this

paper, namely self-attention and discrete disparity volume.

We use as baseline, the Monodepth2 model [14] based on a

UNet architecture [44].

3.1. Model

We represent the RGB image with I : Ω → R
3, where

Ω denotes the image lattice of height H and width W . The

first stage of the model, depicted in Fig. 2, is the ResNet-101

encoder, which forms X = resnetθ(It), with X : Ω1/8 →

R
M , M denoting the number of channels at the output of the

ResNet, and Ω1/8 representing the low-resolution lattice at

(1/8)th of its initial size in Ω. The ResNet output is then

used by the self-attention module [54], which first forms the

query, key and value results, represented by:

f(X(ω)) =WfX(ω),

g(X(ω)) =WgX(ω),

h(X(ω)) =WhX(ω),

(1)

respectively, with Wf ,Wg,Wh ∈ R
N×M . The query and

key values are then combined with

Sω = softmax(f(X(ω))T g(X)), (2)

where Sω : Ω1/8 → [0, 1], and we abuse the notation by

representing g(X) as a tensor of size N × H/8 × W/8.

The self-attention map is then built by the multiplication of

value and Sω in (2), with:

A(ω) =
∑

ω̃∈Ω1/8

h(X(ω̃))× Sω(ω̃), (3)

with A : Ω1/8 → R
N .

The low-resolution discrete disparity volume (DDV) is

denoted by D1/8(ω) = conv3×3(A(ω)), with D1/8 :

Ω1/8 → R
K (K denotes the number of discretized dispar-

ity values), and conv3×3(.) denoting a convolutional layer

with filters of size 3 × 3. The low resolution disparity map

is then computed with

σ(D1/8(ω)) =

K
∑

k=1

softmax(D1/8(ω)[k])×disparity(k),

(4)

where softmax(D1/8(ω)[k]) is the softmax result of the

kth output from D1/8, and disparity(k) holds the dispar-

ity value for k. Given the ambiguous results produced by

these low-resolution disparity maps, we follow the multi-

scale strategy proposed by Godard et al. [14]. The low

resolution map from (4) is the first step of the multi-scale

decoder that consists of three additional stages of upconv

operators (i.e., nearest upsample + convolution) that receive

skip connections from the ResNet encoder for the respective

resolutions, as shown in Fig. 2. These skip connections be-

tween encoding layers and associated decoding layers are

known to retain high-level information in the final depth

output. At each resolution, we form a new DDV, which is

used to compute the disparity map at that particular resolu-

tion. The resolutions considered are (1/8), (1/4), (1/2), and

(1/1) of the original resolution, respectively represented by

σ(D1/8), σ(D1/4), σ(D1/2), and σ(D1/1).
Another essential part of our model is the pose estima-

tor [62], which takes two images recorded at two different

time steps, and returns the relative transformation, as in

Tt→t′ = pφ(It, It′), (5)

where Tt→t′ denotes the transformation matrix between

images recorded at time steps t and t′, and pφ(.) is the

pose estimator, consisting of a deep learning model param-

eterised by φ.

3.2. Training and Inference

The training is based on the minimum per-pixel photo-

metric re-projection error [14] between the source image

It′ and the target image It, using the relative pose Tt→t′

defined in (5). The pixel-wise error is defined by

ℓp =
1

|S|

∑

s∈S

(

min
t′

µ(s) × pe(It, I
(s)
t→t′)

)

, (6)
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Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [9] D 0.203 1.548 6.307 0.282 0.702 0.890 0.890

Liu [30] D 0.201 1.584 6.471 0.273 0.680 0.898 0.967

Klodt [24] D*M 0.166 1.490 5.998 - 0.778 0.919 0.966

AdaDepth [38] D* 0.167 1.257 5.578 0.237 0.771 0.922 0.971

Kuznietsov [25] DS 0.113 0.741 4.621 0.189 0.862 0.960 0.986

DVSO [55] D*S 0.097 0.734 4.442 0.187 0.888 0.958 0.980

SVSM FT [33] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984

Guo [15] DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986

DORN [10] D 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Zhou [62]† M 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Yang [57] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian [34] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968

GeoNet [58]† M 0.149 1.060 5.567 0.226 0.796 0.935 0.975

DDVO [53] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974

DF-Net [63] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973

LEGO [56] M 0.162 1.352 6.276 0.252 - - -

Ranjan [43] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ [32] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth ‘(M)’ [3] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Monodepth2 [14] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2 (1024 × 320)[14] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Ours M 0.106 0.861 4.699 0.185 0.889 0.962 0.982

Garg [11]† S 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Monodepth R50 [13]† S 0.133 1.142 5.533 0.230 0.830 0.936 0.970

StrAT [36] S 0.128 1.019 5.403 0.227 0.827 0.935 0.971

3Net (R50) [42] S 0.129 0.996 5.281 0.223 0.831 0.939 0.974

3Net (VGG) [42] S 0.119 1.201 5.888 0.208 0.844 0.941 0.978

SuperDepth + pp [41] (1024 × 382) S 0.112 0.875 4.958 0.207 0.852 0.947 0.977

Monodepth2 [14] S 0.109 0.873 4.960 0.209 0.864 0.948 0.975

Monodepth2 (1024 × 320)[14] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977

UnDeepVO [28] MS 0.183 1.730 6.57 0.268 - - -

Zhan FullNYU [60] D*MS 0.135 1.132 5.585 0.229 0.820 0.933 0.971

EPC++ [32] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979

Monodepth2[14] MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979

Monodepth2(1024 × 320)[14] MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980

Table 1. Quantitative results. Comparison of existing methods to our own on the KITTI 2015 [12] using the Eigen split [8]. The Best

results are presented in bold for each category, with second best results underlined. The supervision level for each method is presented

in the Train column with; D – Depth Supervision, D* – Auxiliary depth supervision, S – Self-supervised stereo supervision, M – Self-

supervised mono supervision. Results are presented without any post-processing [13], unless marked with – + pp. If newer results are

available on github, these are marked with – †. Non-Standard resolutions are documented along with the method name. Metrics indicated

by red: lower is better, Metrics indicated by blue: higher is better

where pe(.) denotes the photometric reconstruction error,

S = { 1
8 ,

1
4 ,

1
2 ,

1
1} is the set of the resolutions available for

the disparity map, defined in (4), t′ ∈ {t − 1, t + 1}, indi-

cating that we use two frames that are temporally adjacent

to It as its source frames [14], and µ(s) is a binary mask

that filters out stationary points (see more details below in

Eq.10) [14]. The re-projected image in (6) is defined by

I
(s)
t→t′ = It′

〈

proj(σ(D
(s)
t ),Tt→t′ ,K)

〉

, (7)

where proj(.) represents the 2D coordinates of the pro-

jected depths Dt in It′ ,
〈

.
〉

is the sampling operator, and

σ(D
(s)
t ) is defined in (4). Similarly to [14], the pre-

computed intrinsics K of all images are identical, and we

use bi-linear sampling to sample the source images and

pe(It, I
(s)
t′ ) =

α

2
(1−SSIM(It, I

(s)
t′ ))+(1−α)‖It−I

(s)
t′ ‖1,

(8)

where α = 0.85. Following [13] we use an edge-aware

smoothness regularisation term to improve the predictions

around object boundaries:

ℓs = |∂xd
∗
t | e

−|∂xIt| + |∂yd
∗
t | e

−|∂yIt|, (9)

where d∗t = dt/dt is the mean-normalized inverse depth

from [53] to discourage shrinking of the estimated depth.

The auto-masking of stationary points [14] in (6) is nec-

essary because the assumptions of a moving camera and a

static scene are not always met in self-supervised monoc-

ular trained depth estimation methods [14]. This masking

filters out pixels that remain with the same appearance be-

tween two frames in a sequence, and is achieved with a bi-

nary mask defined as

µ(s) =
[

min
t′

pe(It, I
(s)
t′→t) < min

t′
pe(It, It′)

]

, (10)

where [.] represents the Iverson bracket. The binary mask

µ in (10) masks the loss in (6) to only include the pixels

where the re-projection error of I
(s)
t′→t is lower than the error

of the un-warped image It′ , indicating that the visual object

is moving relative to the camera. The final loss is computed

as the weighted sum of the per-pixel minimum reprojection

loss in (6) and smoothness term in (9),

ℓ = ℓp + λℓs (11)
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where λ is the weighting for the smoothness regularisation

term. Both the pose model and depth model are trained

jointly using this photometric reprojection error. Inference

is achieved by taking a test image at the input of the model

and producing the high-resolution disparity map σ(D1/1).

4. Experiments

We train and evaluate our method using the KITTI 2015

stereo data set [12]. We also evaluate our method on the

Make3D data set [50] using our model trained on KITTI

2015. We use the split and evaluation of Eigen et al. [8], and

following previous works [62, 14], we remove static frames

before training and only evaluate depths up to a fixed range

of 80m [8, 11, 13, 14]. As with [14], this results in 39,810

monocular training sequences, consisting of sequences of

three frames, with 4,424 validation sequences. As our base-

line model, we use Monodepth2 [14], but we replace the

original ResNet-18 by a ResNet-101 that has higher capac-

ity, but requires more memory. To address this memory is-

sue, we use the inplace activated batch normalisation [46],

which fuses the batch normalization layer and the activa-

tion functions to reach up to 50% memory savings. As self-

supervised monocular trained depth estimators do not con-

tain scale information, we use the per-image median ground

truth scaling [62, 14]. Following architecture best practices

from the Semantic Segmentation community, we adopt the

atrous convolution [5], also known as the dilated convolu-

tion, in the last two convolutional blocks of the ResNet-101

encoder [61, 59, 5, 6] with dilation rates of 2 and 4, re-

spectively. This has been shown to significantly improve

multi-scale encoding by increasing the models field-of-view

[5]. The results for the quantitative analysis are shown in

Sec. 4.2. We also present an ablation study comparing the

effects of the our different contributions in Sec. 4.4. Final

models are selected using the lowest absolute relative error

metric on the validation set.

4.1. Implementation Details

Our system is trained using the PyTorch library [40],

with models trained on a single Nvidia 2080Ti for 20

epochs. We jointly optimize both our pose and depth net-

works with the Adam Optimizer [23] with β1 = 0.9, β2 =
0.999 and a learning rate of 1e−4. We use a single learning

rate decay to lr = 1e−5 after 15 epochs. As with previ-

ous papers [14], our ResNet encoders use pre-trained Ima-

geNet [48] weights as this has been show to reduce training

time and improve overall accuracy of the predicted depths.

All models are trained using the following data augmenta-

tions with 50% probability; Horizontal flips, random con-

trast (±0.2), saturation (±0.2), hue jitter (±0.1) and bright-

ness (±0.2). Crucially, augmentations are only performed

on the images input into the depth and pose network and

the loss in (11) is computed using the original ground truth

images, with the smoothness term set to λ = 1e−3. Image

resolution is set to 640× 192 pixels.

4.2. KITTI Results

The results for the experiment are presented in Table 1.

When comparing our method (grayed row in Table 1) on the

KITTI 2015 data set [12] (using Eigen [8] split), we observe

that we outperform all existing self-supervised monocu-

lar trained methods by a significant margin. Compared

to other methods that rely on stronger supervision signals

(e.g., stereo supervision and mono+stereo supervision), our

approach is competitive, producing comparable results to

the current state of the art method Monodepth2. As can be

seen in Figure 3 our method shows sharper results on thin-

ner structures such as poles than the baseline Monodepth2.

In general, Monodepth2 (Mono and Mono+Stereo) strug-

gles with thin structures that overlap with foliage, while

our method is able to accurately estimate the depth of these

smaller details. We attribute this to the combination of the

dilated convolutions and the contextual information from

the self-attention module. As can be seen in car windows,

Monodepth2 and our method struggle to predict the depth

on glassy reflective surfaces. However, this is a common is-

sue observed in self-supervised methods because they can-

not accurately predict depth for transparent surfaces since

the photometric reprojection/warping error is ill-defined for

such materials/surfaces. For instance, in the example of car

windows, the correct depth that would minimise the photo-

metric reprojection loss is actually the depth from the car

interior, instead of the glass depth, as would be recorded

by the ground truth LiDAR. When comparing our method

against some specific error cases for Monodepth2 [14] (Fig-

ure 4), we can see that our method succeeds in estimating

depth of the highly reflective car roof (left) and successfully

disentangles the street sign from the background (right).

This can be explained by the extra context and receptive

field afforded by the self-attention context module as well

as the regularisation provided by the discrete disparity vol-

ume.

4.3. Make3D Results

Table 3 presents the quantitative results for the Make3D

data set [50] using our model trained on KITTI2015. We

follow the same testing protocol as Monodepth2 [14] and

methods are compared using the evaluation criteria outline

in [13]. It can be seen in Table 3 that our method produces

superior results compared with previous methods that also

rely on self-supervision.

4.4. Ablation Study

Table 2 shows an ablation study of our method, where we

start from the baseline Monodepth2 [14] (row 1). Then, by

first adding DDV (row 2) and both self attention and DDV

(row 3), we observe a steady improvement in almost all

evaluation measures. We then switch the underlying encod-

ing model ResNet-18 to ResNet-101 with dilated convolu-

tions in row 4. Rows 5 and 6 show the addition of DDV and

then both self-attention and DDV, respectively, again with
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Figure 3. Qualitative results on the KITTI Eigen split [8] test set. Our models perform better on thinner objects such as trees, signs and

bollards, as well as being better at delineating difficult object boundaries.

Backbone Self-Attn DDV Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline (MD2 ResNet18) ✗ ✗ 0.115 0.903 4.863 0.193 0.877 0.959 0.981

ResNet18 ✗ X 0.112 0.838 4.795 0.191 0.877 0.960 0.981

ResNet18 X ✗ 0.112 0.845 4.769 0.19 0.877 0.96 0.982

ResNet18 X X 0.111 0.941 4.817 0.189 0.885 0.961 0.981

ResNet101 w/ Dilated Conv ✗ ✗ 0.110 0.876 4.853 0.189 0.879 0.961 0.982

ResNet101 w/ Dilated Conv ✗ X 0.110 0.840 4.765 0.189 0.882 0.961 0.982

ResNet101 w/ Dilated Conv X ✗ 0.108 0.808 4.754 0.185 0.885 0.962 0.982

ResNet101 w/ Dilated Conv X X 0.106 0.861 4.699 0.185 0.889 0.962 0.982

Table 2. Ablation Study. Results for different versions of our model with comparison to our baseline model Monodepth2 [14](MD2

ResNet18). We evaluate the impact of the Discrete Disparity Volume (DDV), Self-Attention Context module and the larger network

architecture. All models were trained with Monocular self-supervision. Metrics indicated by red: lower is better, Metrics indicated by

blue: higher is better

a steady improvement of evaluation results in almost all

evaluation measures. The DDV on the smaller ResNet-18

model provides a large improvement over the baseline in the

absolute relative and squared relative measures. However,

ResNet-101 shows only a small improvement over the base-

line when using the DDV. The Self-Attention mechanism

drastically improves the close range accuracy (δ < 1.25)

for both backbone models. The significantly larger im-

provement of the self-attention module in the ResNet-101

model (row 6), is likely because of the large receptive field

produced by the dilated convolutions, which increases the

amount of contextual information that can be computed by

the self-attention operation.
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Figure 4. Monodepth2 Failure cases. Although trained on the

same loss function as the monocular trained (M) Monodepth2

[14], our method succeeds in estimating depth for the reflective

car roof (Left) and the difficult to delineate street sign (Right).

Type Abs Rel Sq Rel RMSE log10

Karsch [20] D 0.428 5.079 8.389 0.149

Liu [31] D 0.475 6.562 10.05 0.165

Laina [26] D 0.204 1.840 5.683 0.084

Monodepth [13] S 0.544 10.94 11.760 0.193

Zhou [62] M 0.383 5.321 10.470 0.478

DDVO [53] M 0.387 4.720 8.090 0.204

Monodepth2 [14] M 0.322 3.589 7.417 0.163

Ours M 0.297 2.902 7.013 0.158

Table 3. Make3D results. All self-supervised mono (M) models

use median scaling.

4.5. Self­attention and Depth Uncertainty

While the self-attention module and DDV together pro-

vide significant quantitative and qualitative improvements,

they also provide secondary functions. The attention maps

(Eq. 3) from the self-attention module can be visualized to

interrogate the relationships between objects and disparity

learnt by the model. The attention maps highlight non-

contiguous image regions (Fig. 5), focusing on either fore-

ground, midground or background regions. The maps also

tend to highlight either distant objects or stationary visual

objects, like cars. Moreover, as the DDV encodes a proba-

bility over a disparity ray, using discretized bins, it is pos-

sible to compute the uncertainty for each ray by measuring

the variance of the probability distribution. Figure 6 shows

a trend where uncertainty increases with distance, up until

the background image regions, which are estimated as near-

infinite to infinite depth with very low uncertainty. This has

also been observed in supervised models that are capable

of estimating uncertainty [29]. Areas of high foliage and

high shadow (row 2) show very high uncertainty, likely at-

tributed to the low contrast and lack of textural detail in

these regions.

5. Conclusion

In this paper we have presented a method to address the

challenge of learning to predict accurate disparities solely

from monocular video. By incorporating a self-attention

mechanism to improve the contextual information available

to the model, we have achieved state of the art results for

Figure 5. Attention maps from our network. Subset of the at-

tention maps produced by our method. Blue indicates region of

attention.

Figure 6. Uncertainty from our network. The Discrete Disparity

Volume allows us to compute pixel-wise depth uncertainty. Blue

indicates areas of low uncertainty, green/red regions indicate areas

of high/highest uncertainty.

monocular trained self-supervised depth estimation on the

KITTI 2015 [12] dataset. Additionally, we regularised the

training of the model by using a discrete disparity volume,

which allows us to produce more robust and sharper depth

estimates and to compute pixel-wise depth uncertainties. In

the future, we plan to investigate the benefits of incorpo-

rating self-attention in the pose model as well as using the

estimated uncertainties for outlier filtering and volumetric

fusion.
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