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Abstract

The style-based GAN architecture (StyleGAN) yields

state-of-the-art results in data-driven unconditional gener-

ative image modeling. We expose and analyze several of

its characteristic artifacts, and propose changes in both

model architecture and training methods to address them.

In particular, we redesign the generator normalization, re-

visit progressive growing, and regularize the generator to

encourage good conditioning in the mapping from latent

codes to images. In addition to improving image quality,

this path length regularizer yields the additional benefit that

the generator becomes significantly easier to invert. This

makes it possible to reliably attribute a generated image to

a particular network. We furthermore visualize how well

the generator utilizes its output resolution, and identify a

capacity problem, motivating us to train larger models for

additional quality improvements. Overall, our improved

model redefines the state of the art in unconditional image

modeling, both in terms of existing distribution quality met-

rics as well as perceived image quality.

1. Introduction

The resolution and quality of images produced by gen-

erative methods, especially generative adversarial networks

(GAN) [13], are improving rapidly [20, 26, 4]. The current

state-of-the-art method for high-resolution image synthesis

is StyleGAN [21], which has been shown to work reliably

on a variety of datasets. Our work focuses on fixing its char-

acteristic artifacts and improving the result quality further.

The distinguishing feature of StyleGAN [21] is its un-

conventional generator architecture. Instead of feeding the

input latent code z ∈ Z only to the beginning of a the net-

work, the mapping network f first transforms it to an inter-

mediate latent code w ∈ W . Affine transforms then pro-

duce styles that control the layers of the synthesis network g
via adaptive instance normalization (AdaIN) [18, 8, 11, 7].

Additionally, stochastic variation is facilitated by providing

additional random noise maps to the synthesis network. It

has been demonstrated [21, 33] that this design allows the

intermediate latent space W to be much less entangled than

the input latent space Z . In this paper, we focus all analy-

sis solely on W , as it is the relevant latent space from the

synthesis network’s point of view.

Many observers have noticed characteristic artifacts in

images generated by StyleGAN [3]. We identify two causes

for these artifacts, and describe changes in architecture and

training methods that eliminate them. First, we investigate

the origin of common blob-like artifacts, and find that the

generator creates them to circumvent a design flaw in its ar-

chitecture. In Section 2, we redesign the normalization used

in the generator, which removes the artifacts. Second, we

analyze artifacts related to progressive growing [20] that has

been highly successful in stabilizing high-resolution GAN

training. We propose an alternative design that achieves the

same goal — training starts by focusing on low-resolution

images and then progressively shifts focus to higher and

higher resolutions — without changing the network topol-

ogy during training. This new design also allows us to rea-

son about the effective resolution of the generated images,

which turns out to be lower than expected, motivating a ca-

pacity increase (Section 4).

Quantitative analysis of the quality of images produced

using generative methods continues to be a challenging

topic. Fréchet inception distance (FID) [17] measures dif-

ferences in the density of two distributions in the high-

dimensional feature space of an InceptionV3 classifier [34].

Precision and Recall (P&R) [31, 22] provide additional vis-

ibility by explicitly quantifying the percentage of generated

images that are similar to training data and the percentage

of training data that can be generated, respectively. We use

these metrics to quantify the improvements.

Both FID and P&R are based on classifier networks that

have recently been shown to focus on textures rather than

shapes [10], and consequently, the metrics do not accurately

capture all aspects of image quality. We observe that the

perceptual path length (PPL) metric [21], originally intro-

duced as a method for estimating the quality of latent space
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Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated

images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the

64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

interpolations, correlates with consistency and stability of

shapes. Based on this, we regularize the synthesis network

to favor smooth mappings (Section 3) and achieve a clear

improvement in quality. To counter its computational ex-

pense, we also propose executing all regularizations less

frequently, observing that this can be done without com-

promising effectiveness.

Finally, we find that projection of images to the latent

space W works significantly better with the new, path-

length regularized StyleGAN2 generator than with the orig-

inal StyleGAN. This makes it easier to attribute a generated

image to its source (Section 5).

Our implementation and trained models are available at

https://github.com/NVlabs/stylegan2

2. Removing normalization artifacts

We begin by observing that most images generated by

StyleGAN exhibit characteristic blob-shaped artifacts that

resemble water droplets. As shown in Figure 1, even when

the droplet may not be obvious in the final image, it is

present in the intermediate feature maps of the generator.1

The anomaly starts to appear around 64×64 resolution,

is present in all feature maps, and becomes progressively

stronger at higher resolutions. The existence of such a con-

sistent artifact is puzzling, as the discriminator should be

able to detect it.

We pinpoint the problem to the AdaIN operation that

normalizes the mean and variance of each feature map sepa-

rately, thereby potentially destroying any information found

in the magnitudes of the features relative to each other. We

hypothesize that the droplet artifact is a result of the gener-

ator intentionally sneaking signal strength information past

instance normalization: by creating a strong, localized spike

that dominates the statistics, the generator can effectively

scale the signal as it likes elsewhere. Our hypothesis is sup-

ported by the finding that when the normalization step is

removed from the generator, as detailed below, the droplet

artifacts disappear completely.

1In rare cases (perhaps 0.1% of images) the droplet is missing, leading

to severely corrupted images. See Appendix A for details.

2.1. Generator architecture revisited

We will first revise several details of the StyleGAN

generator to better facilitate our redesigned normalization.

These changes have either a neutral or small positive effect

on their own in terms of quality metrics.

Figure 2a shows the original StyleGAN synthesis net-

work g [21], and in Figure 2b we expand the diagram to full

detail by showing the weights and biases and breaking the

AdaIN operation to its two constituent parts: normalization

and modulation. This allows us to re-draw the conceptual

gray boxes so that each box indicates the part of the network

where one style is active (i.e., “style block”). Interestingly,

the original StyleGAN applies bias and noise within the

style block, causing their relative impact to be inversely pro-

portional to the current style’s magnitudes. We observe that

more predictable results are obtained by moving these op-

erations outside the style block, where they operate on nor-

malized data. Furthermore, we notice that after this change

it is sufficient for the normalization and modulation to op-

erate on the standard deviation alone (i.e., the mean is not

needed). The application of bias, noise, and normalization

to the constant input can also be safely removed without ob-

servable drawbacks. This variant is shown in Figure 2c, and

serves as a starting point for our redesigned normalization.

2.2. Instance normalization revisited

One of the main strengths of StyleGAN is the ability to

control the generated images via style mixing, i.e., by feed-

ing a different latent w to different layers at inference time.

In practice, style modulation may amplify certain feature

maps by an order of magnitude or more. For style mixing to

work, we must explicitly counteract this amplification on a

per-sample basis — otherwise the subsequent layers would

not be able to operate on the data in a meaningful way.

If we were willing to sacrifice scale-specific controls (see

video), we could simply remove the normalization, thus re-

moving the artifacts and also improving FID slightly [22].

We will now propose a better alternative that removes the

artifacts while retaining full controllability. The main idea

is to base normalization on the expected statistics of the in-

coming feature maps, but without explicit forcing.
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Figure 2. We redesign the architecture of the StyleGAN synthesis network. (a) The original StyleGAN, where A denotes a learned

affine transform from W that produces a style and B is a noise broadcast operation. (b) The same diagram with full detail. Here we have

broken the AdaIN to explicit normalization followed by modulation, both operating on the mean and standard deviation per feature map.

We have also annotated the learned weights (w), biases (b), and constant input (c), and redrawn the gray boxes so that one style is active

per box. The activation function (leaky ReLU) is always applied right after adding the bias. (c) We make several changes to the original

architecture that are justified in the main text. We remove some redundant operations at the beginning, move the addition of b and B to

be outside active area of a style, and adjust only the standard deviation per feature map. (d) The revised architecture enables us to replace

instance normalization with a “demodulation” operation, which we apply to the weights associated with each convolution layer.

Recall that a style block in Figure 2c consists of modula-

tion, convolution, and normalization. Let us start by consid-

ering the effect of a modulation followed by a convolution.

The modulation scales each input feature map of the convo-

lution based on the incoming style, which can alternatively

be implemented by scaling the convolution weights:

w′
ijk = si · wijk, (1)

where w and w′ are the original and modulated weights,

respectively, si is the scale corresponding to the ith input

feature map, and j and k enumerate the output feature maps

and spatial footprint of the convolution, respectively.

Now, the purpose of instance normalization is to essen-

tially remove the effect of s from the statistics of the con-

volution’s output feature maps. We observe that this goal

can be achieved more directly. Let us assume that the in-

put activations are i.i.d. random variables with unit standard

deviation. After modulation and convolution, the output ac-

tivations have standard deviation of

σj =

√

∑

i,k

w′
ijk

2, (2)

i.e., the outputs are scaled by the L2 norm of the corre-

sponding weights. The subsequent normalization aims to

restore the outputs back to unit standard deviation. Based

on Equation 2, this is achieved if we scale (“demodulate”)

each output feature map j by 1/σj . Alternatively, we can

again bake this into the convolution weights:

w′′
ijk = w′

ijk

/
√

∑

i,k

w′
ijk

2 + ǫ, (3)

where ǫ is a small constant to avoid numerical issues.

We have now baked the entire style block to a single con-

volution layer whose weights are adjusted based on s using

Equations 1 and 3 (Figure 2d). Compared to instance nor-

malization, our demodulation technique is weaker because

it is based on statistical assumptions about the signal in-

stead of actual contents of the feature maps. Similar statis-

tical analysis has been extensively used in modern network

initializers [12, 16], but we are not aware of it being pre-

viously used as a replacement for data-dependent normal-

ization. Our demodulation is also related to weight normal-

ization [32] that performs the same calculation as a part of

reparameterizing the weight tensor. Prior work has iden-

tified weight normalization as beneficial in the context of

GAN training [38].

Our new design removes the characteristic artifacts (Fig-

ure 3) while retaining full controllability, as demonstrated

in the accompanying video. FID remains largely unaffected

(Table 1, rows A, B), but there is a notable shift from preci-

sion to recall. We argue that this is generally desirable, since

recall can be traded into precision via truncation, whereas
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Configuration
FFHQ, 1024×1024 LSUN Car, 512×384

FID ↓ Path length ↓ Precision ↑ Recall ↑ FID ↓ Path length ↓ Precision ↑ Recall ↑
A Baseline StyleGAN [21] 4.40 212.1 0.721 0.399 3.27 1484.5 0.701 0.435

B + Weight demodulation 4.39 175.4 0.702 0.425 3.04 862.4 0.685 0.488

C + Lazy regularization 4.38 158.0 0.719 0.427 2.83 981.6 0.688 0.493

D + Path length regularization 4.34 122.5 0.715 0.418 3.43 651.2 0.697 0.452

E + No growing, new G & D arch. 3.31 124.5 0.705 0.449 3.19 471.2 0.690 0.454

F + Large networks (StyleGAN2) 2.84 145.0 0.689 0.492 2.32 415.5 0.678 0.514

Config A with large networks 3.98 199.2 0.716 0.422 – – – –

Table 1. Main results. For each training run, we selected the training snapshot with the lowest FID. We computed each metric 10 times

with different random seeds and report their average. Path length corresponds to the PPL metric, computed based on path endpoints in W

[21], without the central crop used by Karras et al. [21]. The FFHQ dataset contains 70k images, and the discriminator saw 25M images

during training. For LSUN CAR the numbers were 893k and 57M. ↑ indicates that higher is better, and ↓ that lower is better.

Figure 3. Replacing normalization with demodulation removes the

characteristic artifacts from images and activations.

the opposite is not true [22]. In practice our design can be

implemented efficiently using grouped convolutions, as de-

tailed in Appendix B. To avoid having to account for the

activation function in Equation 3, we scale our activation

functions so that they retain the expected signal variance.

3. Image quality and generator smoothness

While GAN metrics such as FID or Precision and Recall

(P&R) successfully capture many aspects of the generator,

they continue to have somewhat of a blind spot for image

quality. For an example, refer to Figures 3 and 4 in the

Supplement that contrast generators with identical FID and

P&R scores but markedly different overall quality.2

2We believe that the key to the apparent inconsistency lies in the par-

ticular choice of feature space rather than the foundations of FID or P&R.

It was recently discovered that classifiers trained using ImageNet [30] tend

to base their decisions much more on texture than shape [10], while hu-

mans strongly focus on shape [23]. This is relevant in our context because

(a) Low PPL scores (b) High PPL scores

Figure 4. Connection between perceptual path length and image

quality using baseline StyleGAN (config A) with LSUN CAT. (a)

Random examples with low PPL (≤ 10th percentile). (b) Exam-

ples with high PPL (≥ 90th percentile). There is a clear correla-

tion between PPL scores and semantic consistency of the images.

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

(a) StyleGAN (config A) (b) StyleGAN2 (config F)

Figure 5. (a) Distribution of PPL scores of individual images

generated using baseline StyleGAN (config A) with LSUN CAT

(FID = 8.53, PPL = 924). The percentile ranges corresponding to

Figure 4 are highlighted in orange. (b) StyleGAN2 (config F) im-

proves the PPL distribution considerably (showing a snapshot with

the same FID = 8.53, PPL = 387).

We observe a correlation between perceived image qual-

ity and perceptual path length (PPL) [21], a metric that was

originally introduced for quantifying the smoothness of the

mapping from a latent space to the output image by measur-

ing average LPIPS distances [44] between generated images

under small perturbations in latent space. Again consulting

Figures 3 and 4 in the Supplement, a smaller PPL (smoother

generator mapping) appears to correlate with higher over-

FID and P&R use high-level features from InceptionV3 [34] and VGG-16

[34], respectively, which were trained in this way and are thus expected

to be biased towards texture detection. As such, images with, e.g., strong

cat textures may appear more similar to each other than a human observer

would agree, thus partially compromising density-based metrics (FID) and

manifold coverage metrics (P&R).
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all image quality, whereas other metrics are blind to the

change. Figure 4 examines this correlation more closely

through per-image PPL scores on LSUN CAT, computed

by sampling the latent space around w ∼ f(z). Low scores

are indeed indicative of high-quality images, and vice versa.

Figure 5a shows the corresponding histogram and reveals

the long tail of the distribution. The overall PPL for the

model is simply the expected value of these per-image PPL

scores. We always compute PPL for the entire image, as op-

posed to Karras et al. [21] who use a smaller central crop.

It is not immediately obvious why a low PPL should

correlate with image quality. We hypothesize that during

training, as the discriminator penalizes broken images, the

most direct way for the generator to improve is to effectively

stretch the region of latent space that yields good images.

This would lead to the low-quality images being squeezed

into small latent space regions of rapid change. While this

improves the average output quality in the short term, the

accumulating distortions impair the training dynamics and

consequently the final image quality.

Clearly, we cannot simply encourage minimal PPL since

that would guide the generator toward a degenerate solution

with zero recall. Instead, we will describe a new regular-

izer that aims for a smoother generator mapping without this

drawback. As the resulting regularization term is somewhat

expensive to compute, we first describe a general optimiza-

tion that applies to any regularization technique.

3.1. Lazy regularization

Typically the main loss function (e.g., logistic loss [13])

and regularization terms (e.g., R1 [25]) are written as a sin-

gle expression and are thus optimized simultaneously. We

observe that the regularization terms can be computed less

frequently than the main loss function, thus greatly dimin-

ishing their computational cost and the overall memory us-

age. Table 1, row C shows that no harm is caused when R1

regularization is performed only once every 16 minibatches,

and we adopt the same strategy for our new regularizer as

well. Appendix B gives implementation details.

3.2. Path length regularization

We would like to encourage that a fixed-size step in W
results in a non-zero, fixed-magnitude change in the image.

We can measure the deviation from this ideal empirically

by stepping into random directions in the image space and

observing the corresponding w gradients. These gradients

should have close to an equal length regardless of w or the

image-space direction, indicating that the mapping from the

latent space to image space is well-conditioned [28].

At a single w ∈ W , the local metric scaling properties

of the generator mapping g(w) : W 7→ Y are captured by

the Jacobian matrix Jw = ∂g(w)/∂w. Motivated by the

desire to preserve the expected lengths of vectors regardless

of the direction, we formulate our regularizer as

Ew,y∼N (0,I)

(∥

∥JT
wy

∥

∥

2
− a

)2
, (4)

where y are random images with normally distributed pixel

intensities, and w ∼ f(z), where z are normally dis-

tributed. We show in Appendix C that, in high dimen-

sions, this prior is minimized when Jw is orthogonal (up

to a global scale) at any w. An orthogonal matrix preserves

lengths and introduces no squeezing along any dimension.

To avoid explicit computation of the Jacobian matrix,

we use the identity JT
wy = ∇w(g(w) · y), which is ef-

ficiently computable using standard backpropagation [5].

The constant a is set dynamically during optimization as

the long-running exponential moving average of the lengths

‖JT
wy‖2, allowing the optimization to find a suitable global

scale by itself.

Our regularizer is closely related to the Jacobian clamp-

ing regularizer presented by Odena et al. [28]. Practical dif-

ferences include that we compute the products JT
wy ana-

lytically whereas they use finite differences for estimating

Jwδ with Z ∋ δ ∼ N (0, I). It should be noted that spec-

tral normalization [26] of the generator [40] only constrains

the largest singular value, posing no constraints on the oth-

ers and hence not necessarily leading to better conditioning.

We find that enabling spectral normalization in addition to

our contributions — or instead of them — invariably com-

promises FID, as detailed in Appendix E.

In practice, we notice that path length regularization

leads to more reliable and consistently behaving models,

making architecture exploration easier. We also observe

that the smoother generator is significantly easier to invert

(Section 5). Figure 5b shows that path length regularization

clearly tightens the distribution of per-image PPL scores,

without pushing the mode to zero. However, Table 1, row D

points toward a tradeoff between FID and PPL in datasets

that are less structured than FFHQ.

4. Progressive growing revisited

Progressive growing [20] has been very successful in sta-

bilizing high-resolution image synthesis, but it causes its

own characteristic artifacts. The key issue is that the pro-

gressively grown generator appears to have a strong location

preference for details; the accompanying video shows that

when features like teeth or eyes should move smoothly over

the image, they may instead remain stuck in place before

jumping to the next preferred location. Figure 6 shows a re-

lated artifact. We believe the problem is that in progressive

growing each resolution serves momentarily as the output

resolution, forcing it to generate maximal frequency details,

which then leads to the trained network to have excessively

high frequencies in the intermediate layers, compromising

shift invariance [43]. Appendix A shows an example. These
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Figure 6. Progressive growing leads to “phase” artifacts. In this

example the teeth do not follow the pose but stay aligned to the

camera, as indicated by the blue line.
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Figure 7. Three generator (above the dashed line) and discrimi-

nator architectures. Up and Down denote bilinear up and down-

sampling, respectively. In residual networks these also include

1×1 convolutions to adjust the number of feature maps. tRGB

and fRGB convert between RGB and high-dimensional per-pixel

data. Architectures used in configs E and F are shown in green.

issues prompt us to search for an alternative formulation

that would retain the benefits of progressive growing with-

out the drawbacks.

4.1. Alternative network architectures

While StyleGAN uses simple feedforward designs in the

generator (synthesis network) and discriminator, there is a

vast body of work dedicated to the study of better network

architectures. Skip connections [29, 19], residual networks

[15, 14, 26], and hierarchical methods [6, 41, 42] have

proven highly successful also in the context of generative

methods. As such, we decided to re-evaluate the network

design of StyleGAN and search for an architecture that pro-

duces high-quality images without progressive growing.

Figure 7a shows MSG-GAN [19], which connects the

matching resolutions of the generator and discriminator us-

ing multiple skip connections. The MSG-GAN generator

is modified to output a mipmap [37] instead of an image,

and a similar representation is computed for each real im-

FFHQ
D original D input skips D residual

FID PPL FID PPL FID PPL

G original 4.32 265 4.18 235 3.58 269

G output skips 4.33 169 3.77 127 3.31 125

G residual 4.35 203 3.96 229 3.79 243

LSUN Car
D original D input skips D residual

FID PPL FID PPL FID PPL

G original 3.75 905 3.23 758 3.25 802

G output skips 3.77 544 3.86 316 3.19 471

G residual 3.93 981 3.40 667 2.66 645

Table 2. Comparison of generator and discriminator architectures

without progressive growing. The combination of generator with

output skips and residual discriminator corresponds to configura-

tion E in the main result table.

age as well. In Figure 7b we simplify this design by up-

sampling and summing the contributions of RGB outputs

corresponding to different resolutions. In the discriminator,

we similarly provide the downsampled image to each reso-

lution block of the discriminator. We use bilinear filtering in

all up and downsampling operations. In Figure 7c we fur-

ther modify the design to use residual connections.3 This

design is similar to LAPGAN [6] without the per-resolution

discriminators employed by Denton et al.

Table 2 compares three generator and three discrimina-

tor architectures: original feedforward networks as used

in StyleGAN, skip connections, and residual networks, all

trained without progressive growing. FID and PPL are pro-

vided for each of the 9 combinations. We can see two broad

trends: skip connections in the generator drastically im-

prove PPL in all configurations, and a residual discriminator

network is clearly beneficial for FID. The latter is perhaps

not surprising since the structure of discriminator resem-

bles classifiers where residual architectures are known to be

helpful. However, a residual architecture was harmful in

the generator — the lone exception was FID in LSUN CAR

when both networks were residual.

For the rest of the paper we use a skip generator and a

residual discriminator, without progressive growing. This

corresponds to configuration E in Table 1, and it signifi-

cantly improves FID and PPL.

4.2. Resolution usage

The key aspect of progressive growing, which we would

like to preserve, is that the generator will initially focus on

low-resolution features and then slowly shift its attention to

finer details. The architectures in Figure 7 make it possible

for the generator to first output low resolution images that

are not affected by the higher-resolution layers in a signif-

icant way, and later shift the focus to the higher-resolution

3In residual network architectures, the addition of two paths leads to a

doubling of signal variance, which we cancel by multiplying with 1/
√
2.

This is crucial for our networks, whereas in classification resnets [15] the

issue is typically hidden by batch normalization.
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Figure 8. Contribution of each resolution to the output of the

generator as a function of training time. The vertical axis shows

a breakdown of the relative standard deviations of different reso-

lutions, and the horizontal axis corresponds to training progress,

measured in millions of training images shown to the discrimina-

tor. We can see that in the beginning the network focuses on low-

resolution images and progressively shifts its focus on larger res-

olutions as training progresses. In (a) the generator basically out-

puts a 5122 image with some minor sharpening for 10242, while in

(b) the larger network focuses more on the high-resolution details.

layers as the training proceeds. Since this is not enforced in

any way, the generator will do it only if it is beneficial. To

analyze the behavior in practice, we need to quantify how

strongly the generator relies on particular resolutions over

the course of training.

Since the skip generator (Figure 7b) forms the image by

explicitly summing RGB values from multiple resolutions,

we can estimate the relative importance of the correspond-

ing layers by measuring how much they contribute to the

final image. In Figure 8a, we plot the standard deviation of

the pixel values produced by each tRGB layer as a function

of training time. We calculate the standard deviations over

1024 random samples of w and normalize the values so that

they sum to 100%.

At the start of training, we can see that the new skip

generator behaves similar to progressive growing — now

achieved without changing the network topology. It would

thus be reasonable to expect the highest resolution to dom-

inate towards the end of the training. The plot, however,

shows that this fails to happen in practice, which indicates

that the generator may not be able to “fully utilize” the tar-

get resolution. To verify this, we inspected the generated

images manually and noticed that they generally lack some

of the pixel-level detail that is present in the training data —

the images could be described as being sharpened versions

of 5122 images instead of true 10242 images.

This leads us to hypothesize that there is a capacity prob-

lem in our networks, which we test by doubling the number

of feature maps in the highest-resolution layers of both net-

works.4 This brings the behavior more in line with expecta-

4We double the number of feature maps in resolutions 64
2–10242

while keeping other parts of the networks unchanged. This increases the

total number of trainable parameters in the generator by 22% (25M →
30M) and in the discriminator by 21% (24M → 29M).

Dataset Resolution
StyleGAN (A) StyleGAN2 (F)

FID PPL FID PPL

LSUN CAR 512×384 3.27 1485 2.32 416

LSUN CAT 256×256 8.53 924 6.93 439

LSUN CHURCH 256×256 4.21 742 3.86 342

LSUN HORSE 256×256 3.83 1405 3.43 338

Table 3. Improvement in LSUN datasets measured using FID and

PPL. We trained CAR for 57M images, CAT for 88M, CHURCH

for 48M, and HORSE for 100M images.

tions: Figure 8b shows a significant increase in the contri-

bution of the highest-resolution layers, and Table 1, row F

shows that FID and Recall improve markedly. The last row

shows that baseline StyleGAN also benefits from additional

capacity, but its quality remains far below StyleGAN2.

Table 3 compares StyleGAN and StyleGAN2 in four

LSUN categories, again showing clear improvements in

FID and significant advances in PPL. It is possible that fur-

ther increases in the size could provide additional benefits.

5. Projection of images to latent space

Inverting the synthesis network g is an interesting prob-

lem that has many applications. Manipulating a given im-

age in the latent feature space requires finding a matching

latent code w for it first. Previous research [1, 9] suggests

that instead of finding a common latent code w, the results

improve if a separate w is chosen for each layer of the gen-

erator. The same approach was used in an early encoder im-

plementation [27]. While extending the latent space in this

fashion finds a closer match to a given image, it also enables

projecting arbitrary images that should have no latent rep-

resentation. Instead, we concentrate on finding latent codes

in the original, unextended latent space, as these correspond

to images that the generator could have produced.

Our projection method differs from previous methods

in two ways. First, we add ramped-down noise to the la-

tent code during optimization in order to explore the latent

space more comprehensively. Second, we also optimize the

stochastic noise inputs of the StyleGAN generator, regular-

izing them to ensure they do not end up carrying coherent

signal. The regularization is based on enforcing the auto-

correlation coefficients of the noise maps to match those of

unit Gaussian noise over multiple scales. Details of our pro-

jection method can be found in Appendix D.

5.1. Attribution of generated images

Detection of manipulated or generated images is a very

important task. At present, classifier-based methods can

quite reliably detect generated images, regardless of their

exact origin [24, 39, 35, 45, 36]. However, given the rapid

pace of progress in generative methods, this may not be a

lasting situation. Besides general detection of fake images,

we may also consider a more limited form of the problem:
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StyleGAN — generated images StyleGAN2 — generated images StyleGAN2 — real images

Figure 9. Example images and their projected and re-synthesized counterparts. For each configuration, top row shows the target images

and bottom row shows the synthesis of the corresponding projected latent vector and noise inputs. With the baseline StyleGAN, projection

often finds a reasonably close match for generated images, but especially the backgrounds differ from the originals. The images generated

using StyleGAN2 can be projected almost perfectly back into generator inputs, while projected real images (from the training set) show

clear differences to the originals, as expected. All tests were done using the same projection method and hyperparameters.

0.0 0.1 0.2 0.3 0.4 0.5

Generated

Real

0.0 0.1 0.2 0.3 0.4 0.5

Generated

Real

LSUN CAR, StyleGAN FFHQ, StyleGAN

0.0 0.1 0.2 0.3 0.4 0.5

Generated

Real

0.0 0.1 0.2 0.3 0.4 0.5

Generated

Real

LSUN CAR, StyleGAN2 FFHQ, StyleGAN2

Figure 10. LPIPS distance histograms between original and pro-

jected images for generated (blue) and real images (orange). De-

spite the higher image quality of our improved generator, it is

much easier to project the generated images into its latent space

W . The same projection method was used in all cases.

being able to attribute a fake image to its specific source [2].

With StyleGAN, this amounts to checking if there exists a

w ∈ W that re-synthesis the image in question.

We measure how well the projection succeeds by com-

puting the LPIPS [44] distance between original and re-

synthesized image as DLPIPS[x, g(g̃
−1(x))], where x is the

image being analyzed and g̃−1 denotes the approximate pro-

jection operation. Figure 10 shows histograms of these dis-

tances for LSUN CAR and FFHQ datasets using the origi-

nal StyleGAN and StyleGAN2, and Figure 9 shows exam-

ple projections. The images generated using StyleGAN2

can be projected into W so well that they can be almost

unambiguously attributed to the generating network. How-

ever, with the original StyleGAN, even though it should

technically be possible to find a matching latent code, it ap-

pears that the mapping from W to images is too complex

for this to succeed reliably in practice. We find it encour-

aging that StyleGAN2 makes source attribution easier even

though the image quality has improved significantly.

6. Conclusions and future work

We have identified and fixed several image quality is-

sues in StyleGAN, improving the quality further and con-

siderably advancing the state of the art in several datasets.

In some cases the improvements are more clearly seen in

motion, as demonstrated in the accompanying video. Ap-

pendix A includes further examples of results obtainable us-

ing our method. Despite the improved quality, StyleGAN2

makes it easier to attribute a generated image to its source.

Training performance has also improved. At 10242

resolution, the original StyleGAN (config A in Table 1)

trains at 37 images per second on NVIDIA DGX-1 with

8 Tesla V100 GPUs, while our config E trains 40% faster

at 61 img/s. Most of the speedup comes from simplified

dataflow due to weight demodulation, lazy regularization,

and code optimizations. StyleGAN2 (config F, larger net-

works) trains at 31 img/s, and is thus only slightly more

expensive to train than original StyleGAN. Its total training

time was 9 days for FFHQ and 13 days for LSUN CAR.

The entire project, including all exploration, consumed

132 MWh of electricity, of which 0.68 MWh went into

training the final FFHQ model. In total, we used about

51 single-GPU years of computation (Volta class GPU). A

more detailed discussion is available in Appendix F.

In the future, it could be fruitful to study further improve-

ments to the path length regularization, e.g., by replacing

the pixel-space L2 distance with a data-driven feature-space

metric. Considering the practical deployment of GANs, we

feel that it will be important to find new ways to reduce the

training data requirements. This is especially crucial in ap-

plications where it is infeasible to acquire tens of thousands

of training samples, and with datasets that include a lot of

intrinsic variation.
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