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Figure 1. Examples of noise robust image generation. Recent GANs have shown promising results for reproducing training images.

However, even when training images are noisy (a)(d), they attempt to reproduce the training images faithfully, as shown in (b)(e). To

remedy this, we propose noise robust GANs (NR-GANs), which can learn to generate clean images (c)(f), even when training images are

noisy (a)(d). Our NR-GANs are unique in that they solve this problem without full knowledge of the noise (e.g., the noise distribution

type, noise amount, or signal-noise relationship). Indeed, in (c) and (f), although the same models (in particular, SI-NR-GAN-II, which is

a variant of NR-GANs) are used for different noises (a)(d), they succeed in learning clean image generators adaptively through training.

Abstract

Generative adversarial networks (GANs) are neural net-

works that learn data distributions through adversarial

training. In intensive studies, recent GANs have shown

promising results for reproducing training images. How-

ever, in spite of noise, they reproduce images with fidelity.

As an alternative, we propose a novel family of GANs called

noise robust GANs (NR-GANs), which can learn a clean

image generator even when training images are noisy. In

particular, NR-GANs can solve this problem without having

complete noise information (e.g., the noise distribution type,

noise amount, or signal-noise relationship). To achieve this,

we introduce a noise generator and train it along with a

clean image generator. However, without any constraints,

there is no incentive to generate an image and noise sep-

arately. Therefore, we propose distribution and transfor-

mation constraints that encourage the noise generator to

capture only the noise-specific components. In particular,

considering such constraints under different assumptions,

we devise two variants of NR-GANs for signal-independent

noise and three variants of NR-GANs for signal-dependent

noise. On three benchmark datasets, we demonstrate the

effectiveness of NR-GANs in noise robust image genera-

tion. Furthermore, we show the applicability of NR-GANs

in image denoising. Our code is available at https:

//github.com/takuhirok/NR-GAN/.

1. Introduction

In computer vision and machine learning, generative

models have been actively studied and used to generate or

reproduce an image that is indistinguishable from a real im-

age. Generative adversarial networks (GANs) [21], which

learn data distributions through adversarial training, have

garnered special attention owing to their ability to produce

high-quality images. In particular, with recent advance-

ments [2, 54, 46, 23, 40, 57, 58, 36, 76], the latest GANs

(e.g., BigGAN [6] and StyleGAN [37]) have succeeded in

generating images indistinguishable for humans.

However, a persistent issue is that recent high-capacity

GANs could replicate images faithfully even though the

training images were noisy. Indeed, as shown in Fig-

ure 1(b)(e), when standard GAN is trained with noisy im-

ages, it attempts to recreate them. Although the long-term

development of devices has steadily improved image qual-

ity, image degradation is unavoidable in real situations.

For example, electronic noise is inevitable in digital imag-

ing [60, 1] and estimator variance often appears as noise

in graphic rendering [83, 72]. Therefore, susceptibility to

noise is practically undesirable for GANs.

The question becomes: “How can we learn a clean im-

age generator even when only noisy images are available

for training?” We call this problem noise robust image

generation. One solution is to apply a denoiser as pre-
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Figure 2. Noise categorization and examples. In this paper, we handle various types of noise. (A)(B) Additive Gaussian noise with

fixed σ = 25 (A) and variable σ ∈ [5, 50] (B), where σ is the standard deviation of a Gaussian distribution. (C)(D) Local Gaussian noise

with fixed patch ph = pw = 16 (C) and variable patch ph, pw ∈ [8, 24] (D), where ph and pw are the height and width of noise region,

respectively. σ is fixed to 25 in both cases. (E) Uniform noise [−50, 50]. (F) Mixture noise [81]. Mixture of 10% uniform noise [−50, 50],
20% Gaussian noise (σ = 25), and 70% Gaussian noise (σ = 15). (G) Brown Gaussian noise [45]. A Gaussian filter (kernel size is 5× 5)

is applied to (A). (H) Additive Brown Gaussian noise. (G) is added to (A) while remaining the original (A). (I)(J) Multiplicative Gaussian

noise with fixed σ = 25 (I) and variable σ ∈ [5, 50] (J). (K)(L) Additive and multiplicative Gaussian noise. (K) Sum of few (A) (σ = 5)

and (I). (L) Sum of much (A) (σ = 25) and (I). (M)(N) Poisson noise with fixed λ = 30 (M) and variable λ ∈ [10, 50] (N), where λ is the

total number of events. (O)(P) Poisson-Gaussian noise. (O) Sum of few (A) (σ = 5) and (M). (P) Sum of much (A) (σ = 25) and (M).

process. However, a limitation is that the generator perfor-

mance highly relies on the quality of the denoiser, which

is relatively difficult to learn when clean images are not

available for training. As an alternative, AmbientGAN [5]

was recently proposed, which provides a promising solution

by simulating the noise corruption on the generated images

and learning the discriminator so that it distinguishes a real

noisy image from a simulatively corrupted generated im-

age. This makes it possible to learn a clean image generator

directly from noisy images without relying on a denoiser.

However, a key limitation of AmbientGAN is that it

assumes that the noise corruption process is pre-defined.

Therefore, to utilize it, we need to have all information

about the noise, such as the noise distribution type (e.g.,

Gaussian), noise amount (e.g., standard deviation), and

signal-noise relationship. For instance, to treat 16 noises

shown in Figure 2, we need to carefully prepare 16 noise

simulation models that depend on the noise.

To deal with this, we propose noise robust GANs (NR-

GANs), which can achieve noise robust image generation

without having complete noise information. Our main idea

is as follows. We first introduce two generators, a clean im-

age generator and noise generator. To make them generate

an image and noise, respectively, we impose a distribution

or transformation constraint on the noise generator so that it

only captures the components that follow the specified dis-

tribution or transformation invariance. As such a constraint

can take various forms depending on the type of assump-

tions; we develop five variants: two signal-independent NR-

GANs (SI-NR-GANs) and three signal-dependent NR-GANs

(SD-NR-GANs). Figure 1(c)(f) shows examples of images

generated using NR-GANs. Here, although the same mod-

els are used for different noises (a)(d), NR-GANs succeed

in learning clean image generators adaptively.

As the noise robustness of GANs has not been suffi-

ciently studied, we first perform a comprehensive study

on CIFAR-10 [42], where we compare various models in

diverse noise settings (in which we test 152 conditions).

Furthermore, inspired by the recent large-scale study on

GANs [44], we also examin the performance on more com-

plex datasets (LSUN BEDROOM [74] and FFHQ [37]). Fi-

nally, we demonstrate the applicability of NR-GANs in im-

age denoising, where we learn a denoiser using generated

noisy images and generated clean images (GN2GC), and

empirically examine a chicken and egg problem between

noise robust image generation and image denoising.

Overall, our contributions are summarized as follows:

• We provide noise robust image generation, the purpose

of which is to learn a clean image generator even when

training images are noisy. In particular, we solve this

problem without full knowledge of the noise.

• To achieve this, we propose a novel family of GANs

called NR-GANs that train a clean image generator and

noise generator simultaneously with a distribution or

transformation constrain on the noise generator.

• We provide a comprehensive study on CIFAR-10 (in

which we test 152 conditions) and examine the ver-

satility in more complex datasets (LSUN BEDROOM

and FFHQ); finally, we demonstrate the applicability

in image denoising. The project page is available at

https://takuhirok.github.io/NR-GAN/.

2. Related work

Deep generative models. Image generation is a fundamen-

tal problem and has been intensively studied in computer vi-

sion and machine learning. Recently, deep generative mod-

els have emerged as a promising framework. Among them,

three prominent models along with GANs are variational
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autoencoders [39, 64], autoregressive models [70], and

flow-based models [14, 15]. Each model has pros and cons.

A well-known disadvantage of GANs is training instability;

however, it has been steadily improved by recent advance-

ments [2, 54, 46, 4, 65, 23, 40, 57, 58, 36, 76, 6, 9, 37].

In this work, we focus on GANs for their design flexibility,

which allows them to incorporate the core of our models, a

noise generator and its constraints. Also in other models,

image fidelity has improved [71, 61, 56, 38]. Hence, sensi-

tivity to noise can be problematic. Incorporating our ideas

into them is a possible direction of future work.

Image denoising. Image denoising is also a fundamental

problem and several methods have been proposed. They are

roughly categorized into two: model-based methods [12,

22, 17, 51, 7, 50, 16, 49, 52] and discriminative learning

methods [29, 55, 67, 77, 78, 8, 24, 45, 43, 3]. Recently,

discriminative learning methods have shown a better per-

formance; however, a limitation is that most of them (i.e.,

Noise2Clean (N2C)) require clean images for supervised

training of a denoiser. To handle this, self-supervised learn-

ing methods (e.g., Noise2Void (N2V) [43] and Noise2Self

(N2S) [3]) were proposed. These methods assume the same

data setting as ours, i.e., only noisy images are available

for training. However, they still have some limitations,

e.g., they cannot handle pixel-wise correlated noise, such

as shown in Figure 2(G)(H), and their performance is still

inferior to supervised learning methods.

Image denoising and our noise robust image generation

is a chicken and egg problem and each task can be used as

a pre-task for learning the other. In the spirit of Ambient-

GAN, we aim to learn a clean image generator directly from

noisy images. However, examining the performance on (1)

learning a generator using denoised images and (2) learning

a denoiser using generated clean and noisy images is an in-

teresting research topic. Motivated by this, we empirically

examined them through comparative studies. We provide

the results in Sections 8.1 and 8.3.

Noise robust models. Except for image denoising, noise

robust models have been studied in image classification to

learn a classifier in practical settings. There are two studies

addressing label noise [18, 80, 62, 53, 30, 68, 63, 25, 66, 31,

59, 20] and addressing image noise [82, 13]. For both tasks,

the issue is the memorization effect [75], i.e., DNN clas-

sifiers can fit labels or images even though they are noisy

or fully corrupted. As demonstrated in Figure 1, a similar

issue also occurs in image generation.

Pertaining image generation, handling of label noise [35,

34, 69, 32] and image noise [5] has begun to be studied. Our

NR-GANs are categorized into the latter. As discussed in

Section 1, AmbientGAN [5] is a representative model in the

latter category. However, a limitation is that it requires full

knowledge of the noise. Therefore, we introduce NR-GANs

to solve this problem as they do not have this limitation.

3. Notation and problem statement

We first define notation and the problem statement.

Hereafter, we use superscripts r and g to denote the real

distribution and generative distribution, respectively. Let y

be the observable noisy image and x and n be the underly-

ing signal (i.e., clean image) and noise, respectively, where

y,x,n ∈ R
H×W×C (H , W , and C are the height, width,

and channels of an image, respectively). In particular, we

assume that y can be decomposed additively: y = x+ n.1

Our task is to learn a clean image generator that can repro-

duce clean images, such that pg(x) = pr(x), when trained

with noisy images yr ∼ pr(y). This is a challenge for stan-

dard GAN as it attempts to mimic the observable images

including the noise; namely, it learns pg(y) = pr(y).
We assume various types of noise. Figure 2 shows the

categorization and examples of the noises that we address

in this paper. They include signal-independent noises (A)–

(H), signal-dependent noises (I)–(P), pixel-wise correlated

noises (G)(H), local noises (C)(D), and their combination

(H)(K)(L)(O)(P). We also consider two cases: the noise

amount is either is fixed or variable across the dataset.

As discussed in Section 1, one solution is Ambient-

GAN [5]; however, it is limited by the need for prior noise

knowledge. We plan a solution that will not require that

full prior knowledge. Our central idea is to introduce two

generators, i.e., a clean image generator and noise genera-

tor, and impose a distribution or transformation constraint

on the noise generator so that it captures only the noise-

specific components. In particular, we explicate such con-

straints by relying on the signal-noise dependency. We first

review our baseline AmbientGAN [5] (Section 4); then de-

tail NR-GANs for signal-independent noise (Section 5) and

signal-dependent noise (Section 6).

4. Baseline: AmbientGAN

AmbientGAN [5] (Figures 3(a) and 4(a)) is a variant of

GANs, which learns an underlying distribution pr(x) only

from noisy images yr ∼ pr(y).2 This is a challenging be-

cause the desired images xr ∼ pr(x) are not observable

during training. To overcome this challenge, AmbientGAN

introduces a noise simulation model y = Fθ(x) under the

assumption that it is priorly known. The main idea of Am-

bientGAN is to incorporate this noise simulation model into

the adversarial training framework:

min
Gx

max
Dy

Eyr
∼pr(y)[logDy(y

r)]

+ Ezx∼p(zx),θ∼p(θ)[log(1−Dy(Fθ(Gx(zx))))]. (1)

1We decompose additively; however, note that this representation in-

cludes signal-independent noise n ∼ p(n) and signal-dependent noise

n ∼ p(n|x).
2Strictly, AmbientGAN can handle more general lossy data, such as

missing data. Here, we narrow the target in accordance with our task.
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Figure 3. Comparison of AmbientGAN (baseline) and SI-NR-GANs (proposed). Because the discriminators are the same, we only

depict the generators. (a) AmbientGAN assumes that the noise model is pre-defined. (b) To mitigate this requirement, we introduce a

two-generator model and learn a noise generator Gn along with a clean image generator Gx. (c) To make Gn capture only the noise

specific components, SI-NR-GAN-I regularizes the output distribution of Gn using a reparameterization trick under the assumption that

the noise distribution type is known. (d) Furthermore, considering the situation when the noise distribution type is unknown, we develop

SI-NR-GAN-II, which applies transformations n = T (n̂) to extract the transformation-invariant element, i.e., noise.

Just like standard GAN, a generator Gx transforms the la-

tent vector zx into an image xg = Gx(zx). However, dif-

ferently from the standard GAN discriminator, which di-

rectly distinguishes a real image yr from a generated image

xg , the AmbientGAN discriminator Dy distinguishes yr

from a noised generated image yg = Fθ(x
g). Intuitively,

this modification allows noisy pg(y) (= pg(Fθ(x))) to get

close to noisy pr(y) (= pr(Fθ(x))). When Fθ is invert-

ible or uniquely determined, underlying clean pg(x) also

approaches underlying clean pr(x).

5. Signal-independent noise robust GANs

As described above, a limitation of AmbientGAN is that

it requires that a noise simulation model Fθ(x) is priorly

known. To alleviate this, we introduce a noise generator

n = Gn(zn) (Figure 3(b)) and train it along with a clean

image generator Gx using the following objective function:

min
Gx,Gn

max
Dy

Eyr
∼pr(y)[logDy(y

r)]

+ Ezx∼p(zx),zn∼p(zn)[log(1−Dy(Gx(zx) +Gn(zn)))].
(2)

Nevertheless, without any constraints, there is no incen-

tive to make Gx and Gn generate an image and a noise,

respectively. Therefore, we provide a constraint on Gn

so that it captures only the noise-specific components. In

particular, we develop two variants that have different as-

sumptions: SI-NR-GAN-I (Section 5.1) and SI-NR-GAN-II

(Section 5.2).

5.1. SINRGANI

In SI-NR-GAN-I, we assume the following.

Assumption 1 (i) The noise n is conditionally pixel-wise

independent given the signal x. (ii) The noise distribution

type (e.g., Gaussian) is priorly known. Note that the noise

amount needs not to be known. (iii) The signal x does not

follow the defined noise distribution.

Under this assumption, we develop SI-NR-GAN-I (Fig-

ure 3(c)). In this model, we regularize the output distri-

bution of Gn in a pixel-wise manner using a reparameteri-

zation trick [39]. Here, we present the case when the noise

distribution type is defined as zero-mean Gaussian:3

y = x+ n,where n ∼ N (0, diag(σ)2), (3)

where σ ∈ R
H×W×C is the pixel-wise standard devi-

ation. In this case, we redefine the noise generator as

σ = Gn(zn); and introduce an auxiliary pixel-wise ran-

dom variable ǫ ∼ N (0, I), where ǫ ∈ R
H×W×C ; and then

calculate the noise n by multiplying them: n = σ ·ǫ, where

· represents an element-wise product. This formulation al-

lows the noise to be sampled as n ∼ N (0, diag(σ)2).
In SI-NR-GAN-I, σ is learned through training in a

pixel-wise manner. Therefore, the same model can be ap-

plied to various noises (e.g., Figure 2(A)–(D), in which

each pixel’s noise follows a Gaussian distribution, while

the noise amount is different in a sample-wise (e.g., (B))

or pixel-wise (e.g., (D)) manner).

5.2. SINRGANII

Two limitations of SI-NR-GAN-I are that it assumes that

(i) the noise is pixel-wise independent and (ii) the noise dis-

tribution type is pre-defined. The first assumption makes

it difficult to apply to a pixel-wise correlated noise (e.g.,

Figure 2(G)(H)). The second assumption could cause diffi-

culty when diverse noises are mixed (e.g., Figure 2(F)) or

the noise distribution type is different from the pre-defined

(e.g., Figure 2(E)). This motivates us to devise SI-NR-

GAN-II, which works under a different assumption:

Assumption 2 (i) The noise n is rotation-, channel-

shuffle-, or color-inverse-invariant. (ii) The signal x is

rotation-, channel-shuffle-, or color-inverse-variant.

3Strictly, our approach is applicable as long as a noise follows a differ-

entiable distribution [39].
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Figure 4. Comparison of AmbientGAN (baseline) and SD-NR-GANs (proposed). Because the discriminators are the same, we

only depict the generators. (a) AmbientGAN pre-defines the noise model. (b) SD-NR-GAN-I represents the signal-noise relationship

explicitly, while the noise amount is estimated through training. (c) SD-NR-GAN-II expresses the signal-noise relationship implicitly

and this relationship and the noise amount are acquired through training. (d) SD-NR-GAN-III only imposes a weak constraint via the

transformation and learns the noise distribution type, signal-noise relationship, and noise amount through training.

Among the noises in Figure 2, this assumption holds in all

signal-independent noises (A)–(H). This assumption is rea-

sonable when n is a zero-mean signal-independent noise

and x is a natural image.4 Under this assumption, we estab-

lish SI-NR-GAN-II (Figure 3(d)). In this model, we rede-

fine the noise generator as n̂ = Gn(zn) (n̂ ∈ R
H×W×C)

and apply transformations to n̂ by n = T (n̂), where T is a

transformation function. As T , we can use arbitrary trans-

formation as long as it is applicable to n but not allowable

to x. In practice, we use three transformations: (i) rota-

tion – rotating n̂ by d ∈ {0◦, 90◦, 180◦, 270◦} randomly,

(ii) channel shuffle – shuffling RGB channels randomly,

and (iii) color inversion – inverting colors randomly in a

channel-wise manner. Each one utilizes one of the invari-

ant and variant characteristics mentioned in Assumption 2.

In SI-NR-GAN-II, the noise origin n̂ is acquired in a data-

driven manner; therefore, it is applicable to diverse noises

(e.g., Figure 2(A)–(H)) without model modifications.

6. Signal-dependent noise robust GANs

Just like in the signal-independent noise case, Ambient-

GAN is applicable to signal-dependent noise by incorporat-

ing the pre-defined noise model (Figure 4(a)). However, it

requires prior knowledge about the noise distribution type,

signal-noise relationship, and noise amount. To deal with

these requirements, we establish three variants that have dif-

ferent assumptions: SD-NR-GAN-I (Section 6.1), SD-NR-

GAN-II (Section 6.2), and SD-NR-GAN-III (Section 6.3).

6.1. SDNRGANI

We first consider the case when the following assump-

tion holds in addition to Assumption 1.

Assumption 3 The signal-noise relationship is priorly

known. Note that the noise amount needs not be known.

4In fact, these kinds of transformations (especially, rotation) are com-

monly used in self-supervised learning [19, 41, 10, 48], which utilize the

transformations to learn natural image representations. Inspired by this,

we employ the transformations to isolate noises from natural images.

Under this assumption, we devise SD-NR-GAN-I (Fig-

ure 4(b)), which incorporates a signal-noise relational pro-

cedure into SI-NR-GAN-I explicitly. In particular, we de-

vise two configurations for two typical signal-dependent

noises: multiplicative Gaussian noise (Figure 2(I)(J)) and

Poisson noise (Figure 2(M)(N)).

Multiplicative Gaussian noise is defined as

y = x+ n,where n ∼ N (0, diag(σ · x)2). (4)

To represent this noise with trainable σ, we redesign the

noise generator as σ = Gn(zn). Then, we convert σ using

a signal-noise relational function R(x,σ) = σ · x = σ̂.

Finally, we obtain n ∼ N (0, diag(σ̂)2) by using the repa-

rameterization trick described in Section 5.1.

Poisson noise (or shot noise) is sampled by y ∼
Poisson(λ ·x)/λ, where λ is the total number of events. As

this noise is discrete and intractable to construction of a dif-

ferentiable model, we use a Gaussian approximation [26],

which is commonly used for Poisson noise modeling:

y = x+ n,where n ∼ N (0, diag(σ ·
√
x)2), (5)

where σ =
√

1/λ. The implementation method is almost

the same as that for the multiplicative Gaussian noise except

that we redefine R(x,σ) as R(x,σ) = σ · √x = σ̂.

In both noise cases, the noise amount σ is trainable;

therefore, each configuration of SD-NR-GAN-I is appli-

cable to the noises in Figure 2(I)(J) and those in Fig-

ure 2(M)(N), respectively, without model modifications.

6.2. SDNRGANII

In SD-NR-GAN-II, we consider the case when the noise

distribution type is known (i.e., Assumption 1 holds) but

the signal-noise relationship is unknown (i.e., Assumption 3

is not required). Under this assumption, we aim to learn

R(x,σ) implicitly, which is explicitly given in SD-NR-

GAN-I. To achieve this, we develop SD-NR-GAN-II (Fig-

ure 4(c)), which is an extension of SI-NR-GAN-I incorpo-

rating the image latent vector zx into the input of Gn, i.e.,
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σ = Gn(zn, zx). Similarly to SI-NR-GAN-I, we sample

n ∼ N (0, diag(σ)2) using the reparameterization trick de-

scribed in Section 5.1. Here, we consider the case when the

noise distribution type is defined as zero-mean Gaussian.

As discussed in Section 6.1, multiplicative Gaussian

noise and Poisson noise are represented (or approxi-

mated) as signal-dependent Gaussian noise; therefore,

SD-NR-GAN-II is applicable to these noises (e.g., Fig-

ure 2(I)(J)(M)(N)). Furthermore, SD-NR-GAN-II can inter-

nally learn R(x,σ); therefore, the same model can also be

applied to signal-independent noise (Figure 2(A)–(D)), i.e.,

R(x,σ) = x, and the combination of multiple noises (Fig-

ure 2(K)(L)(O)(P)), e.g., R(x,σd,σi) = σd · x+ σi.

6.3. SDNRGANIII

Finally, we deal with the case when both the noise distri-

bution type and signal-noise relationship are not known. In

this case, we impose a similar assumption as Assumption 2.

However, rotation and channel shuffle collapse the per-pixel

signal-noise dependency that is included in typical signal-

dependent noise (e.g., Figure 2(I)–(P)). Therefore, we only

induce the assumption regarding color inversion.5 Under

this assumption, we devise SD-NR-GAN-III (Figure 4(d)).

Similarly to SD-NR-GAN-II, SD-NR-GAN-III learns the

signal-noise relationship implicitly by incorporating zx into

the input of Gn, i.e., n̂ = Gn(zn, zx). Similarly to SI-NR-

GAN-II, we impose a transformation constraint on Gn by

applying n = T (n̂), where T is defined as color inversion.

The noise origin n̂ is learned through training; therefore,

SD-NR-GAN-III can be adopted to various noises (e.g., all

noises in Figure 2) without modifying the model.

7. Advanced techniques for practice

7.1. Alleviation of convergence speed difference

In proposed NR-GANs, Gx and Gn are learned simulta-

neously. Ideally, we expect that Gx and Gn would be opti-

mized at the same speed; however, through experiments, we

found that Gn tends to learn faster than Gx and results in a

mode collapse in the early training phase. A possible cause

is that the noise distribution is simpler and easier to learn

than the image distribution. To address this problem, we

apply the diversity-sensitive regularization [73] to Gn. In-

tuitively, this regularization makes Gn sensitive to zn and

has an effect to prevent the mode collapse. In the experi-

ments, we incorporate this technique to all NR-GANs. We

discuss the effect of this regularization in our arXiv [33].

7.2. Alleviation of approximation degradation

As described in Section 6.1, we apply a Gaussian ap-

proximation to the Poisson noise to make it tractable and

5For further clarification, we conducted a comparative study on trans-

formations in SD-NR-GAN-III. See our arXiv [33] for details.

differentiable. However, through experiments, we found

that this approximation causes the performance degrada-

tion even using AmbientGAN, which knows all informa-

tion about the noise. A possible reason is that powerful Gx

attempts to fill in the discretized gap caused by this approx-

imation. To alleviate the effect, we apply an anti-alias (or

low-pass) filter [79] to x before providing to Dy . In par-

ticular, we found that applying vertical and horizontal blur

filters respectively and providing both to Dy works well. In

the experiments, we apply this technique to all GANs in the

Poisson or Poisson-Gaussian noise setting.6 We discuss the

effect with and without this technique in our arXiv [33].

8. Experiments

8.1. Comprehensive study

To advance the research on noise robust image gener-

ation, we first conducted a comprehensive study, where we

compared various models in diverse noise settings (in which

we tested 152 conditions in total).

Data setting. In this comprehensive study, we used

CIFAR-10 [42], which contains 60k 32 × 32 natural im-

ages, partitioned into 50k training and 10k test images. We

selected this dataset because it is commonly used to exam-

ine the benchmark performance of generative models (also

in the study of AmbientGAN [5]); additionally, the image

size is reasonable for a large-scale comparative study. Note

that we also conducted experiments using more complex

datasets in Section 8.2. With regard to noise, we tested 16

noises, shown in Figure 2. See the caption for their details.

Compared models. In addition to the models in Figures 3

and 4, we tested several baselines. As comparative GAN

models, we examined four models: (1) Standard GAN. (2)

P-AmbientGAN (parametric AmbientGAN), a straightfor-

ward extension of AmbientGAN, which has a single train-

able parameter σ. As with SI-NR-GAN-I and SD-NR-

GAN-I, we construct this model for Gaussian, multiplica-

tive Gaussian, and Poisson noises and generate the noise

with σ using a reparameterization trick [39]. (3) SI-NR-

GAN-0 (Figure 3(b)), which has the same generators as SI-

NR-GANs but has no constraint on Gn. (4) SD-NR-GAN-

0, which has the same generators as SD-NR-GAN-II and

-III but has no constraint on Gn.

We also examined the performance of learning GANs us-

ing denoised images (denoiser+GANs). As a denoiser, we

investigated four methods. As typical model-based meth-

ods, we used (1) GAT-BM3D [52] and (2) CBM3D [11]

for Poisson/Poisson-Gaussian noise (Figure 2(M)–(P)) and

the other noises, respectively. As discriminative learning

6Strictly speaking, this strategy goes against the assumptions of SD-

NR-GAN-II and -III because they are agnostic to the signal-noise relation-

ship. However, in this main text, we do that to focus on comparison of the

generator performance.
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methods, we used (3) N2V (Noise2Void) [43] and (4) N2N

(Noise2Noise) [45]. N2V can be used in the same data set-

ting as ours (i.e., only noisy images are available for train-

ing), while N2N requires noisy image pairs for training. We

used N2N because it is commonly used as the upper bound

of self-supervised learning methods (e.g., N2V).

Evaluation metrics. We used the Fréchet inception dis-

tance (FID) [28] as an evaluation metric because its validity

has been demonstrated in large-scale studies on GANs [47,

44], and because the sensitivity to the noise has also been

shown [28]. The FID measures the distance between real

and generative distributions and a smaller value is better.

Implementation. We implemented GANs using the

ResNet architectures [27] and trained them using a non-

saturating GAN loss [21] with a real gradient penalty regu-

larization [57]. In NR-GANs, we used similar architectures

for Gx and Gn. As our aim is to construct a general model

applicable to various noises, we examined the performance

when the training settings are fixed regardless of the noise.

We provide the implementation details in our arXiv [33].

Results on signal-independent noises. The upper part

of Table 1 summarizes the results on signal-independent

noises. In P-AmbientGAN and SI-NR-GANs, we defined

the distribution type as Gaussian for all noise settings and

analyzed the effect when the noise is beyond assumption.

Our main findings are the following:

(1) Comparison among GAN models. As expected, Ambi-

entGAN tends to achieve the best score owing to the advan-

tageous training setting, while the best SI-NR-GAN shows

a competitive performance (with a difference of 3.3 in the

worst case). P-AmbientGAN is defeated by SI-NR-GAN-

I in all cases. These results indicate that our two-generator

model is reasonable when training a noise generator and im-

age generator simultaneously.

(2) Comparison between SI-NR-GANs and de-

noiser+GANs. The best SI-NR-GAN outperforms the

best denoiser+GAN in most cases (except for (G)). In par-

ticular, pixel-wise correlated noises (G)(H) are intractable

for denoiser+GANs except for N2N+GAN, which uses

additional supervision, while SI-NR-GAN-II works well

and outperforms the baseline models by a large margin

(with a difference of over 100).

(3) Comparison among SI-NR-GANs. SI-NR-GAN-II

shows the stable performance across all cases (the differ-

ence to the best SI-NR-GAN is within 3.1). SI-NR-GAN-

I shows the best or competitive performance in Gaussian

(A)–(D) or near Gaussian noise (F); however, the perfor-

mance degrades when the distribution is beyond assumption

(E)(G)(H).

Results on signal-dependent noises. The lower part of

Table 1 lists the results on signal-dependent noises. In P-

AmbientGAN and SD-NR-GAN-I, we defined the distri-

Signal- (A) (B) (C) (D) (E) (F) (G) (H)

independent AGF AGV LGF LGV U MIX BG A+G

AmbientGAN† 26.7 28.0 21.8 21.7 28.3 25.1 30.3 40.8

P-AmbientGAN 33.9 122.2 38.8 38.0 43.0 32.3 164.2 269.7

GAN 145.8 136.0 38.8 38.8 146.4 125.6 165.3 265.9

SI-NR-GAN-0 40.7 39.5 23.1 24.3 38.6 32.7 71.6 139.7

SI-NR-GAN-I 26.7 27.5 22.1 22.4 40.1 24.8 163.4 253.2

SI-NR-GAN-II 29.8 29.7 22.1 21.7 31.6 26.5 32.2 44.0

CBM3D+GAN 35.1 38.4 37.0 33.9 38.9 30.2 136.6 169.1

N2V+GAN 34.6 36.7 22.7 22.6 36.4 32.0 163.8 247.8

N2N+GAN‡ 33.5 36.5 22.4 22.0 32.4 30.7 29.5 48.3

Signal- (I) (J) (K) (L) (M) (N) (O) (P)

dependent MGF MGV A+I A+I PF PV A+M A+M

AmbientGAN† 21.4 21.8 21.9 27.4 31.3 32.3 30.9 35.3

P-AmbientGAN 27.1 68.7 39.7 137.7 43.8 100.7 43.0 94.2

GAN 82.7 77.4 93.2 155.8 152.4 160.1 149.1 175.8

SD-NR-GAN-0 82.7 59.5 69.9 75.1 71.7 70.2 72.0 69.0

SD-NR-GAN-I 22.5 23.0 25.3 112.4 30.8 32.0 31.4 70.6

SD-NR-GAN-II 24.4 24.2 23.3 28.5 34.0 33.9 34.0 35.4

SD-NR-GAN-III 37.5 33.4 33.5 33.9 53.1 55.1 52.4 47.2

CBM3D+GAN 26.9 27.8 27.6 40.0 – – – –

GAT-BM3D+GAN – – – – 38.4 40.2 38.7 50.1

N2V+GAN 25.8 26.6 26.7 36.4 37.1 38.3 37.5 41.2

N2N+GAN‡ 24.9 26.6 26.2 34.1 36.7 39.7 36.4 39.5

Table 1. Comparison of FID on CIFAR-10. A smaller value

is better. We compared 152 conditions. The second and thirteenth

rows denote the abbreviations defined in Figure 2. We report the

median score across three random seeds. The symbol † indicates

that the ground-truth noise models are given. The symbol ‡ de-

notes that noisy image pairs are given during the training. The

other models are trained using only noisy images (not including

pairs) without complete noise information. Bold font indicates the

best score except for the models denoted by †‡.

bution type as multiplicative Gaussian and Poisson in (I)–

(L) and (M)–(P), respectively. With regard to a comparison

among GAN models and comparison between SD-NR-GANs

and denoiser+GANs, similar findings (i.e., the best SD-NR-

GAN is comparable with AmbientGAN and outperforms

the best denoiser+GAN) are observed; therefore, herein

we discuss a comparison among SD-NR-GANs. SD-NR-

GAN-II and -III stability work better than SD-NR-GAN-0.

Among the two, SD-NR-GAN-II, which has a stronger as-

sumption, outperforms SD-NR-GAN-III in all cases (with

a difference of over 5.4). SD-NR-GAN-I shows the best or

competitive performance when noises are within or a little

over assumption (I)–(K)(M)–(O); however, when the unex-

pected noise increases (L)(P), the performance degrades.

Summary. Through the comprehensive study, we confirm

the following: (1) NR-GANs work reasonably well compar-

ing to other GAN models and denoiser+GANs. (2) Weakly

constrained NR-GANs stability work well across various

settings, while (3) strongly constrained NR-GANs show a

better performance when noise is within assumption.7

7We provide further analyses and examples of generated images in our

arXiv [33].
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Signal-independent

LSUN BEDROOM FFHQ

(A) (B) (G) (A)

AGF AGV BG AGF

AmbientGAN† 19.4 25.0 9.7 28.3

GAN 98.9 100.9 125.3 81.6

SI-NR-GAN-I 13.8 14.2 128.2 35.7

SI-NR-GAN-II 15.7 16.8 10.8 37.1

Signal-dependent

LSUN BEDROOM FFHQ

(I) (L) (M) (I)

MGF A+I PF MGF

AmbientGAN† 11.7 19.2 32.6 18.7

GAN 54.0 109.8 121.7 48.0

SD-NR-GAN-I 11.6 55.4 23.3 26.5

SD-NR-GAN-II 21.7 15.0 42.8 49.0

SD-NR-GAN-III 50.7 53.1 138.6 37.2

Table 2. Comparison of FID on LSUN BEDROOM and FFHQ.

A smaller value is better. Because the training is time-consuming,

experiments were run once. The notation is the same as that in

Table 1.

8.2. Evaluation on complex datasets

Inspired by the resent large-scale study on GANs [44],

we also examined the performance on more complex

datasets. Referring to this study, we used the 128×128 ver-

sions of LSUN BEDROOM [74] and FFHQ [37].8 LSUN

BEDROOM contains about 3 million bedroom images, ran-

domly split into training and test sets in the ratio of 99 to

1. FFHQ contains 70k face images, partitioned into 60k
training and 10k test images. As these datasets are cal-

culationally demanding, we selected six noises for LSUN

BEDROOM and two noises for FFHQ. We provide the im-

plementation details in our arXiv [33].

Table 2 list the results. Just like the CIFAR-10 results,

we found that the best NR-GAN outperforms standard GAN

and its performance is closer to that of AmbientGAN. In

contrast, differently from the CIFAR-10 results, we found

that in complex datasets, some weakly constrained SD-NR-

GANs suffer from learning difficulty (e.g., SD-NR-GAN-

III in LSUN BEDROOM (M)). This is undesirable but un-

derstandable because in complex datasets it is highly chal-

lenging to isolate noise from the dependent signal without

an explicit knowledge about their dependency. This is re-

lated to GAN training dynamics and addressing this limita-

tion is our future work. As reference, we provide qualitative

results in our arXiv [33].

8.3. Application to image denoising

NR-GANs can generate an image and noise, respec-

tively. By utilizing this, we create clean and noisy image

pairs synthetically and use them for learning a denoiser.

We call this method GeneratedNoise2GeneratedClean

8Strictly speaking, the previous study [44] used CelebA-HQ [36] in-

stead of FFHQ. The reason why we used FFHQ is that FFHQ is the latest

and more challenging dataset that includes vastly more variation.

LSUN BEDROOM FFHQ LSUN BEDROOM FFHQ

(A) (B) (G) (A) (I) (L) (M) (I)

AGF AGV BG AGF MGF A+I PF MGF

N2C♯ 32.90 33.06 29.67 31.93 36.70 32.26 31.77 36.37

N2N‡ 32.30 32.23 28.76 31.33 35.99 31.36 30.55 35.88

N2V 31.98 31.85 20.73 30.95 35.37 31.09 30.30 34.95

N2S 31.79 31.70 20.74 30.74 35.12 30.94 30.19 34.67

GN2GC 32.36 32.47 26.61 31.34 36.01 31.62 31.08 35.69

CBM3D 31.41 31.54 20.75 30.29 33.60 30.43 – 32.73

GAT-BM3D – – – – – – 29.80 –

Table 3. Comparison of PSNR on LSUN BEDROOM and

FFHQ. A larger value is better. We report the median score

across three random seeds. The symbols ♯‡ indicate that the mod-

els are trained in advantageous conditions (♯clean target images

and ‡noisy image pairs are given, respectively). The other models

are trained using only noisy images (not including pairs). Bold

font indicates the best score except for the models denoted by ♯‡.

(GN2GC). In particular, we employed the generators that

achieve the best FID in Table 2 (denoted by bold font).9

Note that NR-GANs are trained only using noisy images;

therefore, GN2GC can be used in the same data setting as

self-supervised learning methods (N2V [43] and N2S [3]).

We used the same training and test sets used in Section 8.2.

We present the implementation details in our arXiv [33].

We summarize the results in Table 3. We found that

GN2GC not only outperforms the state-of-the-art self-

supervised learning methods (N2V and N2S) but also is

comparable with N2N, which learns in advantageous condi-

tions. The requirement for pre-training GANs could narrow

the applications of GN2GC; however, we believe that its po-

tential for image denoising would increase along with rapid

progress of GANs. We show examples of denoised images

in our arXiv [33].

9. Conclusion

To achieve noise robust image generation without full

knowledge of the noise, we developed a new family of

GANs called NR-GANs which learn a noise generator with

a clean image generator, while imposing a distribution or

transformation constraint on the noise generator. In particu-

lar, we introduced five variants: two SI-NR-GANs and three

SD-NR-GANs, which have different assumptions. We ex-

amined the effectiveness and limitations of NR-GANs on

three benchmark datasets and demonstrated the applicabil-

ity in image denoising. In the future, we hope that our find-

ings facilitate the construction of a generative model in a

real-world scenario where only noisy images are available.

Acknowledgement. We thank Naoya Fushishita, Takayuki

Hara, and Atsuhiro Noguchi for helpful discussions. This

work was partially supported by JST CREST Grant Number

JPMJCR1403, and partially supported by JSPS KAKENHI

Grant Number JP19H01115.

9We provide other case results in our arXiv [33].

8411



References

[1] Josue Anaya and Adrian Barbu. RENOIR–A dataset for real

low-light image noise reduction. J. Vis. Commun. Image

Represent., 51:144–154, 2018.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
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