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Abstract

In this paper we challenge the common assumption that

convolutional layers in modern CNNs are translation in-

variant. We show that CNNs can and will exploit the abso-

lute spatial location by learning filters that respond exclu-

sively to particular absolute locations by exploiting image

boundary effects. Because modern CNNs filters have a huge

receptive field, these boundary effects operate even far from

the image boundary, allowing the network to exploit abso-

lute spatial location all over the image. We give a simple so-

lution to remove spatial location encoding which improves

translation invariance and thus gives a stronger visual in-

ductive bias which particularly benefits small data sets. We

broadly demonstrate these benefits on several architectures

and various applications such as image classification, patch

matching, and two video classification datasets.

1. Introduction

The marriage of the convolution operator and deep learn-

ing yields the Convolutional Neural Network (CNN). The

CNN arguably spawned the deep learning revolution with

AlexNet [54] and convolutional layers are now the standard

backbone for various Computer Vision domains such as im-

age classification [35, 89, 95], object detection [65, 77, 79],

semantic segmentation [34, 52, 81], matching [66, 32, 107],

video [12, 33, 88], generative models [25, 29, 51], etc.

The CNN is now even used in other modalities such as

speech [1, 58, 73], audio [15, 40, 82], text [14, 20, 56],

graphs [11, 21, 84], etc. It is difficult to overstate the impor-

tance of the convolution operator in deep learning. In this

paper we analyze convolutional layers in CNNs which is

broadly relevant for the entire deep learning research field.

For images, adding convolution to neural networks adds

a visual inductive prior that objects can appear anywhere.

Convolution can informally be described as the dot prod-

uct between the input image and a small patch of learnable

weights –the kernel– sliding over all image locations. This

Class 1: Top-left Class 2: Bottom-right

Figure 1. We place an identical image patch on the top-left or on

the bottom-right of an image. We evaluate a standard fully con-

volutional network [35, 43, 61, 93, 95, 105] if it can classify the

patch location (top-left vs bottom-right). We use 1 layer, a single

5x5 kernel, zero-padding, same-convolution, ReLu, global max

pooling, SGD, and a soft-max loss. Surprisingly, this network can

classify perfectly, demonstrating that current convolutional layers

can exploit the absolute spatial location in an image.

shares the weights over locations yielding a huge reduction

in learnable parameters. Convolution is equivariant to trans-

lation: If an object is shifted in an image then the convolu-

tion outcome is shifted equally. When convolution is fol-

lowed by an operator that does not depend on the position,

such as taking the global average or global maximum, that

gives translation invariance and absolute location is lost.

Translation invariance powers the visual inductive prior of

the convolution operator, and we will demonstrate that im-

proving translation invariance improves the prior, leading to

increased data efficiency in the small data setting.

In this paper we challenge standard assumptions about

translation invariance and show that currently used convo-

lutional layers can exploit the absolute location of an object

in an image. Consider Fig. 1, where the exactly identical

image patch is positioned on the top left (class 1) or on

the bottom right (class 2) in an image. If a fully convolu-

tional CNN is invariant, it should not be able to classify and

give random performance on this task. Yet, surprisingly, a

simple standard 1-layer fully convolutional network with a

global max pooling operator can perfectly classify the loca-

tion of the patch and thus exploit absolute spatial location.
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We show that CNNs can encode absolute spatial location

by exploiting image boundary effects. These effects occur

because images have finite support and convolving close to

the boundary requires dealing with non-existing values be-

yond the image support [47, 94]. Boundary effects allow

CNNs to learn filters whose output is placed outside the

image conditioned on their absolute position in the image.

This encodes position by only keeping filter outputs for spe-

cific absolute positions. It could, for example, learn filters

that only fire for the top of the image, while the bottom re-

sponses are placed outside the image boundary. Boundary

effects depend on the size of the convolution kernel and are

small for a single 3x3 convolution. Yet, CNNs stack con-

volution layers, yielding receptive fields typically several

times the input image size [4]. Boundary effects for such

huge kernels are large and, as we will demonstrate, allows

CNNs to exploit boundary effects all over the image, even

far away from the image boundary.

We have the following contributions. We show how

boundary effects in discrete convolutions allow for location

specific filters. We demonstrate how convolutional layers in

various current CNN architectures can and will exploit ab-

solute spatial location, even far away from the image bound-

ary. We investigate simple solutions that removes the possi-

bility to encode spatial location which increases the visual

inductive bias which is beneficial for smaller datasets. We

demonstrate these benefits on multiple CNN architectures

on several application domains including image classifica-

tion, patch matching, and video classification.

2. Related Work and Relevance

Fully connected and fully convolutional networks.

Initial CNN variants have convolutional layers followed by

fully connected layers. These fully connected layers can

learn weights at each location in a feature map and thus

can exploit absolute position. Variants of the seminal LeNet

that included fully connected layers experimentally outper-

formed an exclusively convolutional setup [59]. The 2012

ImageNet breakthrough as heralded by AlexNet [54] fol-

lowed the LeNet design, albeit at larger scale with 5 con-

volutional and 2 fully connected layers. Building upon

AlexNet [54], the VGG [89] network family variants in-

volve varying the depth of the convolutional layers followed

by 3 fully connected layers. The fully connected layers,

however, take up a huge part of the learnable parameters

making such networks large and difficult to train.

Instead of using fully connected layers, recent work

questions their value. The Network In Network [61] is a

fully convolutional network and simply replaces fully con-

nected layers by the global average value of the last convo-

lutional layer’s output. Such a global average or global max

operator is invariant to location, and makes the whole net-

work theoretically insensitive to absolute position by build-

ing on top of equivariant convolutional layers. Several mod-

ern networks are now using global average pooling. Popu-

lar and successful examples include the The All Convolu-

tional Net [93], Residual networks [35], The Inception fam-

ily [95], the DenseNet [43], the ResNext network [105] etc.

In this paper we show, contrary to popular belief, that fully

convolutional networks will exploit the absolute position.

Cropping image regions. Encoding absolute loca-

tion has effect on cropping. Examples of region crop-

ping in CNNs include: The bounding box in object de-

tection [27, 34, 79]; processing a huge resolution image

in patches [42, 86]; local image region matching [32, 66,

108, 107]; local CNN patch pooling encoders [3, 6, 8]. The

region cropping can be done explicitly before feeding the

patch to a CNN as done in R-CNN [27], high-res image pro-

cessing [42] and aggregation methods [80, 87]. The other

approach to cropping regions is implicitly on featuremaps

after feeding the full image to a CNN as done in Faster R-

CNN [79], BagNet [8], and CNN pooling methods such as

sum [6], BoW [76], VLAD [3, 28], Fisher vector [16]. In

our paper we show that CNNs can encode the absolute po-

sition. This means that in contrast to explicitly cropping a

region before the CNN, cropping a region after the CNN

can include absolute position information, which impacts

all implicit region cropping methods.

Robustness to image transformations. The semantic

content of an image should be invariant to the accidental

camera position. Robustness to such geometric transforma-

tion can be learned by adding them to the training set using

data augmentation [18, 24, 39, 41, 50]. Instead of augment-

ing with random transformations there are geometric ad-

verserial training methods [22, 23, 49] that intelligently add

the most sensitive geometric transformations to the training

data. Adding data to the training set by either data augmen-

tation or adverserial training is a brute-force solution adding

additional computation as the dataset grows.

Instead of adding transformed versions of the train-

ing data there are methods specifically designed to learn

geometric transformations in an equivariant or invariant

representation [7, 53, 60] where examples include rota-

tion [19, 69, 102, 103, 110], scale [68, 92, 99, 104, 106]

and other transformations [17, 26, 38, 57, 90]. Closely

related is the observation that through subsequent pooling

and subsampling in CNN layers translation equivariance is

lost [5, 109]. In our paper, we also investigate the loss of

translation equivariance, yet do not focus on pooling but

instead show that convolutional layers can exploit image

boundary effects to encode the absolute position which was

also found independently by Islam et al. [45].

Boundary effects. Boundary effects cause statistical bi-

ases in finitely sampled data [30, 31]. For image process-

ing this is textbook material [47, 94], where boundary han-

dling has applications in image restoration and deconvolu-
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Figure 3. A 2D Example where a pixel on the top left input (Class-1) and the same pixel on the bottom-right input (Class-2) can be

classified using convolution. Comparing the output of 4 convolution types shows that V-Conv and S-Conv for Class-1 can no longer detect

the pixel, while Class-2 still has the pixel. S-Conv with circular padding and F-Conv always retain the pixel value.

3.2. Are all input locations equal?

We investigate if convolution types are equally applied to

all input position in an image. In Fig. 2 we illustrate the set-

ting. To analyze if each location is equal, we modify Eq. (1)

to count how often an absolute spatial position a in the in-

put signal x is used in the convolution. The count C(·) sums

over all input positions i where the convolution is applied,

C(a) =
∑

i

k
∑

j=−k

Ji = a− jK, (5)

where J·K are Iverson Brackets which evaluate to 1 if the

expression in the brackets is true. Without boundary effects

C(a) always sums to 2k + 1 for each value of a.

When there are boundary effects, there will be differ-

ences. For V-Conv, the input locations i are determined by

Eq. (2) and the equation becomes

CV (a) =
n−k
∑

i=k+1

k
∑

j=−k

Ji = a− jK, (6)

where i no longer sums over all values. Thus, for all loca-

tions in the input image the function CV (t) no longer sums

to 2k + 1 as it does in Eq. (5), instead they sum to a lower

value. In fact, it reduces to

CV (a) =











a if a ∈ [1, 2k]

n− a+ 1 if a ∈ [n− 2k, n]

2k + 1 Otherwise.

(7)

This shows that for V-Conv there are absolute spatial loca-

tions where the full filter is not applied.

For S-Conv, where Eq. (3) defines the input, the count is

CS(a) =

n
∑

i=1

k
∑

j=−k

Ji = a− jK, (8)

where i sums over all values, and slides only the filter center

over all locations. Thus, for S-Conv, when the locations are

a ≤ k or a ≥ n− k, the function CS(a) no longer sums to

2k + 1. This reduces to

CS(a) =











a+ k if a ∈ [1, k]

n− a+ (k + 1) if a ∈ [n− k, n]

2k + 1 Otherwise.

(9)

This means that also for S-Conv there are absolute spatial

locations where the full filter is not applied.

S-Conv with circular padding ’wraps around’ the image

and uses the values on one side of the image to pad the bor-

der on the other side. Thus, while for S-Conv, Eq. (9) holds

for the absolute position i, it is by using circular padding

that the value x[i] at position i is exactly wrapped around

to the positions where the filter values were not applied.

Hence, circular padding equalizes all responses, albeit at

the other side of the image. Zero padding, in contrast, will

have absolute spatial locations where filter values are never

applied.

For F-Conv, in Eq. (4), the counting equation becomes

CF (a) =

n+k
∑

i=−k

k
∑

j=−k

Ji = a− jK. (10)

F-Conv sums the filter indices over all indices in the image

and thus, as in Eq. (5), all locations i sum to 2k+1 and thus

no locations are left out.

We conclude that V-Conv is the most sensitive to ex-

ploitation of the absolute spatial location. S-Conv with zero

padding is also sensitive to location exploitation. S-Conv

with circular padding is not sensitive, yet involves wrap-

ping values around to the other side, which may introduce

semantic artifacts. F-Conv is not sensitive to location in-

formation. In Fig. 3 we give an example of all convolution

types and how they can learn absolute spatial position.
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