
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks

Animesh Karnewar

TomTom

animesh.karnewar@tomtom.com

Oliver Wang

Adobe Research

owang@adobe.com

CelebA-HQ FFHQ

Figure 1: Results of our proposed MSG-GAN technique where the generator synthesizes images at all resolutions simulta-

neously and gradients flow directly to all levels from a single discriminator. The first column has a resolution of 4x4 which

increases towards the right reaching the final output resolution of 1024x1024. Best viewed zoomed in on screen.

Abstract

While Generative Adversarial Networks (GANs) have

seen huge successes in image synthesis tasks, they are no-

toriously difficult to adapt to different datasets, in part due

to instability during training and sensitivity to hyperparam-

eters. One commonly accepted reason for this instability is

that gradients passing from the discriminator to the gener-

ator become uninformative when there isn’t enough over-

lap in the supports of the real and fake distributions. In

this work, we propose the Multi-Scale Gradient Genera-

tive Adversarial Network (MSG-GAN), a simple but effec-

tive technique for addressing this by allowing the flow of

gradients from the discriminator to the generator at multi-

ple scales. This technique provides a stable approach for

high resolution image synthesis, and serves as an alterna-

tive to the commonly used progressive growing technique.

We show that MSG-GAN converges stably on a variety of

image datasets of different sizes, resolutions and domains,

as well as different types of loss functions and architectures,

all with the same set of fixed hyperparameters. When com-

pared to state-of-the-art GANs, our approach matches or

exceeds the performance in most of the cases we tried.

1. Introduction

Since their introduction by Goodfellow et al. [10], Gen-

erative Adversarial Networks (GANs) have become the de

facto standard for high quality image synthesis. The suc-

cess of GANs comes from the fact that they do not require

manually designed loss functions for optimization, and can

therefore learn to generate complex data distributions with-

out the need to be able to explicitly define them. While

flow-based models such as [6, 7, 27, 18] and autoregressive

models such as [32, 31, 29] allow training generative mod-

els directly using Maximum Likelihood Estimation (explic-

itly and implicitly respectively), the fidelity of the generated

images has not yet been able to match that of the state-of-

the-art GAN models [15, 16, 17, 3]. However, GAN train-

ing suffers from two prominent problems: (1) mode col-

lapse and (2) training instability.

The problem of mode collapse occurs when the genera-

tor network is only able to capture a subset of the variance

present in the data distribution. Although numerous works

[28, 41, 15, 21] have been proposed to address this problem,

it remains an open area of study. In this work, however, we

address the problem of training instability. This is a funda-

mental issue with GANs, and has been widely reported by

7799



Figure 2: Architecture of MSG-GAN, shown here on the base model proposed in ProGANs [15]. Our architecture includes

connections from the intermediate layers of the generator to the intermediate layers of the discriminator. Multi-scale im-

ages sent to the discriminator are concatenated with the corresponding activation volumes obtained from the main path of

convolutional layers followed by a combine function (shown in yellow).

previous works [28, 22, 2, 11, 19, 33, 14, 15, 37, 25]. We

propose a method to address training instability for the task

of image generation by investigating how gradients at mul-

tiple scales can be used to generate high resolution images

(typically more challenging due to the data dimensionality)

without relying on previous greedy approaches, such as the

progressive growing technique [15, 16]. MSG-GAN allows

the discriminator to look at not only the final output (high-

est resolution) of the generator, but also at the outputs of

the intermediate layers (Fig. 2). As a result, the discrim-

inator becomes a function of multiple scale outputs of the

generator and importantly, passes gradients to all the scales

simultaneously (more details in section 1.1 and section 2).

Furthermore, our method is robust to different loss func-

tions (we show results on WGAN-GP and Non-saturating

GAN loss with 1-sided gradient penalty), datasets (we

demonstrate results on a wide range of commonly used

datasets and a newly created Indian Celebs dataset), and ar-

chitectures (we integrate the MSG approach with both Pro-

GANs and StyleGAN base architectures). Much like pro-

gressive growing [15], we note that multi-scale gradients

account for a considerable improvement in FID score over

the vanilla DCGAN architecture. However, our method

achieves better performance with comparable training time

to state-of-the-art methods on most existing datasets with-

out requiring the extra hyperparameters that progressive

growing introduces, such as training schedules and learning

rates for different generation stages (resolutions). This ro-

bustness allows the MSG-GAN approach to be easily used

“out-of-the-box” on new datasets. We also show the impor-

tance of the multi-scale connections on multiple generation

stages (coarse, medium, and fine), through ablation experi-

ments on the high resolution FFHQ dataset.

In summary, we present the following contributions.

First, we introduce a multiscale gradient technique for im-

age synthesis that improves the stability of training as de-

fined in prior work. Second, we show that we can ro-

bustly generate high quality samples on a number of com-

monly used datasets, including CIFAR10, Oxford102 flow-

ers, CelebA-HQ, LSUN Churches, Flickr Faces HQ and our

new Indian Celebs all with the same fixed hyperparameters.

This makes our method easy to use in practice.

1.1. Motivation

Arjovsky and Bottou [1] pointed out that one of the

reasons for the training instability of GANs is due to the

passage of random (uninformative) gradients from the dis-

criminator to the generator when there is insubstantial over-

lap between the supports of the real and fake distributions.

Since the inception of GANs, numerous solutions have been

proposed to this problem. One early example proposes

adding instance noise to the real and the fake images so

that the supports minimally overlap [1, 30]. More recently,

Peng et al. [25] proposed a mutual information bottleneck

7800



between input images and the discriminator’s deepest rep-

resentation of those input images called the variational dis-

criminator bottleneck (VDB) [25], and Karras et al. [15]

proposed a progressive growing technique to add continu-

ally increasing resolution layers. The VDB solution forces

the discriminator to focus only on the most discerning fea-

tures of the images for classification, which can be viewed

as an adaptive variant of instance noise. Our work is orthog-

onal to the VDB technique, and we leave an investigation

into a combination of MSG-GAN and VDB to future work.

The progressive growing technique tackles the instability

problem by training the GAN layer-by-layer by gradually

doubling the operating resolution of the generated images.

Whenever a new layer is added to the training it is slowly

faded in such that the learning of the previous layers are

retained. Intuitively, this technique helps with the support

overlap problem because it first achieves a good distribution

match on lower resolutions, where the data dimensionality

is lower, and then partially-initializes (with substantial sup-

port overlap between real and fake distributions) higher res-

olution training with these previously trained weights, fo-

cusing on learning finer details.

While this approach is able to generate state-of-the-art

results, it can be hard to train, due to the addition of hyper-

parameters to be tuned per resolution, including different

iteration counts, learning rates (which can be different for

the Generator and Discriminator [12]) and the fade-in itera-

tions. In addition, a concurrent submission [17] discovered

that it leads to phase artifacts where certain generated fea-

tures are attached to specific spatial locations. Hence our

main motivation lies in addressing these problems by pro-

viding a simpler alternative that leads to high quality results

and stable training.

Although the current state-of-the-art in class conditional

image generation on the Imagenet dataset, i.e. BigGAN

[4], doesn’t employ multi-scale image generation, note that

the highest resolution they operate on is 512x512. All

high resolution state-of-the-art methods [15, 16, 17, 34, 40]

use some or the other form of multi-scale image synthe-

sis. Multi-scale image generation is a well established

technique, with methods existing well before deep net-

works became popular for this task [20, 35]. More re-

cently, a number of GAN-based methods break the pro-

cess of high resolution image synthesis into smaller sub-

tasks [36, 39, 38, 8, 9, 15, 34, 40]. For example, LR-

GAN [36] uses separate generators for synthesizing the

background, foreground and compositor masks for the fi-

nal image. Works such as GMAN and StackGAN employ a

single generator and multiple discriminators for variation in

teaching and multi-scale generation respectively [8, 39, 38].

MAD-GAN [9], instead uses multiple generators to address

mode-collapse by training a multi-agent setup in such a way

that different generators capture different modalities in the

training dataset. LapGAN [5] models the difference be-

tween the generated multi-scale components of a Laplacian

pyramid of the images using a single generator and mul-

tiple discriminators for different scales. Pix2PixHD [34]

uses three architecturally similar discriminators acting upon

three different resolutions of the images obtained by down-

sampling the real and the generated images.

Our proposed method draws architectural inspiration

from all these works and builds upon their teachings and

ideologies, but has some key differences. In MSG-GAN,

we use a single discriminator and a single generator with

multi-scale connections, which allows for the gradients to

flow at multiple resolutions simultaneously. There are sev-

eral advantages (driven largely by the simplicity) of the pro-

posed approach. If multiple discriminators are used at each

resolution [39, 38, 5, 40, 34], the total parameters grow ex-

ponentially across scales, as repeated downsampling lay-

ers are needed, whereas in MSG-GAN the relationship is

linear. In addition, multiple discriminators with different

effective fields [34, 40] are not able to share information

across scales, which could make the task easier. Besides

having fewer parameters and design choices required, our

approach also avoids the need for an explicit color consis-

tency regularization term across images generated at multi-

ple scales, which was necessary, e.g. in StackGAN [38].

2. Multi-Scale Gradient GAN

We conduct experiments with the MSG-GAN framework

applied to two base architectures, ProGANs [15] and Style-

GAN [16]. We call these two methods MSG-ProGAN and

MSG-StyleGAN respectively. Despite the name, there is

no progressive growing used in any of the MSG variants,

and we note that ProGANs without progressive growing is

essentially the DCGAN [26] architecture. Figure 2 shows

an overview of our MSG-ProGAN architecture, which we

define in more detail in this section, and include the MSG-

StyleGAN model details in the supplemental material.

Let the initial block of the generator function ggen be de-

fined as ggen : Z 7→ Abegin, such that sets Z and Abegin are

respectively defined as Z = R
512, where z ∼ N(0, I) such

that z ∈ Z and Abegin = R
4×4×512 contains [4x4x512]

dimensional activations. Let gi be a generic function which

acts as the basic generator block, which in our implemen-

tation consists of an upsampling operation followed by two

conv layers.

gi : Ai−1 7→ Ai (1)

where, Ai = R
2i+2

×2i+2
×ci (2)

and, i ∈ N;A0 = Abegin (3)

where ci is the number of channels in the ith intermediate

activations of the generator. We provide the sizes of ci in

all layers in the supplementary material. The full generator

7801



GEN (z) then follows the standard format, and can be de-

fined as a sequence of compositions of k such g functions

followed by a final composition with ggen:

y′ = GEN (z) = gk ◦ gk−1 ◦ ...gi ◦ ...g1 ◦ ggen(z). (4)

We now define the function r which generates the output

at different stages of the generator (red blocks in Fig. 2),

where the output corresponds to different downsampled ver-

sions of the final output image. We model r simply as a

(1x1) convolution which converts the intermediate convo-

lutional activation volume into images.

ri : Ai 7→ Oi (5)

where, Oi = R
2i+2

×2i+2
×3

[0−1] (6)

hence, ri(gi(z)) = ri(ai) = oi (7)

where, ai ∈ Ai and oi ∈ Oi (8)

In other words, oi is an image synthesized from the output

of the ith intermediate layer of the generator ai. Similar to

the idea behind progressive growing [15], r can be viewed

as a regularizer, requiring that the learned feature maps are

able to be projected directly into RGB space.

Now we move on to defining the discriminator. Because

the discriminator’s final critic loss is a function of not only

the final output of the generator y′, but also the intermediate

outputs oi, gradients can flow from the intermediate layers

of the discriminator to the intermediate layers of the gen-

erator. We denote all the components of the discriminator

function with the letter d. We name the final layer of the dis-

criminator (which provides the critic score) dcritic(z
′), and

the function which defines the first layer of the discrimina-

tor d0(y) or d0(y′), taking the real image y (true sample) or

the highest resolution synthesized image y′ (fake sample) as

the input. Similarly, let dj represent the intermediate layer

function of the discriminator. Note that i and j are always

related to each other as j = k−i. Thus, the output activation

volume a′j of any jth intermediate layer of the discriminator

is defined as:

a′j = dj(φ(ok−j , a
′

j−1 )) (9)

= dj(φ(oi , a
′

j−1 )), (10)

where φ is a function used to combine the output oi of the

(i)th intermediate layer of the generator (or correspond-

ingly downsampled version of the highest resolution real

image y) with the corresponding output of the (j − 1)th in-

termediate layer in the discriminator. In our experiments,

we experimented with three different variants of this com-

bine function:

φsimple(x1, x2) = [x1;x2] (11)

φlin cat(x1, x2) = [r′(x1);x2] (12)

φcat lin(x1, x2) = r′([x1;x2]) (13)

where, r′ is yet another (1x1) convolution operation similar

to r and [; ] is a simple channelwise concatenation operation.

We compare these different combine functions in Sec 4.

The final discriminator function is then defined as:

DIS (y′, o0, o1, ...oi, ...ok−1) = (14)

dcritic ◦ d
k(., o0) ◦ d

k−1(., o1) ◦ ...d
j(., oi) ◦ ...d

0(y′)
(15)

We experimented with two different loss functions for

the dcritic function namely, WGAN-GP [11] which was

used by ProGAN [15] and Non-saturating GAN loss with

1-sided GP [10, 23] which was used by StyleGAN [16].

Please note that since the discriminator is now a function of

multiple input images generated by the generator, we mod-

ified the gradient penalty to be the average of the penalties

over each input.

3. Experiments

While evaluating the quality of GAN generated images is

not a trivial task, the most commonly used metrics today are

the Inception Score (IS, higher is better) [28] and Fréchet

Inception Distance (FID, lower is better) [12]. In order to

compare our results with the previous works, we use the IS

for the CIFAR10 experiments and the FID for the rest of the

experiments, and report the “number of real images shown”

as done in prior work [15, 16].

New Indian Celebs Dataset In addition to existing

datasets, we also collect a new dataset consisting of Indian

celebrities. To this end, we collected the images using a

process similar to CelebA-HQ. First, we downloaded im-

ages for Indian celebrities by scraping the web for related

search queries. Then, we detected faces using an off the

shelf face-detector and cropped and resized all the images

to 256x256. Finally, we manually cleaned the images by

filtering out low-quality, erroneous, and low-light images.

In the end, the dataset contained only 3K samples, an order

of magnitude less than CelebA-HQ.

3.1. Implementation Details

We evaluate our method on a variety of datasets of dif-

ferent resolutions and sizes (number of images); CIFAR10

(60K images at 32x32 resolution); Oxford flowers (8K

images at 256x256), LSUN churches (126K images at

256x256), Indian Celebs (3K images at 256x256 res-

olution), CelebA-HQ (30K images at 1024x1024) and

FFHQ (70K images at 1024x1024 resolution).

For each dataset, we use the same initial latent dimen-

sionality of 512, drawn from a standard normal distribution

N(0, I) followed by hypersphere normalization [15]. For

all experiments, we use the same hyperparameter settings

for MSG-ProGAN and MSG-StyleGAN (lr=0.003), with

7802



(a) LSUN churches (b) Indian Celebs (c) Oxford Flowers

Figure 3: Random, uncurated samples generated by MSG-StyleGAN on different mid-level resolution (256x256) datasets.

Our approach generates high quality results across all datasets with the same hyperparameters. Best viewed zoomed in on

screen.

Dataset Size Method # Real Images GPUs used Training Time FID (↓)

Oxford Flowers (256x256) 8K ProGANs∗ 10M 1 V100-32GB 104 hrs 60.40

MSG-ProGAN 1.7M 1 V100-32GB 44 hrs 28.27

StyleGAN∗ 7.2M 2 V100-32GB 33 hrs 64.70

MSG-StyleGAN 1.6M 2 V100-32GB 16 hrs 19.60

Indian Celebs (256x256) 3K ProGANs∗ 9M 2 V100-32GB 37 hrs 67.49

MSG-ProGAN 2M 2 V100-32GB 34 hrs 36.72

StyleGAN∗ 6M 4 V100-32GB 18 hrs 61.22

MSG-StyleGAN 1M 4 V100-32GB 7 hrs 28.44

LSUN Churches (256x256) 126K StyleGAN∗ 25M 8 V100-16GB 47 hrs 6.58

MSG-StyleGAN 24M 8 V100-16GB 50 hrs 5.2

Table 1: Experiments on mid-level resolution (i.e. 256x256) datasets. We use author provided scores where possible, and

otherwise train models with the official code and recommended hyperparameters (denoted “∗”)

the only differences being the number of upsampling lay-

ers (fewer for lower resolution datasets).

All models were trained with RMSprop (lr=0.003) for

generator and discriminator. We initialize parameters ac-

cording to the standard normal N(0, I) distribution. To

match previously published work, StyleGAN and MSG-

StyleGAN models were trained with Non-saturating GAN

loss with 1-sided GP while ProGANs and MSG-ProGAN

models were trained with the WGAN-GP loss function.

We also extend the MinBatchStdDev technique [15, 16],

where the average standard deviation of a batch of activa-

tions is fed to the discriminator to improve sample diversity,

to our multiscale setup. To do this, we add a separate Min-

BatchStdDev layer at the beginning of each block in the

discriminator. This way, the discriminator obtains batch-

statistics of the generated samples along with the straight-

path activations at each scale, and can detect some degree

of mode collapse by the generator.

When we trained the models ourselves, we report train-

ing time and GPUs used. We use the same machines for

corresponding set of experiments so that direct training time

comparisons can be made. Please note that the variation

in numbers of real images shown and training time is be-

cause, as is common practice, we report the best FID score

obtained in a fixed number of iterations, and the time that

it took achieve that score. All the code and the trained

models required for reproducing our work are made avail-

able for research purposes at https://github.com/

akanimax/msg-stylegan-tf.

3.2. Results

Quality Table 1 shows quantitative results of our method

on various mid-level resolutions datasets. Both our MSG-

ProGAN and MSG-StyleGAN models achieve better FID

7803



(a) CelebA-HQ (b) FFHQ

Figure 4: Random, uncurated samples generated by MSG-StyleGAN on high resolution (1024x1024) datasets. Best viewed

zoomed in on screen.

Dataset Size Method # Real Images GPU Used Training Time FID (↓)

CelebA-HQ (1024x1024) 30K ProGANs [16] 12M - - 7.79

MSG-ProGAN 3.2M 8 V100-16GB 1.5 days 8.02

StyleGAN [16] 25M - - 5.17

MSG-StyleGAN 11M 8 V100-16GB 4 days 6.37

FFHQ (1024x1024) 70K ProGANs∗ 12M 4 V100-32GB 5.5 days 9.49

ProGANs [15] 12M - - 8.04

MSG-ProGAN 6M 4 V100-32GB 6 days 8.36

StyleGAN∗ 25M 4 V100-32GB 6 days 4.47

StyleGAN [16] 25M - - 4.40

MSG-StyleGAN 9.6M 4 V100-32GB 6 days 5.8

Table 2: Experiments on high resolution (1024x1024) datasets. We use author provided scores where possible, and other-

wise train models with the official code and recommended hyperparameters (denoted “∗”).

scores than the respective baselines of ProGANs and Style-

GAN on the (256x256) resolution datasets of Oxford

Flowers, LSUN Churches and Indian Celebs. While each

iteration of MSG-GAN is slower than the initial lower reso-

lution iterations of progressive growing, due to all layers be-

ing trained together, MSG-GAN tends to converge in fewer

iterations, requiring fewer total hours of GPU training time

to achieve these scores. Figure 3 shows random samples

generated on these datasets for qualitative evaluation.

For high-resolution experiments (Table 2), the MSG-

ProGAN model trains in comparable amount of time and

gets similar scores on the CelebA-HQ and the FFHQ

datasets (8.02 vs 7.79) and (8.36 vs 8.04) respectively. We

note a small difference in the author reported scores and

what we were able to achieve with the author provided code.

This could be due to subtle hardware differences or variance

between runs. Our MSG-StyleGAN model was unable to

beat the FID score of StyleGAN on the CelebA-HQ dataset

(6.37 vs 5.17) and the FFHQ dataset (5.8 vs 4.40). We dis-

cuss some hypotheses for why this might be in Sec 4, but

note that our method does have other advantages, namely

that it seems to be easier to generalize to different datasets

as shown in our other experiments. Also, our generated im-

ages do not show any traces of the phase artifacts [17] which

are prominently visible in progressively grown GANs.

Stability during training To compare the stability of

MSG-ProGAN with ProGANs during training, we measure

the changes in the generated samples for the same fixed la-

tent points as iterations progress (on CelebA-HQ dataset).

This method was introduced by [37] as a way to measure

stability during training, which we quantify by calculat-

7804



Figure 5: During training, all the layers in the MSG-GAN synchronize across the generated resolutions fairly early in the

training and subsequently improve the quality of the generated images at all scales simultaneously. Throughout the training

the generator makes only minimal incremental improvements to the images generated from fixed latent points.

Figure 6: Image stability during training. These plots show the MSE between images generated from the same latent code at

the beginning of sequential epochs (averaged over 36 latent samples) on the CelebA-HQ dataset. MSG-ProGAN converges

stably over time while ProGANs [15] continues to vary significantly across epochs.

ing the mean squared error between two consecutive sam-

ples. Figure 6 shows that while ProGANs tends towards

convergence (making less changes) for lower resolutions

only, MSG-ProGAN shows the same convergence trait for

all the resolutions. The training epochs for the ProGANs

take place in sequence over each resolution, whereas for the

MSG-ProGAN they are simultaneous (Fig. 5). While not

necessary for generating good results, methods with high

stability can be advantageous in that it is easier to get a rea-

sonable estimate for how the final result will look by vi-

sualizing snapshots during training, which can help when

training jobs take on the order of days to weeks.

Robustness to learning rate It has been observed by

prior work [28, 14, 24, 23] and also our experience, that

convergence of GANs during training is very heavily de-

pendant on the choice of hyperparameters, in particular,

learning rate. To validate the robustness of MSG-ProGAN,

7805



Method # Real Images Learning rate IS (↑)

Real Images - - 11.34

MSG-ProGAN 12M 0.003 8.63

MSG-ProGAN 12M 0.001 8.24

MSG-ProGAN 12M 0.005 8.33

MSG-ProGAN 12M 0.01 7.92

Table 3: Robustness to learning rate on CIFAR-10. We

see that our approach converges to similar IS scores over

a range of learning rates.

Level of Multi-scale connections FID (↓)

No connections (DC-GAN) 14.20

Coarse Only 10.84

Middle Only 9.17

Fine Only 9.74

All (MSG-ProGAN) 8.36

ProGAN∗ 9.49

Table 4: Ablation experiments for varying degrees of

multiscale gradient connections on the high resolution

(1024x1024) FFHQ dataset. Coarse contains connections

at (4x4) and (8x8), middle at (16x16) and (32x32); and

fine at (64x64) till (1024x1024).

Method Combine function FID (↓)

MSG-ProGAN φlin cat 11.88

φcat lin 9.63

φsimple 8.36

MSG-StyleGAN φsimple 6.46

φlin cat 6.12

φcat lin 5.80

Table 5: Experiments with different combine functions on

the high resolution (1024x1024) FFHQ dataset.

we trained our network with four different learning rates

(0.001, 0.003, 0.005 and 0.01) for the CIFAR-10 dataset

(Table. 3). We can see that all of our four models converge,

producing sensible images and similar inception scores,

even with large changes in learning rate. Robust training

schemes are significant as they indicate how easily a method

can be generalized to unseen datasets.

4. Discussion

Ablation Studies We performed two types of ablations

on the MSG-ProGAN architecture. Table 4 summarizes

our experiments on applying ablated versions of the Multi-

Scale Gradients, where we only add subsets of the con-

nections from the generator to the discriminator at differ-

ent scales. We can see that adding multi-scale gradients at

any level to the ProGANs/DCGAN architecture improves

the FID score. Interestingly, adding only mid-level con-

nections performs slightly better than adding only coarse

or fine-level connections, however the overall best perfor-

mance is achieved with the connections at all levels.

Table 5 presents our experiments with the different vari-

ants of the combine function φ on the MSG-ProGAN and

the MSG-StyleGAN architectures. φsimple (Eq 11) per-

formed best on the MSG-ProGAN architecture while the

φcat lin (Eq 13) has the best FID score on the MSG-

StyleGAN architecture. All results shown in this work

employ these respective combine functions. We can see

through these experiments that the combine function also

plays an important role in the generative performance of

the model, and it is possible that a more advanced combine

function such as multi-layer densenet or AdaIN [13] could

improve the results even further.

Limitations and Future Work Our method is not with-

out limitations. We note that using progressive training, the

first set of iterations at lower resolutions take place much

faster, whereas each iteration of MSG-GAN takes the same

amount of time. However, we observe that MSG-GAN re-

quires fewer total iterations to reach the same FID, and often

does so after a similar length of total training time.

In addition, because of our multi-scale modification in

MSG-StyleGAN, our approach cannot take advantage of

the mixing regularization trick [16], where multiple latent

vectors are mixed and the resulting image is forced to be

realistic by the discriminator. This is done to allow the mix-

ing of different styles at different levels at test time, but also

improves overall quality. Interestingly, even though we do

not explicitly enforce mixing regularization, our method is

still able to generate plausible mixing results (see supple-

mentary material).

Conclusion Although huge strides have been made to-

wards photo-realistic high resolution image synthesis [3, 16,

17], true photo-realism has yet to be achieved, especially

with regards to domains with substantial variance in appear-

ance. In this work, we presented the MSG-GAN technique

which contributes to these efforts with a simple approach

to enable high resolution multi-scale image generation with

GANs.

5. Acknowledgements

We would like to thank Alexia Jolicoeur-Martineau

(Ph.D. student at MILA) for her guidance over Relativism

in GANs and for proofreading the paper. Finally we ex-

tend special thanks to Michael Hoffman (Sr. Mgr. Software

Engineering, TomTom) for his support and motivation.

7806



References

[1] Martı́n Arjovsky and Léon Bottou. Towards principled meth-

ods for training generative adversarial networks. CoRR,

2017.

[2] Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In ICML, 2017.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthe-

sis. In International Conference on Learning Representa-

tions, 2019.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthe-

sis. In International Conference on Learning Representa-

tions, 2019.

[5] Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob

Fergus. Deep generative image models using a laplacian

pyramid of adversarial networks. In NIPS, 2015.

[6] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE:

non-linear independent components estimation. CoRR, 2014.

[7] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.

Density estimation using real NVP. CoRR, 2016.

[8] Ishan Durugkar, Ian Gemp, and Sridhar Mahadevan.

Generative multi-adversarial networks. arXiv preprint

arXiv:1611.01673, 2016.

[9] Arnab Ghosh, Viveka Kulharia, Vinay P. Namboodiri,

Philip H.S. Torr, and Puneet K. Dokania. Multi-agent di-

verse generative adversarial networks. In CVPR, June 2018.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances in

neural information processing systems, 2014.

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein GANs. In Advances in Neural Information Pro-

cessing Systems, 2017.

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. GANs trained by

a two time-scale update rule converge to a local nash equi-

librium. In Advances in Neural Information Processing Sys-

tems, 2017.

[13] Xun Huang and Serge J. Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. ICCV, 2017.

[14] Alexia Jolicoeur-Martineau. The relativistic discriminator: a

key element missing from standard GAN. In International

Conference on Learning Representations, 2019.

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of GANs for improved quality, stability,

and variation. In ICLR, 2018.

[16] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, pages 4401–4410, 2019.

[17] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improving

the image quality of stylegan, 2019.

[18] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In Advances in Neural

Information Processing Systems, 2018.

[19] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt

Kira. On convergence and stability of GANs. arXiv preprint

arXiv:1705.07215, 2017.

[20] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable

texture synthesis. In ACM Transactions on Graphics (ToG),

volume 24. ACM, 2005.

[21] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh.

PacGAN: The power of two samples in generative adversar-

ial networks. In Advances in Neural Information Processing

Systems, 2018.

[22] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau,

and Zhen Wang. Multi-class generative adversarial networks

with the l2 loss function. ArXiv, abs/1611.04076, 2016.

[23] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.

Which training methods for GANs do actually converge? In

ICML, 2018.

[24] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-

Dickstein. Unrolled generative adversarial networks, 2016.

[25] Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel,

and Sergey Levine. Variational discriminator bottleneck: Im-

proving imitation learning, inverse RL, and GANs by con-

straining information flow. In ICLR, 2019.

[26] Alec Radford, Luke Metz, and Soumith Chintala. Un-

supervised representation learning with deep convolu-

tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[27] Danilo Jimenez Rezende and Shakir Mohamed. Variational

inference with normalizing flows. In ICML, 2015.

[28] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training GANs. In Advances in neural information pro-

cessing systems, 2016.

[29] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P.

Kingma. PixelCNN++: A PixelCNN implementation with

discretized logistic mixture likelihood and other modifica-

tions. In ICLR, 2017.

[30] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wen-

zhe Shi, and Ferenc Huszár. Amortised MAP inference for

image super-resolution. ArXiv, abs/1610.04490, 2016.

[31] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,

Oriol Vinyals, Alex Graves, et al. Conditional image gen-

eration with pixelcnn decoders. In Advances in Neural In-

formation Processing Systems, 2016.

[32] Aäron van den Oord, Nal Kalchbrenner, and Koray

Kavukcuoglu. Pixel recurrent neural networks. CoRR,

abs/1601.06759, 2016.

[33] Ruohan Wang, Antoine Cully, Hyung Jin Chang, and Yiannis

Demiris. Magan: Margin adaptation for generative adversar-

ial networks. ArXiv, abs/1704.03817, 2017.

[34] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018.

[35] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-

time completion of video. IEEE Transactions on Pattern

Analysis & Machine Intelligence, (3), 2007.

7807



[36] Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi

Parikh. Lr-gan: Layered recursive generative adversarial net-

works for image generation. ICLR, 2017.

[37] Yasin Yazıcı, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui

Yap, Georgios Piliouras, and Vijay Chandrasekhar. The un-

usual effectiveness of averaging in GAN training. In Inter-

national Conference on Learning Representations, 2019.

[38] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xi-

aogang Wang, Xiaolei Huang, and Dimitris Metaxas. Stack-

gan++: Realistic image synthesis with stacked generative ad-

versarial networks. arXiv: 1710.10916, 2017.

[39] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-

gang Wang, Xiaolei Huang, and Dimitris N. Metaxas. Stack-

gan: Text to photo-realistic image synthesis with stacked

generative adversarial networks. In ICCV, Oct 2017.

[40] Zizhao Zhang, Yuanpu Xie, and Lin Yang. Photographic

text-to-image synthesis with a hierarchically-nested adver-

sarial network. In CVPR, 2018.

[41] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-

rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-

ward multimodal image-to-image translation. In Advances

in Neural Information Processing Systems, 2017.

7808


