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Abstract

Deep Neural Networks (DNNs) are susceptible to model

stealing attacks, which allows a data-limited adversary with

no knowledge of the training dataset to clone the function-

ality of a target model, just by using black-box query ac-

cess. Such attacks are typically carried out by querying

the target model using inputs that are synthetically gener-

ated or sampled from a surrogate dataset to construct a la-

beled dataset. The adversary can use this labeled dataset

to train a clone model, which achieves a classification ac-

curacy comparable to that of the target model. We propose

“Adaptive Misinformation” to defend against such model

stealing attacks. We identify that all existing model steal-

ing attacks invariably query the target model with Out-Of-

Distribution (OOD) inputs. By selectively sending incorrect

predictions for OOD queries, our defense substantially de-

grades the accuracy of the attacker’s clone model (by up to

40%), while minimally impacting the accuracy (< 0.5%)

for benign users. Compared to existing defenses, our de-

fense has a significantly better security vs accuracy trade-

off and incurs minimal computational overhead.

1. Introduction

The ability of Deep Learning models to solve several

challenging classification problems in fields like computer

vision and natural language processing has proliferated the

use of these models in various products and services such as

smart cameras, intelligent voice assistants and self-driving

cars. In addition, several companies now employ deep

learning models to offer classification as a service to end

users who may not have the resources to train their own

models. In most of these cases, while the model parameters

and the architecture are kept hidden from the end-user, the

user is allowed to interact with the model to obtain the clas-

sification outputs for the user’s inputs. The confidentiality

of these models is important as the models can be misused

in various ways in the hands of an adversary. For instance,

an adversary can use the stolen model to offer a compet-
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Figure 1. Model Stealing Attack: (a) An adversary queries the tar-

get model (dog-breed classifier) using synthetic/surrogate data (cat

images) and constructs a labeled dataset using the predictions of

the model (b) The labeled dataset can then be used to train a clone-

model that replicates the functionality of the target model.

ing service which can be detrimental to business. Further-

more, stolen models can be used to craft adversarial exam-

ples [20, 5, 17, 22], creating vulnerability for safety-critical

applications such as malware detection and can even leak

information about the data used to train the model, causing

privacy issues [4, 19]. These issues create a need to protect

the confidentiality of machine learning models.

Unfortunately, recent attacks [15, 17] have shown that

it is possible for an adversary to carry out model stealing

attacks and train a clone model that achieves a classifica-

tion accuracy that is remarkably close to the accuracy of the

target model (up to 0.99⇥). Moreover, these attacks can

be performed even when the adversary is constrained in the

following ways:

1. The adversary only has black-box query access to the

model i.e. the attacker can query the model with any input

and observe the output probabilities.

2. The adversary is data-limited and does not have ac-

cess to a large number of inputs representative of the train-

ing data of the target model.

Attacks that work under these constraints rely on one of

two methods for generating the data necessary for query-

ing the target model: (a) Synthetic Data: [9, 17] produce

synthetic data from a small set of in-distribution seed ex-
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Figure 2. CDF of Maximum Softmax Probability (MSP) for

queries from: (a) Benign User (b) KnockoffNet Attacker (c)

Jacobian-Based Dataset Augmentation (JBDA) Attacker. Queries

from benign user produce high values of MSP indicating in-

distribution data while queries generated from attacks produce low

values of MSP indicating out-of-distribution data.

amples by iteratively adding heuristic-based perturbations

to the seed examples. (b) Surrogate Data: Several attacks

[15, 21] simply use a surrogate dataset to query the target

model. For example, a cat dataset can be used as the sur-

rogate dataset to query the dog-breed classifier as shown in

Fig 1a. A labeled dataset can be constructed from these

queries, which can be used by the adversary to train a clone

model that mimics the functionality of the target model

(Fig 1b). Such attacks make it viable for an adversary to

create a clone of the target model even with limited/no ac-

cess to the target model’s data distribution. The goal of this

paper is to propose an effective defense for model stealing

attacks carried out by a data-limited adversary with black-

box access to the target model.

We observe that all existing attacks invariably generate

Out-Of-Distribution (OOD) queries. One way to check if

the data is OOD is by plotting the Maximum Softmax Prob-

ability (MSP) of the data produced by the target model.

High values of MSP indicate In-Distribution (ID) data and

low values indicate OOD data [6]. As an example, we char-

acterize the MSP values using a ResNet-18 network trained

on the CIFAR-10 dataset. We plot the CDF of MSP for be-

nign queries sampled from a held-out test set as well as ad-

versarial queries from two representative attacks: 1. Knock-

offnets [15], using surrogate data from CIFAR-100 dataset

and 2. Jacobian-Based Data Augmentation (JBDA) [17],

which uses synthetic data, in Fig 2. Notice that the CDFs

of the queries from both attacks are concentrated towards

lower values of MSP, indicating OOD data, compared to

the inputs from the benign user which produce high MSP

values, implying that the inputs are ID.

Motivated by this observation, we propose Adaptive Mis-

information (AM) to defend against model stealing attacks.

AM selectively sends incorrect predictions for queries that

are deemed OOD, while ID queries are serviced with cor-

rect predictions. Since a large fraction of the adversary’s

queries is OOD, this leads to the mislabeling of a signifi-

cant portion of the adversary’s dataset. Training a model on

this mislabeled dataset results in a low-quality clone with

poor accuracy, reducing the effectiveness of model stealing

attacks. Recent works [12, 16] have used a similar insight of

misleading the adversary, by injecting perturbations to the

predictions of the model. Compared to these perturbation

based defenses, our proposal is more scalable and offers a

significantly better trade-off between model accuracy and

security due to the following key attributes:

1. Adaptive Nature: The adaptive nature of our defense

allows using incorrect predictions to selectively service sus-

picious OOD queries, instead of indiscriminately adding

perturbations to the probabilities for all inputs. This results

in a better trade-off between model accuracy and security

against model stealing attacks.

2. Reduced Correlation through Misinformation: Prior

works add perturbations to the original prediction in order

to mislead the adversary. However, we find that these per-

turbed predictions remain correlated with the original pre-

dictions, leaking information about the original predictions

of the model. In contrast, our defense uses an uncorrelated

misinformation function to generate incorrect predictions,

which reveals no information about the original predictions,

resulting in better security.

3. Low Computational Overhead: Our proposal only re-

quires a single inference pass with a modest increase in the

amount of computation over an undefended model (< 2⇥).

In contrast, existing defenses like Prediction Poisoning [16]

(PP) requires multiple gradient computations and thus in-

curs several orders of magnitude increase in computational

cost and inference latency.

Overall, the contributions of our paper are as follows:

1. We analyze the queries from existing model stealing

attacks (KnockoffNets and JBDA) and identify that these at-

tacks produce a large number of OOD queries. We leverage

this observation to develop an effective defense.

2. We propose Adaptive Misinformation to defend

against model stealing attacks. Our defense involves us-

ing an OOD detector to flag “suspicious” inputs, potentially

from an adversary, and adaptively servicing these queries

with incorrect predictions from an auxiliary “misinforma-

tion model” which produces uncorrelated predictions.

3. We perform extensive empirical studies to evaluate

our defense against multiple model stealing attacks. We plot

the security vs accuracy trade-off curve for various datasets

and show that, owing to its adaptive nature, our defense

achieves a significantly better trade-off compared to prior

art. E.g. for Flowers-17 dataset, AM lowers the clone ac-

curacy to 14.3%, compared to the clone accuracy of 63.6%

offered by PP with comparable defender accuracy of 91%.
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2. Problem Description

Our problem setting involves a data-limited adversary

who is trying to perform model stealing attack on a de-

fender’s model, just using black-box query access. In this

section, we outline the attack and defense objectives. We

also provide background on various attacks that have been

proposed in literature to perform model stealing for a data-

limited adversary.

2.1. Attack Objective

The adversary’s goal is to replicate the functionality of

the defender’s model f(x; θ) by training a clone model

f 0(x; θ0) that achieves high classification accuracy on the

defender’s classification task, as shown in Eqn. 1. Here,

Pdef (X) denotes the distribution of data from the de-

fender’s problem domain, θ represents the parameters of

the defender’s model, and θ0 represents the parameters of

the clone model that the attacker is trying to train.

max
θ0

E
x⇠Pdef (X)

Acc(f 0(x; θ0)) (1)

If the adversary had access to a labeled dataset of inputs

sampled from Pdef (X), the adversary could simply use this

to train the clone-model f 0. However, in a lot of real-world

classification problems, the adversary is data-limited and

lacks access to a sufficiently large dataset that is represen-

tative of Pdef (X).

2.2. Model Stealing Attacks under data limitations

In the absence of a representative dataset, the adversary

can use either synthetic or surrogate data to query the de-

fender’s model. A labeled dataset can be constructed from

the predictions obtained through these queries, which can

be used to train the clone model f 0. These methods rely on

the principle of knowledge distillation [8], where the pre-

dictions of a “teacher” model (defender’s model) are used

to train a “student” model (attacker’s clone model). We de-

scribe ways in which an attacker can generate synthetic and

surrogate data to perform model stealing attacks.

(a) Synthetic Data: The adversary starts by training

a surrogate model f 0 using a small seed dataset Dseed

of ID examples and iteratively augments this dataset with

synthetic examples. Jacobian-Based Data Augmentation

(JBDA) [17, 9] is one such heuristic for generating syn-

thetic examples. For each input x 2 D, this method

generates a synthetic example x0, by perturbing it using

the jacobian of the clone model’s loss function: x0 =
x + λsign (rxL (f 0 (x; θ0))). These synthetic examples

are labeled using the predictions of the defender’s model

y0 = f(x0) and the labeled synthetic examples thus gener-

ated: Dsyn = {x0, y0}, are used to augment the adversary’s

dataset: Dseed = Dseed [Dsyn and retrain f 0.

(b) Surrogate Data: Recent works [15, 21] have shown

that it is possible to use a surrogate distribution Psur(X
0),

which is dissimilar from Pdef (X), to steal the function-

ality of black-box models. The adversary can use inputs

x0 ⇠ Psur(X
0) to query the defender’s model and obtain

the prediction probabilities y0 = f(x0). The labeled data

thus obtained: Dsur = {x0, y0}, can be used as the surro-

gate dataset to train the clone-model f 0.

Such methods enable model stealing attacks, despite the

data limitations of the adversary, posing a threat to the con-

fidentiality of the defender’s black-box model.

2.3. Defense Objective

The defender’s aim is to prevent an adversary from be-

ing able to replicate the functionality of the model. Thus

the defender’s objective involves minimizing the accuracy

of the cloned model f 0 trained by the adversary (Eqn. 2).

min E
x⇠Pdef (X)

[Acc(f 0(x; θ0))] (2)

The defender is also constrained to provide high classifi-

cation accuracy to benign users of the service in order to

retain the utility of the model for the classification task at

hand. We formalize this by stating that the classification ac-

curacy of the model for in-distribution examples has to be

above a threshold T .

E
x⇠Pdef (X)

[Acc(f(x; θ))] � T (3)

Eqn. 2, 3 describe a constrained optimization problem for

the defender. This formulation of the problem allows the

defense to trade off the accuracy of the model for improved

security, as long as the accuracy constraint (Eqn. 3) is satis-

fied. We term defenses that work within these constraints as

accuracy-constrained defenses. Our proposed defense falls

under this framework and allows improvement in security

at the cost of a reduction in classification accuracy.

3. Related Work

We discuss the various defenses against model stealing

attacks that have been proposed in literature. Existing de-

fenses can broadly be categorized into Stateful Detection

Defenses and Perturbation Based Defenses.

3.1. Stateful Detection Defenses

Several works [9, 1] have proposed analyzing the distri-

bution of queries from individual users to classify the user

as adversarial or benign. For instance, [9] uses the L2 dis-

tance between successive queries to detect adversarial at-

tacks based on the assumption that adversarial users send

highly correlated queries. Unfortunately, such methods re-

quires the defender to maintain a history of past queries lim-

iting scalability. Moreover, these defenses are ineffective
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against adaptive attacks, attacks involving multiple collud-

ing adversarial users and attacks that use surrogate datasets,

which do not have correlated queries.

3.2. Perturbation-Based Defenses

In an undefended setting, the attacker has reliable access

to the predictions of the target model f for any arbitrary in-

put x. Perturbation-based defenses modify the original pre-

diction of the model y = f(x; θ) to produce a perturbed pre-

diction y0, preventing the adversary from having reliable ac-

cess to the target model’s predictions. Consequently, train-

ing a clone model with the surrogate dataset: {x, y0} formed

by the adversary results in a low-quality clone model with

reduced accuracy. There are several defenses that work

under different constraints for generating perturbed predic-

tions. They can be broadly categorized into defenses that

preserve the accuracy of the model and defenses that trade-

off accuracy for security. We briefly describe each of these

works before detailing our solution in the following section.

3.2.1 Accuracy Preserving Defenses

These defenses ensure that the accuracy of the model on ID

examples is unchanged after adding the perturbations. For

instance, [12] constrains the perturbation to leave the top-1

class of the perturbed output unchanged i.e argmax(y0i) =
argmax(yi). This preserves the accuracy of the model,

while removing the information present in the probabilities

outputted by the defender’s model. Similarly, [21] avoids

exposing the output probabilities by only sending the hard

labels of the top-1 or top-K classes while servicing requests.

Both these defenses prevent the adversary from accessing

the true prediction probabilities either implicitly or explic-

itly, while retaining the accuracy of the defender’s model.

Unfortunately, subsequent works have shown that the effec-

tiveness of these defenses are limited as the adversary can

still use the top-1 prediction of the model to perform model

stealing attacks [16].

3.2.2 Accuracy-Constrained Defenses

Unlike accuracy preserving attacks, accuracy-constrained

defenses do not require the classification accuracy to be re-

tained after perturbing the predictions of the model. This

allows the defender to trade off model accuracy for better

security by injecting a larger amount of perturbation to the

predictions of the model. However, the amount of perturba-

tion that can be injected is bound by the accuracy constraint

(Eqn. 3), which ensures that the accuracy of the model is

above a specified threshold for ID examples. Prediction

Poisoning [16] (PP) is a recent work that proposes such

an accuracy-constrained defense, whereby the defender per-

turbs the prediction of the model as shown in Eqn. 4

y0 = (1� α)f(x; θ) + αη (4)

The perturbed output y0 is computed by taking a weighted

average between the predictions of the true model f and a

poisoning probability distribution η. The poisoning distri-

bution η is computed with the objective of mis-training the

adversary’s clone model. This is done by maximizing the

angular deviation between the weight gradients of the per-

turbed prediction with that of the original predictions of the

model. α is a tunable parameter that controls the weigh-

tage given to the poisoned distribution and the true output

of the model. Thus, increasing α allows the defender to

trade off the accuracy of the model for increased security

against model stealing attacks by increasing the amount of

perturbation injected into the model’s original predictions.

Note that an inherent limitation of such defenses (including

our proposed defense) is that they cannot be used in applica-

tions where the end-user is reliant on the confidence of the

predictions for downstream processing since the predictions

are perturbed to improve security.

4. Our Proposal: Adaptive Misinformation

Our paper proposes Adaptive Misinformation (AM),

an accuracy-constrained defense to protect against model

stealing attacks. Our defense is based on the observation

that existing model stealing attacks generate a large number

of OOD examples to query the defender’s model. This is be-

cause the adversary is data-limited and does not have access

to a large dataset representative of the defender’s training

dataset. AM takes advantage of this observation by adap-

tively servicing queries that are OOD with misinformation,

resulting in most of the attacker’s queries being serviced

with incorrect predictions. Consequently, a large fraction of

the attacker’s dataset is mislabeled, degrading the accuracy

of the clone model trained on this poisoned dataset. Com-

pared to existing perturbation based defenses like PP, our

proposal has the following distinguishing qualities:

1. AM selectively modifies the predictions only for OOD

queries, leaving the predictions unchanged for ID inputs.

This is in contrast to prior works, which perturb the predic-

tions indiscriminately for all inputs

2. In existing perturbation based defenses, there is a sig-

nificant amount of correlation between the perturbed predic-

tion y0 and the original prediction y, which leaks informa-

tion that can be exploited by an adversary (discussed further

in Section 5.2.1). In contrast, AM ensures that y0 is uncor-

related with y for OOD queries and therefore avoids leaking

information about the original predictions.

3. PP requires expensive gradient computations to deter-

mine the perturbations. In contrast, AM has low computa-

tional overheads and just requires evaluation of an auxiliary

misinformation model.
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These advantages allow our defense to achieve a bet-

ter trade-off between classification accuracy and security

compared to existing defenses, with a low computational

overhead. Fig. 3 shows the block diagram of our proposed

Adaptive Misinformation defense. In addition to the de-

fender’s model f , there are three components that make up

our defense: (1) An OOD detector (2) A misinformation

function (f 0) (3) A mechanism to gradually switch between

the predictions of f and f 0 depending on the input.

For an input query x, AM first determines if the input

is ID or OOD. If the input is ID, the user is assumed to

be benign and AM uses the predictions of f to service the

request. On the other hand, if x an OOD input, the user is

considered to be malicious and the query is serviced using

the incorrect predictions generated from f̂ . In the remainder

of this section, we explain the different components of our

defense in more detail.

x
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Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f 0, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem

in deep learning [6, 10, 13, 11, 23, 3], where the objective is

to determine if an input received by the model during test-

ing is dissimilar to the inputs seen during training. This can

be used to detect and flag anomalous or hard to classify in-

puts which might require further examination or human in-

tervention. A simple proposal to detect OOD examples [6]

involves using the Maximum Softmax Probability (MSP) of

the model. For a model that outputs a set of K output prob-

abilities {yi}
K
i=1 for an input x, OOD detection can be done

by thresholding the MSP as shown in Eqn. 5.

Det(x) =

(

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-

tions on ID inputs, similar to the ones seen during training

and less confident predictions on OOD examples that are

dissimilar to the training dataset. Outlier Exposure [7] is a

recent work that improves the performance of the threshold-

based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce

uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training

as shown in Eqn. 6.

E(x,y)2Din
[L (f (x) , y)] + λEx02Dout

[L (f (x0) ,U)] (6)

This ensures that the model produces accurate and confi-

dent predictions for inputs sampled from Din, while OOD

examples produce less confident predictions, improving the

ability of the detector to distinguish them. We train the de-

fender’s model with outlier exposure and use a threshold-

based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we

want to provide incorrect predictions that are dissimilar to

the predictions of the true model in order to deceive the ad-

versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the

probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as

described by Eqn. 7 to achieve this objective.

loss = E(x,y)2Din

h

�log(1� f̂(x, y))
i

(7)

This loss term is minimized when the misinformation model

produces low probability for the correct class y. We use this

model to provide misleading information to OOD queries,

making it harder for an adversary to train a clone model that

obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-

tween the outputs of the defender’s model (f ) and the mis-

information model (f̂ ), depending on whether the input x

is ID or OOD. In order to achieve this, we first pass x

through an OOD detector, which simply requires comput-

ing the maximum softmax probability ymax of all the output

classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while

a smaller value indicates an OOD input. We use a thresh-

old τ to classify between ID and OOD inputs as shown in

Eqn. 5. The predictions of f and f̂ are combined by using

a reverse sigmoid function S(x) to produce the final output

probabilities y0 as shown in Eqn. 9, 10.

y0 = (1� α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax � τ) (10)

S(z) =
1

1 + eνz
(11)
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Thus for an ID input, with ymax > τ , we obtain α < 0.5
with y0 ! f(x; θ) as α ! 0. Similarly, for an OOD input

with ymax < τ , we obtain α > 0.5 with y0 ! f̂(x; θ̂) as

α ! 1. ν in Eqn. 11 indicates the growth rate of the sig-

moid. We set ν = 1000 for all of our experiments. Thus,

an adversary accessing the model with OOD inputs obtains

the predictions of f 0 instead of the true predictions of model

f , while inputs from benign users of the service sending ID

queries would be serviced by f . This results in the adver-

sary’s dataset containing examples which have been misla-

beled, leading to a degradation in the accuracy of the clone

model trained on this data.

Security vs Accuracy Trade-off: The OOD detector

has a trade-off between true and false positive rates. In gen-

eral, by lowering the value of the detector threshold τ , we

can increase the number of OOD inputs classified correctly

(true positive rate), which improves security as more OOD

queries are serviced with misinformation. However, this

also results in a higher number of ID inputs misclassified

as OOD (false positive rate), leading to a greater number

of ID inputs being serviced with misinformation, degrading

the accuracy of the defender’s model for benign ID exam-

ples. By appropriately setting the value of τ , the defender

can pick a trade-off point between security and accuracy

that satisfies the accuracy-constraint (Eqn. 3).

5. Experiments

We perform experiments to evaluate our defense against

various model stealing attacks. Additionally, we compare

AP against existing defenses and show that our defense of-

fers better protection against model stealing compared to

prior art. We describe our experimental setup followed by

the results in this section.

5.1. Setup

Our experimental setup involves a defender who hosts

a model f , trained for a specific classification task. The

attacker aims to produce the clone model f 0, which achieves

high classification accuracy on the same classification task.

We briefly describe the classification tasks as well as the

attacks and defenses that we use in our evaluations.

Datasets and model architecture: We focus on vision

based classification tasks using DNNs in our experiments.

Table 1 lists the various datasets and model architectures

used to train the defender’s model f as well as the test accu-

racy achieved by the models. As mentioned in section 4.1,

we train our model with outlier exposure [7] to improve the

performance of OOD detection. For this purpose, we use

KMNIST [2] for MNIST and FashionMNIST, ImageNet1k

for CIFAR-10, and Indoor67 [18] for Flowers-17 [14] as the

outlier datasets.

Attacks: We evaluate our defense against two represen-

tative model stealing attacks:

Dataset DNN Architecture Accuracy(%)

MNIST LeNet 99.4

FashionMNIST LeNet 91.47

CIFAR-10 ResNet-18 93.6

Flowers-17 ResNet-18 98.2

Table 1. Datasets and model architectures used to train the de-

fender’s model

1. KnockoffNets [15]: This attack uses surro-

gate data to perform model stealing as described in

section 2.2. We use EMNISTLetters/EMNIST/CIFAR-

100/ImageNet1k as the surrogate datasets to attack the

MNIST/FashionMNIST/CIFAR-10/Flowers-17 models re-

spectively. We assume a query budget of 50000 examples

and train all clone models for 50 epochs.

2. Jacobian-Based Dataset Augmentation (JBDA) [9,

17]: This attack constructs a synthetic dataset by itera-

tively augmenting an initial set of seed examples with per-

turbed examples constructed using the jacobian of the clone

model’s loss function. We use a seed dataset of 150 exam-

ples with 6 rounds of augmentation to construct the adver-

sary’s dataset. Between each augmentation round, the clone

model is trained for 10 epochs and λ is set to 0.1.

To improve the efficacy of the attacks, we use the same

model architecture as the defender’s model to train the clone

model. Additionally, for the ResNet-18 models, we initial-

ize the weights using a network pre-trained on the ImageNet

dataset. We use a learning rate of 0.1 and 0.001 for LeNet

and ResNet-18 models respectively.

Comparison with existing Defenses: Only a small

number of defenses currently exist for model stealing

attacks. We compare our defense against two recent

perturbation-based defenses:

1. Deceptive Perturbation (DCP): This is a accuracy-

preserving defense that adds deceptive perturbations to

the predictions of the model but leaves the top-1 class

unchanged[12]. Injecting perturbations removes informa-

tion about prediction probabilities but preserves informa-

tion about the argmax prediction of the model.

2. Prediction Poisoning (PP): This is an accuracy-

constrained defense that perturbs the predictions of the

model with an objective of mistraining the adversary’s clone

model[16]. Increasing the amount of perturbation allows

the defender to trade off the model accuracy for increased

security, similar to our defense.

5.2. Results

Our defense allows the defender to trade off the de-

fender’s model accuracy for increased security against

model stealing attacks by varying the threshold τ of the

OOD detector as described in section 4.3. We measure

security by the accuracy of the clone model trained using

model stealing attacks, with a lower clone-model accuracy

775



Figure 4. Defender Accuracy vs Clone Accuracy trade-off for defenses evaluated against two attacks: (a) KnockoffNets (b) Jacobian Based

Dataset Augmentation. Perturbation based defenses can improve security (lower clone model accuracy) at the expense of reduced defender

accuracy. Our proposal Adaptive Misinformation offers a better trade-off compared to existing defenses. E.g. in case of Flowers-17 dataset

with KnockoffNets attack, PP achieves a clone accuracy of 63.6% with a defender accuracy of 91.1%. In comparison, AM yields a much

lower clone accuracy of 14.3% (-49.3%) for the same defender accuracy, significantly improving the trade-off compared to PP.

indicating better security. We plot this trade-off curve of de-

fender’s model accuracy vs clone model accuracy evaluated

against different attacks and show that our defense offers a

better trade-off compared to existing defenses for various

classification tasks. We also present an ablation study to

understand the contribution of different components of our

defense in Appendix A.

5.2.1 KnockoffNets Attack

Figure 4a shows the trade-off curve of Adaptive Mis-

information (AM) evaluated against the KnockoffNets at-

tack. Our results show that AM is able to reduce clone

model accuracy significantly, with only a small degrada-

tion in defender model accuracy. Additionally, we compare

our results with the trade-offs offered by two existing de-

fenses: Prediction Poisoning (PP) and Deceptive Perturba-

tions (DCP). Note that PP allows a variable amount of per-

turbation to be added, leading to a trade-off curve whereas

DCP has a fixed perturbation leading to a single trade-off

point. We also plot the trade-off points for an ideal defense

and an undefended model for reference.

Comparison with PP: Our results show that for a given

defender accuracy, AM has a lower clone accuracy com-

pared to PP for all datasets, offering a better trade-off be-

tween security and accuracy. For instance, AM lowers

clone accuracy by 49.3% compared to PP with compara-

ble defender accuracy (91.1%) in the case of the Flowers-

17 dataset. We highlight and explain two key differences

between the trade-off curves of AM and PP:

1. For PP, as we increase security (reduce clone model

accuracy), the accuracy of the defender’s model declines

sharply to 0%, while AM retains high defender model ac-

curacy. This is because PP indiscriminately perturbs pre-

dictions for all queries. As the amount of perturbation is in-

creased, the top-1 class of y0 changes to an incorrect class,

leading to a steep drop in the accuracy of benign inputs.

AM avoids this problem by using an adaptive mechanism

that only modifies the probabilities for OOD queries, allow-

ing ID queries to retain a high classification accuracy.

2. For PP, even as the defender accuracy falls to 0%,

the clone accuracy continues to be high (close to 50% for

MNIST and Flowers-17). This is because there is a high

correlation between the original predictions y and the per-

turbed predictions y0. We can quantify the correlations be-

tween y and y0 by using Hellinger distance. We plot the

CDF of Hellinger distance for a LeNet model (trained with

MNIST) under KnockoffNets attack in Fig 5, comparing

AM and PP for the same defender accuracy (92%). We find

that the predictions of PP have lower Hellinger distance in-

dicating a higher correlation with the true predictions of the

defender’s model. Sending correlated predictions allows the
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Figure 5. CDF of Hellinger distance comparing true prediction y

and poisoned predictions y0, computed for AM and PP for a LeNet

model trained on MNIST under KnockoffNets attack, with compa-

rable defender accuracy. The Hellinger distance is larger for AM

compared to PP indicating less correlation between y0 and y

adversary to learn a clone model with higher accuracy. In

contrast, AM avoids leaking information about the predic-

tions of the original model f by switching to the predictions

of the misinformation model f̂ when an OOD input is en-

countered. Therefore, by using uncorrelated probabilities to

service OOD queries, AM can offer better security without

severely degrading the defender’s model accuracy.

Comparison with DCP: For the DCP defense, since the

top-1 class of the model remains unchanged after adding

perturbations, the optimal strategy for the adversary is to

use argmax labels from the perturbed predictions to train the

clone model. Our results show that DCP only marginally

improves security compared to an undefended model. In

contrast, our defense is able to lower the clone model ac-

curacy significantly. We also evaluate AM and PP with the

attacker using an argmax-label strategy. We find this strat-

egy to be less effective for the attacker, as it results in a

lower accuracy compared to using the model’s predictions

to train the clone-model.

5.2.2 Jacobian Based Dataset Augmentation Attack

Figure 4b shows the trade-off curve for the JBDA attack.

We find that this attack produces clones with lower accura-

cies compared to the KnockoffNets attack. The results for

the PP defense shows that the defender accuracy quickly

drops to 0%, even as the clone accuracy remains high, simi-

lar to the KnockoffNets attack. Our defense does not suffer

from this problem and offers a better trade-off compared to

PP. Additionally, we find that using the argmax labels of-

fers a better clone model accuracy for this attack depending

on the trade-off point. In this case, AM has a comparable

or slightly better trade-off curve compared to PP. As be-

fore, the security offered by the DCP defense is marginally

better than the undefended case, provided the attacker uses

argmax labels to train the clone model.

6. Discussions on Adaptive Attacks

In this section, we discuss adaptive attacks against AM

and provide simple solutions that can prevent such attacks.

Can the defense be treated as part of the black box

to perform model stealing attack? : In order to train

a high accuracy clone model with a limited query budget,

the adversary needs to maximize the number of inputs that

get serviced by f . Since our defense returns the predic-

tions of f only for in-distribution inputs, just a small frac-

tion of the adversary’s queries (which are misclassified as

in-distribution by the OOD detector) get serviced by f . In

the absence of a way to reliably generate in-distribution in-

puts, the adversary would require a much larger query bud-

get compared to other defenses to reach the desired level of

clone accuracy. Furthermore, this would expose the adver-

sary to other detection mechanisms. E.g. a user sending a

large fraction of OOD examples can be blacklisted.

Can the adversary distinguish when the inputs are

being serviced by f vs f̂? : For an input to be serviced by

f , it has to be classified as an ID example producing high

MSP on f . Thus, the adversary can potentially use the con-

fidence of the top-1 class as an indication of when the input

is serviced by f and only use these inputs to train the clone

model. While this can improve the accuracy of the clone

model, the adversary would still need a much larger query

budget since only a small fraction of the adversary’s queries

are serviced by f . Additionally, we can easily prevent such

detection by smoothing the posterior probabilities of f or

sharpening the probabilities of f̂ to make the distribution of

MSP identical between the outputs of f and f̂ .

7. Conclusion

We propose Adaptive Misinformation to defend against

black-box model stealing attacks in the data-limited set-

ting. We identify that existing model stealing attacks invari-

ably use out of distribution data to query the target model.

Our defense exploits this observation by identifying out

of distribution inputs and selectively servicing such inputs

with incorrect predictions (misinformation). Our evalua-

tions against existing attacks show that AM degrades clone

model accuracy by up to 40% with a minimal impact on

the defender accuracy (< 0.5%). In addition, our defense

has lower computational overhead (< 2⇥) and significantly

better security vs accuracy trade-off (up to 49.3% reduction

in clone accuracy) compared to existing defenses.

8. Acknowledgements

We thank our colleagues from the Memory Systems Lab

and anonymous reviewers at CVPR internal review at Geor-

gia Tech for their feedback. We also thank NVIDIA for the

donation of the Titan V GPU used for this research.

777



References

[1] Steven Chen, Nicholas Carlini, and David A. Wagner. State-

ful detection of black-box adversarial attacks. CoRR,

abs/1907.05587, 2019. 3

[2] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto,

Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep Learn-

ing for Classical Japanese Literature. arXiv e-prints, page

arXiv:1812.01718, Dec 2018. 6

[3] Akshay Raj Dhamija, Manuel Günther, and Terrance E.

Boult. Reducing network agnostophobia. CoRR,

abs/1811.04110, 2018. 5

[4] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.

Model inversion attacks that exploit confidence information

and basic countermeasures. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Se-

curity, pages 1322–1333. ACM, 2015. 1

[5] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Inter-

national Conference on Learning Representations, 2015. 1

[6] Dan Hendrycks and Kevin Gimpel. A baseline for detect-

ing misclassified and out-of-distribution examples in neural

networks. CoRR, abs/1610.02136, 2016. 2, 5

[7] Dan Hendrycks, Mantas Mazeika, and Thomas G. Diet-

terich. Deep anomaly detection with outlier exposure. CoRR,

abs/1812.04606, 2018. 5, 6, 10

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling

the Knowledge in a Neural Network. arXiv e-prints, page

arXiv:1503.02531, Mar 2015. 3

[9] Mika Juuti, Sebastian Szyller, Alexey Dmitrenko, Samuel

Marchal, and N. Asokan. PRADA: protecting against DNN

model stealing attacks. CoRR, abs/1805.02628, 2018. 1, 3,

6

[10] Balaji Lakshminarayanan, Alexander Pritzel, and Charles

Blundell. Simple and Scalable Predictive Uncertainty Es-

timation using Deep Ensembles. arXiv e-prints, page

arXiv:1612.01474, Dec 2016. 5

[11] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo

Shin. Training Confidence-calibrated Classifiers for De-

tecting Out-of-Distribution Samples. arXiv e-prints, page

arXiv:1711.09325, Nov 2017. 5

[12] Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su.

Defending against model stealing attacks using deceptive

perturbations. CoRR, abs/1806.00054, 2018. 2, 4, 6

[13] Shiyu Liang, Yixuan Li, and R. Srikant. Principled detection

of out-of-distribution examples in neural networks. CoRR,

abs/1706.02690, 2017. 5

[14] M-E Nilsback and Andrew Zisserman. A visual vocabu-

lary for flower classification. In 2006 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR’06), volume 2, pages 1447–1454. IEEE, 2006. 6

[15] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.

Knockoff nets: Stealing functionality of black-box models.

CoRR, abs/1812.02766, 2018. 1, 2, 3, 6

[16] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.

Prediction poisoning: Utility-constrained defenses against

model stealing attacks. CoRR, abs/1906.10908, 2019. 2,

4, 6

[17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow,

Somesh Jha, Z. Berkay Celik, and Ananthram Swami. Prac-

tical black-box attacks against deep learning systems using

adversarial examples. CoRR, abs/1602.02697, 2016. 1, 2, 3,

6

[18] A. Quattoni and A. Torralba. Recognizing indoor scenes.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 413–420, June 2009. 6

[19] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Mem-

bership inference attacks against machine learning models.

CoRR, abs/1610.05820, 2016. 1

[20] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fer-

gus. Intriguing properties of neural networks. CoRR,

abs/1312.6199, 2013. 1
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