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Abstract

Classification and localization are two pillars of visual

object detectors. However, in CNN-based detectors, these

two modules are usually optimized under a fixed set of can-

didate (or anchor) bounding boxes. This configuration sig-

nificantly limits the possibility to jointly optimize classifica-

tion and localization. In this paper, we propose a Multi-

ple Instance Learning (MIL) approach that selects anchors

and jointly optimizes the two modules of a CNN-based ob-

ject detector. Our approach, referred to as Multiple Anchor

Learning (MAL), constructs anchor bags and selects the

most representative anchors from each bag. Such an itera-

tive selection process is potentially NP-hard to optimize. To

address this issue, we solve MAL by repetitively depressing

the confidence of selected anchors by perturbing their cor-

responding features. In an adversarial selection-depression

manner, MAL not only pursues optimal solutions but also

fully leverages multiple anchors/features to learn a detec-

tion model. Experiments show that MAL improves the base-

line RetinaNet with significant margins on the commonly

used MS-COCO object detection benchmark and achieves

new state-of-the-art detection performance compared with

recent methods. 1

1. Introduction

Convolutional Neural Network (CNN) based object de-

tectors have achieved unprecedented advances in the past

few years [9, 8, 27, 25, 21, 17, 18]. In both recent two-stage

and single-stage object detectors, the bounding box classifi-

cation and localization modules are highly integrated: they

∗indicates equal contributions
†Corresponding author
1The code is available at github.com/KevinKecc/MAL.
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Figure 1: Detection outputs of the baseline detector (Reti-

naNet) and the Multiple Anchor Learning (MAL), before

and after NMS. The baseline detector may produce bound-

ing boxes with high localization IoU with a low classifica-

tion score (the yellow bbox), or low localization IoU with a

high classification score (the red bbox), which lead to sub-

optimal results after NMS. MAL produces bounding boxes

with high co-occurrence of top classification and localiza-

tion, leading to better detection results after NMS.

are conducted on the shared local features, and are opti-

mized over the sum of the loss functions.

To provide rich candidates of shared local features, a

prevalent approach is the introduce hand-crafted dense an-

chors [18] on the convolutional feature maps. These an-

chors create a uniform distribution of bounding box scales

and aspect ratios, enabling objects with various scales and
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aspect ratios to be equally represented in training a detector.

However, optimization under a fixed set of hand-crafted

anchors significantly limits the possibility to jointly opti-

mize classification and localization. During training, detec-

tors leverage spatial alignment, i.e., Intersection over Unit

(IoU) between objects and anchors, as the sole criterion to

assign anchors. Each assigned anchor independently super-

vises network learning for classification and localization.

Without direct interactions of the two optimizations, the de-

tections of accurate localization may have lower classifica-

tion confidence, and be suppressed by the following Non-

Maximum Suppression (NMS) procedure (see the baseline

example in Fig. 1).

Recent remedy for the problem includes IoU-Net [13]

and FreeAnchor [34]. However, it remains using indepen-

dent classification and localization confidence during the

training procedure. FreeAnchor selects anchors according

to a joint probability over classification and localization.

Nevertheless, the matching procedure based on maximum

likelihood estimation (MLE) is not optimal considering the

non-convexity of the problem.

In this paper, we present Multiple Anchor Learning

(MAL), an automatic anchor learning approach that jointly

optimizes object classification and localization from the

perspective of anchor-object matching. In training phase

of MAL, an anchor bag for each object is constructed by

choosing the top ranked anchor with IoUs between anchors

and the object bounding box. MAL evaluates positive an-

chors in each bag by combining their classification and lo-

calization scores. In each training iteration, MAL uses all

positive anchors to optimize the training loss but selects the

high/top-scored anchors as the solutions. This leads to high

co-occurrence of top classification and localization (see the

MAL example in Fig. 2).

MAL is optimized over an anchor selection loss based on

Multiple Instance Learning (MIL) [23]. However, the itera-

tive selection process under conventional MIL is potentially

NP-hard to optimize. Selecting the top-scored instance (an-

chor) in each learning iteration could produce sub-optimal

solutions, e.g., falsely localized object parts. To address

this issue, we solve MAL by repetitively depressing the con-

fidence of top-scored anchors by perturbing their features,

which tends to that potential optimal solutions, i.e., positive

anchors of lower confidence, have an opportunity to partic-

ipate in learning. By upgrading the supervision from inde-

pendent anchors to multiple anchors, MAL fully leverages

multiple anchors/features to learn a better detector. The

contributions of this work include:
• We propose an Multiple Anchor Learning (MAL) ap-

proach, jointly optimizing classification and localiza-

tion modules for object detection by evaluating and se-

lecting anchors.
• We propose a selection-depression optimization strat-

egy, providing an elegant-yet-effective way to prevent

MAL from getting stuck into sub-optimal solutions

during detector training.

• We improve state-of-the-arts with significant margins

on the commonly used MS COCO dataset.

2. Related Work

Various taxonomies [20] have been used to categorize

the large amount of CNN-based object detection methods,

e.g., one-stage [27] vs. two-stage [18], single-scale features

[27] vs. multi-scale representation [17, 16, 24], and hand-

crafted architectures [21] vs. Network Architecture Search

(NAS) [7]. In this paper, we review the related works from

the perspective of object localization.

2.1. Anchor-Based Method

Training a detector requires to generate a set of bound-

ing boxes along with their classification labels associated

with the objects in an image. However, it is not trivial for

CNNs to directly predict an order-less set of arbitrary car-

dinals [32]. One commonly used strategy is to introduce

anchors, which employs a divide-and-conquer strategy to

match objects with convolutional features, spatially.

Anchor Assignment. Anchor-based detection methods

include the well-known Faster R-CNN [27], FPN [17], Reti-

naNet [18], SSD [21], DSSD [6], and YOLO [26]. In these

detectors, a large amount of anchors are scattered over con-

volutional feature maps so that they can match objects of

various aspect ratios and scales. During training, the an-

chors are assigned to objects (positive anchors) or back-

grounds (negative anchors) by threshold their IoUs with the

ground-truth bounding boxes [27]. During inference, an-

chors independently predict object bounding boxes, where

the box with the highest classification score is retained after

the NMS procedure.

Despite of the simplicity, these approaches rely on the

assumption that anchors are optimal for both object classi-

fication and localization. For objects of partially occlusion

and irregular shapes, however, such heuristics are implausi-

ble and they could miss the best anchors/features [34].

Anchor Optimization. To pursue optimal feature-

object matching, MetaAnchor [32] learns to predict an-

chors from the arbitrary customized prior boxes with a sub-

net. GuidedAnchoring [31] leverages semantic features to

guide the prediction of anchors while replacing dense an-

chors with predicted anchors. FreeAnchor [34] upgrades

handcrafted anchor assignment to “free” anchor match-

ing. This approach formulates detector training as a maxi-

mum likelihood estimation (MLE) procedure. Its goal is to

learn features that best explain a class of objects in terms

of both classification and localization. IoU-Net [13] se-

lects anchors while predicting the IoU between a detected

bounding box and a ground-truth box. Combined with an
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Figure 2: The main idea of MAL. In the feature pyramid network, an anchor bag Ai is constructed for each object bi.
Together with the network parameter learning, i.e., back-propagation, MAL evaluates the joint classification and localization

confidence of each anchor in Ai. Such confidence is used for anchor selection and indicates the importance of anchors during

network parameter evolution.

IoU-guided NMS, IoU-Net reduces the suppression failure

caused by the misleading classification confidences. Gaus-

sian YOLO [3] introduces localization uncertainty that in-

dicates the reliability of anchors/bounding boxes. By using

the estimated localization uncertainty during inference, this

approach improves classification and localization accuracy.

All above approaches have taken some steps towards an-

chor learning. Nevertheless, how to efficiently select op-

timal anchors remains to be further elaborated. Consid-

ering a non-convex objective function which could cause

sub-optimal solutions, we propose an adversarial selection-

depression strategy to alleviate this issue.

2.2. Anchor-Free Method

Instead of using anchors as bases to conduct detection,

researchers have recently explored anchor-free approaches,

which operates on individual cells of the convolutional

feature maps. FCOS leverages cell-level supervision and

center-ness bounding-box regression [29] for object detec-

tion. CornerNet [15] and CenterNet [5] replace bound-

ing box supervision with key-point supervision. Extreme

point [35] and RepPoint [33] use point sets to predict object

bounding boxes.

As a new direction for object detection, anchor-free

methods show great potential for extreme object scales and

aspect ratios, without constraints set by hand-craft anchors.

However, without the anchor box as the reference point, di-

rect regression of bounding boxes from convoltuional fea-

tures remains a very challenging problem. As an anchor-

based approach, MAL outperforms the current top anchor-

free detectors such as CenterNet and CornerNet.

3. The Proposed Approach

MAL is implemented based on RetinaNet [18] network

architecture. MAL upgrades RetinaNet by finding optimal

selection of anchors/features for both classification and lo-

calization. In what follows, we briefly revisit RetinaNet on

its original mechanism in object classification and localiza-

tion. We then elaborate how MAL improve classification

and localization by evaluating anchors. We finally propose

an anchor selection-depression strategy to pursue optimal

solutions of MAL.

3.1. RetinaNet Revisit

RetinaNet is a representative architecture of single-stage

detectors with state-of-the-art performance. A RetinaNet

detector is made up of a backbone network and two subnets,

one for object classification and other for object localiza-

tion. Feature Pyramid Network (FPN) is used at the end of

RetinaNet backbone network. From each feature map in the

feature pyramid, a classification subnet predicts category

probabilities while a box regression subnet predicts object

locations using anchor boxes as the reference locations. The

input features of the two subnets are shared across the fea-

ture pyramid levels for efficiency. Considering the extreme

imbalance of foreground-background classes, presented as

positive-negative anchors after anchor-object matching, Fo-

cal Loss is adopted to prevent the vast number of easy neg-

atives from overwhelming the detector during training.

Let x ∈ X be an input image with label y ∈ Y , where X
is the training image set and Y is the label set of the cate-

gories. Without loss of generality, denote B as the ground-

truth bounding boxes of the objects in a positive image.

bi ∈ B consists of the class label bclsi and the spatial posi-

tion bloci . The classification confidence aclsj and bounding-

box output alocj of the anchor aj are predicted by the clas-

sification and the box regression subnets, respectively. The

anchors in an image are divided into positive ones aj+ if

their IoUs with the ground-truth boxes are larger than a

threshold, and negative ones aj− otherwise. Anchors are

used to supervise network learning, as

θ∗ = argmax
θ

(

fθ(aj+, b
cls
i )− γfθ(aj−, b

cls
i )

)

, (1)

where fθ(·) denotes the classification procedure, and γ is
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Figure 3: MAL implementation. During training, it includes the additional anchor selection and anchor depression modules

added to RetinaNet. During test, it uses exactly the same architecture as RetinaNet. “U” and “V ” respectively denote

convolutional feature maps before and after depression. “M” and “M ′” respectively denote an activation map before and

after depression.

a factor to balance the importance of negative/positive an-

chors. Simultaneously, positive anchors are used to opti-

mize the object localization, as

θ∗ = argmax
θ

gθ(aj+, b
loc
i ), (2)

where θ denotes the network parameters, and gθ(·) denotes

the bounding-box regression procedure. Eq. 1 and Eq. 2

are actually implemented by minimizing the Focal Loss,

Lcls(aj , b
cls
i ), and the Smooth-L1 loss, Lloc(aj , b

loc
i ),

During network learning, each assigned anchor indepen-

dently supervises the learning for object classification and

object localization, without considering whether the detec-

tion and localization are compatible on assigned anchors.

This could cause the anchors of accurate localization but

with lower classification confidence to be suppressed by the

following Non-Maximum Suppression (NMS) procedure.

3.2. Multiple Anchor Learning

To alleviate the drawbacks of independent anchor opti-

mization, we propose the Multiple Anchor Learning (MAL)

approach, Fig. 2. In each learning iteration, MAL selects

high-scored instances in an anchor bag to update the model.

After updating, the model evaluates each instance with new

confidence. Model learning and anchor selection iteratively

perform towards final optimization.

To fulfill this purpose, we first construct an anchor bag

Ai for the ith object. The anchor bag includes the top-

k anchors according to the IoUs between the anchors and

the ground truth. Together with network parameter learn-

ing, i.e., back-propagation, MAL evaluates the joint clas-

sification and localization confidence of each anchor in Ai.

Such confidence is used for anchor selection and indicates

the importance of anchors during network parameter evolu-

tion. For simplicity, consider solely the learning upon posi-

tive anchors, while that for negative anchors follows Eq. 1.

MAL has the following objective function:

{θ∗, a∗i } = argmaxθ,aj∈Ai
Fθ(aj , bi)

= argmaxθ,aj∈Ai
fθ(aj , b

cls
i ) + βgθ(aj , b

loc
i ),

(3)

where fθ(.) and gθ(.) give the classification and localization

scores, respectively, and β is a regularization factor. It is to-

wards selecting a best positive anchor a∗i for the ith object,

as well as learning the network parameters θ∗.

The objective function defined in Eq. 3 is converted to a

loss function as:

{θ∗, a∗i } = argminθ,aj∈Ai
Ldet(aj , bi)

= argminθ,aj∈Ai
Lcls(aj , b

cls
i ) + βLreg(aj , b

loc
i ),

(4)

where Lcls and Lreg are the classification and detection

losses, respectively, as defined in Section 3.1. The loss for

negative anchors follows the Focal Loss defined in [18].

3.3. Selection-Depression Optimization

Optimizing Eq. 3 or Eq. 4 with Stochastic Gradient De-

scent (SGD) is a non-convex problem, which could cause a

sub-optimal anchor selection. To alleviate the problem and

select optimal anchors, we propose repetitively depressing

the confidence of selected anchors by perturbing their cor-

responding features. Such a learning strategy, referred to as

selection-depression optimization, solves the MAL problem

in an adversarial manner.

Anchor Selection. According to Fθ(aj , bi), the conven-

tional MIL algorithm tends to select the top-scored anchor.

Nevertheless, in the context of object detection, selecting a

top-scored anchor from each bag is difficult, as validated by

the continuation MIL method [30]. Instead of selecting the

highest-scored anchor in Eq. 3 in the training phase, we pro-

pose an “All-to-Top-1” anchor selection strategy from each
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anchor bag for back-propagation. When learning proceeds,

we linearly decrease the number from |Ai| (number of an-

chors in a bag) to 1. Formally, let λ = t/T , where t and T
are the current and total numbers of iterations for training.

Then let φ(λ) indicate the indices of high-ranked anchors

and |φ(λ)| = |Ai| ∗ (1− λ) + 1. Finally, Eq. 3 is re-written

as:

{θ∗, a∗i } = argmaxθ,aj∈Ai

∑

j∈φ(λ)

Fθ(aj , bi), (5)

Along this pipeline, MAL leverages multiple an-

chors/features within the object region to learn a detection

model in early training epochs, and converges to use a

single optimal anchor at the last epoch.

Anchor Depression. Inspired by the inverted attention

network [12], we developed an anchor depression proce-

dure to perturb the features of selected anchors in order to

decrease their confidences (see more Fig. 3). To further op-

timize the training losses, MAL is forced to learn stronger

features for selected anchors. The rational is to endow unse-

lected anchors with extra chances to participate the training.

Formally, we denote the feature map and the attention map

as U and M , where M is computed as M =
∑

l wl ∗ Ul,

with w being the global average pooling of U and l being

the channel index of U . We then generate a new depressed

attention map M ′ = (1−✶P )∗M by cutting down the high

values to zero, where ✶ is the 0-1 indicator function. and P
is the high-value position. The feature map is perturbed as:

V = (1 +M ′) ◦ Ul, (6)

where 1 is the identity matrix and ◦ denotes the element-

wise multiplication. With the continuation strategy, the de-

pression in Eq. 6 is reformulated as:

V = (1 + (1− ✶ψ(λ)) ∗M) ◦ Ul, (7)

where ψ(λ) indicates how many pixels to be perturbed.

3.4. Implementation

The implementation of an MAL detector is based on the

RetinaNet detector where the features of the input image are

extracted by a FPN backbone [17]. The anchor generation

settings are the same as those of RetinaNet, i.e., 9 anchors

with three sizes {20, 21/3, 22/3} and three aspect ratios {1 :
2, 1 : 1, 2 : 1} for each pixel on the feature maps. Across

the levels, the anchors cover the scale range from 32 to 813

pixels with respect to the input image.

During the feed-forward procedure of the network train-

ing, we calculate the detection confidence of each anchor,

Fθ(aj , bi), to minimize the detection loss defined in Eq.

4. According to the confidence, top-k anchors are selected.

The network parameters are then updated under the supervi-

sion of the selected anchors. After anchor selection, anchor

Anchor Selection

Anchor Depression

Anchor Selection

Loss function Selected anchor
(in red)

Figure 4: Optimization analysis. In the first curve, MAL se-

lects a sub-optimal anchor and gets stuck into a local mini-

mum. In the second curve, anchor depression increases the

loss so that MAL continues the optimization. In this way,

MAL has a greater chance to find optimal solutions.

depression is carried out, as described in Section 3.3. In the

next iteration, anchor selection is carried out again to select

high-scored anchors.

The inference procedure of our approach is exactly the

same as RetinaNet, i.e., we use the learned network param-

eters to predict classification scores and object bounding

boxes, which are fed to a NMS procedure for object de-

tection. As MAL is only applied in the detector training

procedure to learn more representative features, our learned

detector achieves performance improvement with negligible

additional computation cost.

3.5. Optimization Analysis

The anchor selection-depression strategy approximates

an adversarial procedure. The selection operation finds top-

scored anchors that minimize the detection loss Ldet. The

depression operation perturbs the corresponding features of

selected anchors so that their confidence decreases and the

detection loss increases again. The selection-depression

strategy helps the learner find better solutions for the non-

convex objective function of MAL. As illustrated by the first

curve of Fig. 4, MAL selects a sub-optimal anchor and gets

stuck into a local minimum of the loss function. In the sec-

ond curve, the anchor depression increases the loss, so that

the local minimum is “filled”. Consequently, MAL con-

tinues to find the next local minimum. After learning con-

verges, MAL has a better chance to find optimal solutions.

4. Experiments

In this section, we present experimental results of

the proposed Multiple Anchor Learning approach on the

bounding-box detection track of the challenging COCO
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benchmark [19]. We follow the common practice and use

∼118k images for training, 5k for validation and ∼20k for

testing without provided annotations (test-dev). AP is com-

puted over ten different IoU thresholds, i.e., 0.5: 0.05: 0.95,

with all categories. It is the commonly used evaluation met-

ric for object detection.

4.1. Experimental Setting

We utilize ResNet-50, ResNet-101, and ResNeXt-101

with FPN as backbones. The batch normalization layers

are fixed to be frozen in the training phase. We use a mini-

batch of 2 images per GPU, thus making a total mini-batch

of 16 images on 8 GPUs. The initial learning rate is set

to 0.01 and decreased by a factor of 10 after 90k and 120k

for the 135k setting (ResNet-50), and 120k and 160k for

the 180k setting (ResNet-101 and ResNeXt-101). The syn-

chronized Stochastic Gradient Descent (SGD) is adopted

for network optimization. The weight decay of 0.0001 and

the momentum of 0.9 are used. A linear warmup strategy is

adopted in the first 500 iterations. We set the weight param-

eter β = 0.75 experimentally. Following [34], we assign

anchors to ground-truth using IoU threshold of 0.5, and to

background if their IoUs are in [0, 0.4).

4.2. Ablation Study

For ablation study, we used ResNet-50 as the backbone.

All detection performances were evaluated on the COCO-

minval dataset (5k images). Firstly, we visualize the effec-

tiveness of MAL in Fig. 5 on feature activation maps. Com-

paring MAL with RetinaNet, MAL activates more parts on

the object and suppresses the more parts in the background.

It demonstrates that MAL improved features for better ob-

ject detection.

Anchor Selection: Without the depression component

of MAL, we evaluate the selection component individually

first. We compare the results of different k for anchor bag

construction, as shown in Table 1a. The AP is stable when

k = 40, 50, or 60. We choose 50 anchors in the follow-

ing experiments. The results of different anchor selection

strategies are shown in Table 1b. It improves AP from

35.46% to 38.14% when anchor bags are used instead of

the scattered anchors in RetinaNet, as MAL+S(all) in Table

1b. In the RetinaNet, if an anchor is with good localization

but without the highest score, it does not affect the network

parameters. While using the anchor bags, this kind of an-

chor has potential to be selected for detector learning. By

the continuation optimization which selects all anchors at

the beginning and gradually reduces the selected anchors to

the top-1, the performance is further improved to 38.39%,

as MAL+S(all-top1) in Table 1b. It verifies that continua-

tion optimization is also efficient in MAL.

Anchor Depression: We only add the depression com-

ponent to RetinaNet to find the preferable indicator func-

Figure 5: The activation map comparison between Reti-

naNet (the first and third rows) and MAL (the second and

fourth rows). The attention maps at the 10k, 50k and 90k

iterations are overlaid on input images. As highlighted by

red boxes at the 90k th iteration, MAL gets better attention

maps which activate more parts in the bicycle image and

suppress irrelevant parts in the cat image.

tion ψ(λ). We employ three kinds of indicator func-

tion. The first one is the constant function, which means

keeping the same depression ratio in the whole training

phase. We depress the top 50% pixels in the attention

map. The AP decreases a little from 35.46% to 35.25%,

as MAL+D(constant) shown in Table 1c. The reason is

that at the beginning of the training phase, the parameters

of the network are randomly initialized, and the depression

is meaningless for the adversarial learning. If a step func-

tion is utilized for ψ(λ), which increases the depression part

from 0.0% to 50.0% by step, the performance is increased

to 35.88%, as MAL+D(step) shown in Table 1c. It illus-

trates that the detector should be optimized in a way before

depression. The third one is the symmetric step function,

which increases the depression part from 0.0% to 50% and

then decreases it from 50% to 0.0%. It achieves the best per-

formance of 36.18%, as MAL+D(symmetric step) shown in

Table 1c.

Selection-Depression: The efficient combination of se-

lection and depression is shown in Fig. 6. We compare the

AP, AP75, and AP50. The AP is increased to 36.2% with

the depression component and to 38.4% with the selection

component. When the adversarial manner is taken between

selection and the depression, the AP is further improved to

39.2%, which is 3.7% (35.5% vs. 39.2%) performance gain

compared with the original RetinaNet. The AP75 and AP50

have the same trend of growth as the AP.

Localization Improvement: In Fig. 7, we show an er-

ror factor analysis [2] of the localization results. It can be

seen that poor localization (Loc) hinders the improvement

of detection performance for objects of irregular shapes,

i.e., tilted and slender objects. Compared with the baseline
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Method AP AP50 AP75

MAL(k=40) 38.27 56.67 40.81

MAL(k=50) 38.39 56.81 41.14

MAL(k=60) 38.08 56.11 40.18

(a) Detection performance upon dif-

ferent anchor numbers k in each an-

chor bag.

Method AP AP50 AP75

RetinaNet 35.46 51.61 39.37

MAL+S(all) 38.14 56.81 40.81

MAL+S(all-top1) 38.39 56.81 41.14

(b) Anchor selection strategy φ(λ). “S” de-

notes “Selection”. We compare selecting

all instances and all-top1 instance.

Method AP AP50 AP75

MAL+D(constant) 35.25 51.72 38.92

MAL+D(step) 35.88 52.34 39.63

MAL+D(symmetric step) 36.18 52.66 39.88

(c) Depression strategy ψ(λ). “D” denotes “De-

pression”. The constant function, step function, and

symmetric step function are compared.

Table 1: Ablation study on the COCO minval dataset with the backbone ResNet50. We show the AP, AP50, and AP75 (%).

Figure 6: Ablation studies of the anchor selection and de-

pression modules on the COCO-minval dataset. On the met-

rics AP, AP75 and AP50, MAL outperforms the baseline

detector (RetinaNet) with significant margins. “S” and “D”

respectively denote “Selection” and “Detection”.

Method Backbone AP AP50 AP75

RetinaNet [18] ResNet-50 35.5 51.6 39.4

MAL (ours) ResNet-50 39.2 58.0 42.3

RetinaNet [18] ResNet-101 39.1 59.1 42.3

MAL (ours) ResNet-101 43.6 62.8 47.1

RetinaNet [18] ResNeXt-101 40.8 61.1 44.1

MAL (ours) ResNeXt-101 45.9 65.4 49.7

Table 2: Performance comparison with the baseline method

(single-scale results) on the MS-COCO test-dev dataset.

MAL improves the baseline with significant margins.

method, MAL significantly reduces the localization error

(blue part in Fig. 7) of these objects. For instance, the area

under curve (AUC) decreases from 15.7% (45.5%−29.8%)

to 11.6% (58.7%−47.1%) for the toothbrush category and

from 13.6% (63.3%−49.7%) to 10.6% (74.8%−64.2%) for

the kite category.

4.3. Comparison with State-of-the-Art Detectors

Keeping the best setting in the ablation study, we com-

pare the propsoed MAL with the baseline, i.e., RetinaNet,

in Table 2. For ResNet-50, MAL improves the baseline

from 35.5% to 39.2% with 3.7% improvement. For ResNet-

101 and ResNeXt-101, the improvements are 4.5% and

4.1%, respectively. It illustrates that MAL achieves reliable

(a) Baseline (label=toothbrush) (b) MAL (label=toothbrush)

(c) Baseline (label=kite) (d) MAL (label=kite)

Figure 7: Quantitative evaluation of detection performance.

Top row: performance comparison on toothbrush detection.

Bottom row: performance summary for the kit category.

gains with various of backbones.

In Table 3, MAL is compared with the state-of-the-art

detectors of two-stage methods and one-stage methods on

the MS COCO test dataset, which are arranged in the in-

creasing order of AP. For fair comparison, we re-scale the

images such that their shorter sides are 800 pixels and the

longer sides not more than 1333 pixels.

For one-stage methods, we compare the state-of-the-art

including YOLO [25, 26], SSD [21], FCOS [29], FreeAn-

chor [34] and CenterNet [5]. With the ResNet-101 back-

bone, MAL achieves 43.6% AP of single-scale, which out-

performs the anchor-free approach FCOS [29] by 2.1%

(43.6% vs. 41.5%). With the ResNeXt-101 backbone,

MAL achieves 45.9% AP of single scale, which achieves

1.1% (45.9% vs. 44.8%) gain compared with the recent

FreeAnchor [34]. It also outperforms state-of-the-art Cen-

terNet [5] by 1.0% AP (45.9% vs. 44.9%). Note that

CenterNet uses the Hourglass-104 backbone which has

much more network parameters than ResNeXt-101. These

are significant margins for the challenging object detec-

tion task. The multi-scale testing APs of MAL are fur-

ther improved to 45.0% and 47.0% with ResNet-101 and
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Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ [11] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [17] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN w TDM [28] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

Deformable R-FCN [4] Inception-ResNet-v2 37.5 58.0 40.8 19.4 40.1 52.5

Mask R-CNN [10] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

IoU-Net [13] ResNet-101 40.6 59.0 - - - -

Cascade RCNN [1] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

Grid R-CNN w/ FPN [22] ResNeXt-101 43.2 63.0 46.6 25.1 46.5 55.2

One-stage methods

YOLOv2 [25] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [21] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

YOLOv3 [26] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9

DSSD513 [21] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

GA-RetinaNet [31] ResNet-50 37.1 56.9 40.0 20.1 40.1 48.0

MetaAnchor [32] ResNet-50 37.9 - - - - -

RetinaNet [18] ResNet101 39.1 59.1 42.3 21.8 42.7 50.2

CornerNet [15] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3

RetinaNet [18] ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2

FCOS [29] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6

FoveaBox [14] ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6

AB+FSAF [36] ResNeXt-101 42.9 63.8 46.3 26.6 46.2 52.7

FreeAnchor [34] ResNeXt-101 44.8 64.3 48.4 27.0 47.9 56.0

CenterNet [5] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4

ours

MAL ResNet-101 43.6 62.8 47.1 25.0 46.9 55.8

MAL ResNeXt-101 45.9 65.4 49.7 27.8 49.1 57.8

MAL (multi-scale) ResNet-101 45.0 63.7 48.9 28.0 48.0 57.0

MAL (multi-scale) ResNeXt-101 47.0 66.1 51.2 30.2 50.1 58.9

Table 3: Performance comparison with the state-of-the-art methods on the MS-COCO test-dev dataset (single-scale results

unless explicitly stated). MAL achieves new state-of-the-art performance. As a one-stage detector, MAL also outperforms

most two-stage detectors.

ResNeXt101, respectively.

Table 3 also compares MAL with representative two-

stage detectors including Faster-RCNN with FPN [17],

Mask R-CNN [10], IoU-Net [13], and Grid R-CNN [22].

MAL outperforms most two-stage detectors. Particularly, it

outperforms the recent Grid R-CNN detector by 2.7% (45.9

vs. 43.2%) with the same backbone. As a one-stage detector

with simpler implementation, MAL shows great potential to

surpass two-stage detectors.

5. Conclusion

We have proposed an elegant and effective training ap-

proach, referred to as Multiple Anchor Learning (MAL), for

visual object detection. By selecting anchors to jointly opti-

mize bounding box classification and localization, MAL up-

grades the standard hand-crafted anchor assignment mech-

anism to a learnable object-anchor matching mechanism.

We proposed a simple selection-depression strategy to al-

leviate the sub-optimization issue of MAL. MAL improved

object detection with significant margins compared with the

baseline detector RetinaNet, achieves the best result on MS-

COCO among single-stage methods, and outperforms many

recent two-stage approaches. Such improvements root in

not only the optimal selection of anchors but also implicit

feature assembling based on a bag of anchors. Our work

presents a promising direction to relax anchor design in

learning a visual object detection.
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