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Abstract

We introduce an information-theoretic loss function,

RankMI, and an associated training algorithm for deep

representation learning for image retrieval. Our proposed

framework consists of alternating updates to a network that

estimates the divergence between distance distributions of

matching and non-matching pairs of learned embeddings,

and an embedding network that maximizes this estimate via

sampled negatives. In addition, under this information-

theoretic lens we draw connections between RankMI and

commonly-used ranking losses, e.g., triplet loss. We exten-

sively evaluate RankMI on several standard image retrieval

datasets, namely, CUB-200-2011, CARS-196, and Stanford

Online Products. Our method achieves competitive results

or significant improvements over previous reported results

on all datasets.

1. Introduction

Deep representation learning is fundamental for many

downstream computer vision applications, including image

retrieval and visual search [39, 14, 29, 27, 41], face re-

identification [35, 6], 3D object retrieval [16], image cap-

tioning [36, 19], and cross-modal learning and retrieval

[22, 13, 9, 25]. Most such tasks use deep neural net-

works to map their input (e.g., images, 3D shapes, text or

audio captions, etc.) into an embedding space. The ob-

jective is to learn representations that yield high similar-

ity for semantically related or matching items (e.g., same-

category images/objects, faces of the same person, and

paired image–captions) and low similarity for semantically

unrelated or non-matching ones (e.g., images/objects of dif-

ferent types, faces of different people, and non-matching

image–captions). A common practice is to formulate rep-

resentation learning as a retrieval (or ranking) problem, and

train a network using matching and non-matching query–

value pairs as positive and negative samples, respectively.

A variety of loss functions, embedding ensembling, and

sampling methods have been proposed in the literature, all

seeking to learn representations that move sample positive
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embeddings

Figure 1. We propose RankMI, a novel information-theoretic rank-

ing loss function. (Top) Before training, semantically related

(matching) items do not necessarily have low distance, and un-

related (non-matching) ones do not have high distance. This is

reflected in the high overlap between the distance score distribu-

tions for the matching (same-category), shown in blue, and the

non-matching (different-category), shown in red. (Bottom) After

optimizing our mutual information-based objective, the distribu-

tions are well separated, and by extension the embedding space

is well-organized with matching items having low distance and

non-matching ones having high distance. At no point are the dis-

tributions themselves modelled explicitly.

points closer to, and sample negative points farther from,

a target query. The different loss functions differ in the

specifics of how they achieve this goal. For instance, sev-

eral works impose a margin between positive and negative

distances [43, 6, 27, 42]. Others learn a threshold on the dis-

tance scores [27, 40], or directly minimize the likelihood of

negative points having a lower distance than positive points

[41]. To further boost performance, ensembling methods

have been proposed that combine embedding vectors from

different layers from a single network or from different net-

works [45, 31, 31, 20]. Complementary efforts have been

placed on sampling strategies that focus on finding infor-
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mative negative examples [35, 38, 3], weighting examples

according to their informativeness [14, 27], or generating

synthetic or proxy examples [8, 29, 46]. In this paper, our

focus is primarily on the loss function.

Inspired by recent information-theoretic approaches to

deep representation learning [2, 17], we present a novel

view of the retrieval problem. In particular, we propose a

retrieval objective that finds an image (value) that shares

the highest amount of information with a given (image)

query. We thus seek to learn (image) representations that

maximize the mutual information (MI) among instances of

the same category. Figure 1 depicts this objective: Prior to

training, the distance score distribution of same-category

(blue) pairs has a high overlap with that of pairs from

different categories. By seeking to maximize the MI

among same-category items, we learn representations

that have high proximity for same-category items and

low proximity for items from different categories, hence

supporting accurate search and retrieval. To achieve this

objective, we propose a novel loss function, called RankMI,

that approximates the MI between query and value (im-

ages) by estimating a tight lower bound on the divergence

between their joint probability and the product of marginals.

Contributions. In this paper, we make the following three

main contributions. First, we propose a novel loss function,

RankMI, which optimizes a theoretically-grounded objec-

tive, as well as an associated training algorithm. Second,

under this information-theoretic lens, we draw connections

to commonly used ranking losses. Finally, we present ex-

tensive evaluation of RankMI on standard image retrieval

benchmarks, CUB-200-2011 [44], CARS-196 [23], and

Stanford Online Products [39]. Our method achieves com-

petitive results or significant improvements over previous

reported results on all datasets.

2. Related work

A variety of loss functions, sampling techniques, and

ensembling strategies have been proposed in the literature

for deep representation learning. Here, we elaborate on

those most relevant to our work, and establish the relevance

of our main technical contributions. Note that parallel

research dedicated to landmark retrieval (e.g., [1, 34, 33])

has also considered image representations, loss functions,

and sampling strategies. These works are beyond the scope

of the following survey.

Ranking losses. An important component of deep rep-

resentation learning is the loss function that expresses the

learning objective in the context of the target application.

Triplet loss [43] is one of the most commonly used loss

functions for retrieval tasks. This loss considers a set of

data triplets, where each triplet consists of data elements

termed the anchor, positive, and negative. A positive exam-

ple shares the same class as the anchor, whereas the nega-

tive example differs. The goal of training is to ensure that

the distance of the negative pair is higher than that of the

positive (plus a margin), for all queries (within a batch).

Quadruplet loss [6, 24] extends the triplet loss to addition-

ally force a margin between sampled positives and nega-

tives that do not share an anchor. Several other losses also

extend the triplet loss: Angular loss [42] considers the re-

lation between all three elements in a triplet, whereas n-

pair loss [37] allows joint comparison with more than one

negative example by taking one sample from every negative

class. Other loss functions, such as [40] and [27], explicitly

increase (decrease) the distance of positives (negatives) to

be lower (higher) than a learnable threshold plus a fixed or

learnable margin. Histogram loss [41] directly minimizes

the empirically-estimated probability of a negative sample

having a lower distance than a positive one, thus avoiding

the need for tuning hyper-parameters such as threshold or

margin. Unlike histogram loss, in the deep variational met-

ric learning framework [26] the intra-class variations are

modeled assuming a Gaussian latent space.

Our MI-based loss function presents an intuitive view

of the ranking problem. Moreover, by drawing on recent

advances in neural MI estimation (see below for related

work on MI), RankMI estimates MI without having to di-

rectly compute the distance distributions. In addition, via

the use of a neural network that collects dataset-level statis-

tics, RankMI seamlessly incorporates global properties of

the data distributions into the representation learning net-

work. Next, we discuss several sampling techniques and

other strategies that have been proposed to improve the ef-

fectiveness of these loss functions.

Beyond losses. Optimization of deep network parameters

relies on the local gradients within a mini-batch, hence ig-

noring the global data distributions. To alleviate this prob-

lem, a significant body of research [39, 16] has explored

ways of effectively and efficiently finding informative sam-

ples to learn from. Earlier work suggested that the use of

semi-hard negative samples (i.e., samples that trigger false

alarm) improves performance [35, 38, 3]. More recent work

suggests strategies for assigning weights to sample points

based on their informativeness [14, 27], generating syn-

thetic adversarial hard negatives from easy negatives [8], or

learning proxies for hard negatives across an entire dataset

[29, 46]. Although sampling strategies succeed at choosing

informative examples to learn from, they still work within a

mini-batch and do not take a global view of the data. Some

recent work explicitly incorporate global information in the

form of class-level similarities [10, 5]. However, these stud-

ies rely on the existence of a hierarchy over classes. Yet

others have pursued ensembling schemes [45, 31, 20] which

combine embeddings taken from various layers of the same
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network or from entirely different networks.

These efforts are orthogonal to our contributions, since

RankMI does not impose constraints on the sampling pro-

cedure. For our evaluation, we use distance-weighted sam-

pling [27], since it has been shown to outperform other

commonly-used negative sampling strategies. Also, we do

not resort to embedding ensembling.

Mutual information and deep learning. RankMI draws

on recent information-theoretic approaches in deep learning

that estimate the divergence between two probability dis-

tributions and/or mutual information between two random

variables using neural network estimators. Nowozin et al.

[30] show that one can recover the original generative ad-

versarial network (GAN) training loss by Goodfellow et al.

[12] as a minimization of the estimated divergence between

the generated and true data distributions. Belghazi et al. [2]

propose Mutual Information Neural Estimation (MINE) and

show that the application of divergence estimation and sub-

sequent minimization or maximization techniques extends

beyond training GANs. In particular, MINE shows that one

can design algorithms to consistently estimate the mutual

information between two random variables via a neural net-

work. While these developments have been used for train-

ing GANs and unsupervised representation learning [17],

to the best of our knowledge, they have not been previously

considered in the context of ranking and retrieval tasks, as

done in our work.

In closely related work, Cakir et al. [4] learn binary hash

codes. For learning, they also use mutual information to

quantify the separation of distributions of positive and neg-

ative pairings. A major difference between Cakir et al. and

our work is that their formulation is specialized to learning

binary encodings with a particular distance measure (i.e.,

Hamming distance). Furthermore, their loss requires the

explicit (quantized) modeling of the distance distributions,

whereas we leverage variational functions and avoid such

explicit modeling altogether.

3. Technical approach

Here, we present details of our information-theoretic loss

function, RankMI. Section 3.1 provides background ma-

terial on mutual information estimation using neural net-

works. We describe our RankMI loss in Section 3.2, and our

training algorithm in Section 3.3. Finally, in Section 3.4,

we draw connections between RankMI and commonly-used

ranking losses, e.g., triplet loss.

3.1. Preliminaries

The mutual information, I(X;Y ), between two random

variables, X and Y , can be expressed as the following KL-

divergence:

I(X;Y ) = DKL(J ‖ M), (1)

where J is the joint probability distribution between X and

Y , and M is their product of marginals. On the basis of

this connection, as well as established lower bounds on KL-

divergence (KLD) [7], Belghazi et al. [2] proposed the Mu-

tual Information Neural Estimator (MINE), which uses a

neural network to estimate a tight lower bound on MI. Im-

portantly, MINE draws on prior work by Nowozin et al. [30]

who proposed techniques for using neural networks to esti-

mate a family of divergences, including KL-divergence as

well as Jensen-Shannon Divergence (JSD). More recently,

Hjelm et al. [17] showed that the JSD and the KLD be-

tween the joint distribution of two random variables, and

their product of marginals, have an approximately mono-

tonic relationship. Hjelm et al. [17] used this insight for

deep representation learning, where they maximize MI (be-

tween local and global representations of an image) by si-

multaneously estimating and maximizing a lower bound on

JSD instead of KLD, as JSD demonstrated favourable prop-

erties in optimization. In particular, they used a dual rep-

resentation of JSD to establish a lower bound on MI, via a

variational function Tφ, as follows:

Î
(JSD)
φ (X,Y ) ≥ sup

φ∈Φ

{
EJ[Tφ(x, y)]−EM[− log(2−eTφ(x,y))]

}
,

(2)

where Tφ is a function of the following form [30]:

Tφ(x, y) = log(2)− log(1 + e−Vφ(x,y)). (3)

Here, Vφ(x, y) : Rn × Rn −→ R denotes an almost ev-

erywhere differentiable function with parameters φ. This

ensures that Tφ(x, y) < log(2) for any value of Vφ, and

consequently, the second term in (2) is finite as required.

We draw on [17] to propose a ranking loss function that

maximizes MI by maximizing a lower bound on JSD, as

in (2). Specifically, we use a neural network to learn the

variational function Tφ, which we define as a function of a

distance measure over the learned embedding space.

3.2. RankMI loss

Let zi = fθ(xi) be an image embedding computed over

an image, xi, via a deep neural network, fθ : Rn −→ Rd,

referred to as the embedding network. The purpose of our

loss function is to learn parameters θ such that images that

share the same class label, c, are mapped in close proximity

in the embedding space and therefore can be retrieved based

on distance. Given a batch of B images, our proposed loss

function is computed over two sets of paired image embed-

dings P = {(zi, zj) | ci = cj} and N = {(zi, zj) | ci 6= cj}
for 1 ≤ i, j ≤ B and i 6= j.

Our sampling procedure for a positive (matching) pair of

images (xi, xj) consists of initially sampling a class label,

then sampling two images independently given the same
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Figure 2. Overview of RankMI training. (left-to-right) Given an image batch, the images are first mapped by a ConvNet, fθ(·), to their

respective embeddings. Next, matching and non-matching pairwise distances of the embeddings are computed, here illustrated as matching

(blue) and non-matching distributions (red). Note, the distributions themselves are not modelled explicitly. The statistics network, Tφ(·),
non-linearly scales distance measurements to compute an estimate of mutual information between image embeddings that share the same

class label. The output of the statistics network is passed to our RankMI loss, LRankMI(·). Training consists of alternating stochastic gradient

descent (SGD) updates of the statistics and the embedding network parameters.

class label. Under this conditional independence assump-

tion, we obtain their joint distribution:

p(xi, xj) =
∑

k∈C

p(c=k)p(xi|c=k)p(xj |c=k)

=
∑

k∈C

p(c=k)p(xi, xj |c=k)

=
∑

k∈C

p(xi, xj , c=k). (4)

Secondly, for a large number of classes, ||C||, and high

entropy p(c), which is often the case in retrieval tasks, the

sampling procedure for negative pairs closely approximates

sampling from the product of marginals:

p(xi)p(xj) ≈∑

k∈C

∑

k′∈C
k′ 6=k

p(xi|c=k)p(c=k)p(xj |c=k′)p(c=k′). (5)

A justification for this approximation is provided in the sup-

plementary materials.

Therefore, using sample positive pairs, P , and sample

negative pairs, N , in a mini-batch, we can estimate the ex-

pectations in (2). Then, we can construct our loss func-

tion to maximize the lower bound on the mutual informa-

tion between the representations (zi, zj) of images depict-

ing shared content (e.g., the same product, the same bird

species), as in:

LRankMI =−
1

||P||

∑

(zi,zj)∈P

Tφ(zi, zj)

−
1

||N ||

∑

(zi,zj)∈N

log(2− eTφ(zi,zj)). (6)

Based on (3), we define the statistics network, Tφ, as:

Tφ(zi, zj) := log(2)− log(1 + e−Vφ(dij)), (7)

where Vφ : R −→ R is a simple multi-layer perceptron

(MLP), and dij is the distance between embeddings (zi, zj),
e.g., the normalized L2 distance. Crucially, defining Tφ as

a function of dij allows us to connect mutual information

to the distance in the embedding space. A discussion is

provided in the supplementary materials about the condi-

tions under which our RankMI loss function, (6) and (3),

can provide tight estimates of JSD.

Figure 2 provides an overview of our framework. Along

with an embedding network for learning d-dimensional fea-

ture vectors, zi, we train a statistics network, Tφ, that cap-

tures the statistics of the distances between the vectors.

Without explicitly modelling the distributions of positive

and negative pairs, we optimize a variational function, Tφ,

which enables estimating their divergence. Once this esti-

mator is available, we use it to provide training signals to the

embedding network. This procedure does not necessitate

prior assumptions on the distance distributions, allowing us

to learn variational functions optimized to separate arbitrar-

ily complex distributions, such as those shown in Figure 1.

Statistics network. Here, we describe considerations for

the design of the statistics network, Tφ(·), such that it sat-

isfies the requirement of ranking positive items closer than

negative items for a given query. Let p(d+ij |θt) and p(d−ij |θt)
be the conditional density functions associated with positive

pair distances, d+ij , and negative pair distances, d−ij , respec-

tively, given embedding network parameters θt at timestep

t. A necessary property of any ranking loss is that gradient

updates should move positive pairs closer, and push nega-

tives farther in the embedding space. In our RankMI formu-

lation, we express this requirement as follows:

sgn(∇θLRankMI) = sgn(∇θd
+
ij) (8a)

sgn(∇θLRankMI) = −sgn(∇θd
−
ij), (8b)

∀(i, j) ∈ {i, j | p(d+ij |θt) 6= 0 or p(d−ij |θt) 6= 0}. This
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pairwise distances

Figure 3. Training loss snapshot. (Top) RankMI loss as defined by

Tφ. The dashed line marks β estimated via Newton’s method.

(Bottom) Positive and negative pair distance distributions. β

marks the point where p(d+ij |θ) = p(d−ij |θ).

requirement is satisfied, if the following holds for Vφ:

∂Vφ

∂dij
< 0. (9)

That is, if Vφ is decreasing around the neighbourhood of

distances for positive and negative pairs at a given timestep

during training, the RankMI loss minimizes the positive pair

distances, and maximizes the negative pair distances. Intu-

itively, when (9) holds, mutual information and distance are

not only connected, but they also have a monotonic rela-

tionship (higher MI corresponds to lower distance).

In practice, this requirement on Vφ is generally not vio-

lated during SGD, since with initialization of fθ with pre-

trained weights, the distributions are already separated in

the desired direction at t=0. We empirically observe that

Vφ naturally converges to a decreasing function early in

training. However, to better facilitate this property, we add a

residual connection from the input of Vφ to its output, such

that it is of the form:

Vφ(x) := Ṽφ(x)− x, (10)

thus making ∂Vφ/∂x ≈ −1 at t=0 (with standard weight

initialization of Ṽφ).

One can introduce soft constraints on Vφ to ensure (9)

holds. We do not adopt this approach in our experiments

but present it in the supplementary material.

Algorithm 1 RankMI training algorithm. Please see Sec-

tion 3.3 for details. x[m] denotes an indexing operation on

a tensor x via a binary mask m of the same shape.

Require: θ0, φ0: Initial network parameters

Require: lrθ, lrφ: Learning rates

Require: β0: Initial value of β
Require: α: Fixed margin (See Figure 3)

Require: k: Alternating gradient descent ratio

Require: B: Mini-batch size

1: t← 0
2: βt ← estimateBeta(φ0, β0)
3: while stoppingCriterionNotMet do

4: for x1:B , c1:B in dataset do

5: z1:B ← fθ(x1:B)
6: dij ← ‖zi − zj‖2 ∀(i, j) ∈ {1, 2, . . . , B}
7: d+ij ← dij [ci == cj ]

8: d−ij ← dij [ci 6= cj ]
9: if t mod (k + 1) 6= 0 then

10: ⊲ Update statistics network, Vφ

11: loss← LRankMI(d
+
ij , d

−
ij , φt)

12: ∇φt ← ∇φloss
13: φt+1 ← φt − lrφ ∗ ∇φt

14: βt+1 ← estimateBeta(φt+1, βt)
15: ⊲ Do not update embedding network, fθ
16: θt+1 ← θt
17: else

18: ⊲ Update embedding network, fθ
19: d+ij ← d+ij [d

+
ij > βt − α]

20: d−ij ← d−ij [d
−
ij < βt + α]

21: d−ij ← negSampling(d−ij)

22: loss← LRankMI(d
+
ij , d

−
ij , φt)

23: ∇θt ← ∇θloss
24: θt+1 ← θt − lrθ ∗ ∇θt
25: ⊲ Do not update statistics network, Vφ

26: φt+1 ← φt

27: βt+1 ← βt

28: t← t+ 1

29: return θt

3.3. Training

Sampling is important for deep representation learning,

regardless of the loss function being used [27]. We view

the use of margins as an additional strategy for improving

sampling, since margins are used to drop easy positives and

negatives from a batch, and focus on the harder, margin-

violating samples. Therefore, we design our training algo-

rithm, Algorithm 1, to easily incorporate different margin

enforcement and negative sampling schemes.

Figure 3 depicts a snapshot of the RankMI loss learned

as a function of pairwise distances. Here, the blue curve

represents the loss incurred by a positive pair calculated as
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Tφ(zi, zj), the first component in (6). The loss incurred by

a negative pair is shown by the red curve, and is calculated

as log(2 − eTφ(zi,zj)), the second component in (6). β is

the distance score for which the two curves intersect, that is

where positive and negative pairs incur equal loss.

We observe that, analytically, Tφ(zi, zj) = 0 is a unique

solution that makes the two terms of LRankMI equal for

the same dij value. Further, solving for Vφ in (7), we get

Vφ(β) = 0. Motivated by this insight we use a root-finding

algorithm, such as Newton’s method, to closely approxi-

mate βt given the current parameters φt at training step t.
This step is repeated every time parameters φ are updated as

shown in Line 14 of Algorithm 1, and adds negligible com-

putational overhead. For details on this procedure, please

see supplementary materials.

Once β is found, we can easily incorporate margins α
into our training algorithm. Figure 3 highlights the effect

of this margin on RankMI loss. In particular, we can drop

negative pairs if d−ij > β + α, and drop positive pairs if

dij < β − α. As outlined in Algorithm 1, our training pro-

cedure alternates between two phases: updates to the statis-

tics network, and updates to the embedding network. For

k steps, we use all positive and negative pairs available in

the batch to tighten the divergence lower bound estimated

via parameters φ and (2). Importantly, we use all avail-

able samples for this phase, since using more samples im-

proves the approximation to expectations in (2). Then, we

perform a single update on the embedding network, after

filtering out samples that are not margin-violating and em-

ploying any negative sampling procedure, such as distance-

weighted (see Algorithm 1, Lines 19-21). This procedure

allows us to leverage the strength of mutual information

neural estimators, without sacrificing the ability to employ

sophisticated negative sampling strategies.

3.4. Connections of RankMI to other losses

Here, we draw connections between RankMI, and two

common ranking losses, the triplet [43] and quadruplet

losses [6, 24]. To enable direct comparison, we reformulate

both triplet and quadruplet losses using a common notation

that captures a spectrum of sampling strategies.

We reformulate triplet loss as follows:

Ltrp =

N∑

i=1

EQ[d
+
ij − d−ik + η]+, (11)

where N is the number of dataset samples, Q describes the

distribution for sampling a pair of points (j, k) for i to form

a triplet (i, j, k), and [·]+ the max(0, ·) operator.

Similarly, we reformulate quadruplet loss as follows:

Lquad = Ltrp +

N∑

i=1

ER[d
+
ij − d−kl + γ]+. (12)

Here, R describes a distribution for sampling (j, k, l) to

form quadruplets of positive pairs (i, j) and negative pairs

(k, l). We observe that if R is defined such that i = k,

the quadruplet term recovers triplet loss as defined in (11).

In that sense, we characterize the difference between triplet

and quadruplet losses as a difference between the sampling

strategies, or the distributions Q and R.

We observe that if V in the Jensen-Shannon lower

bound, (3), is fixed to be the following function,

V (x) =





log(e−x − 1) x < 0
undefined x = 0
− log(ex − 1) x > 0

, (13)

then the value being optimized (ignoring constant terms),

as in (6), reduces to the quadruplet term in (12) with a suf-

ficiently large margin γ that retains all quadruplets. The

margin γ is used to discard less informative quadruplets.

However, instead of a fixed α, RankMI could also incor-

porate margins stochastically based on random pairings of

positive and negative pairs. Therefore, we view triplet as a

special case of quadruplet loss with an anchor-based sam-

pling strategy, and quadruplet loss a special case of RankMI

with a fixed V . Moreover, we can learn to estimate tighter

bounds than those that can be estimated with the fixed func-

tion V in (13). This ability to train on tighter bounds is the

source of our substantial performance improvements.

Given the similarity between the triplet and quadruplet

losses to other losses, we conjecture that other losses may

be recast and understood under this common information-

theoretic framework. We reserve this for future work.

4. Empirical evaluation

In this section, we present extensive evaluation and

comparisons of our metric learning method on the image

retrieval and clustering tasks.

Datasets. We conduct experiments on three standard

datasets: CUB200-2011 [44], CARS-196 [23], and Stan-

ford Online Products [39]. Our evaluation setup follows the

one established in Song et al. [39]. CUB200-2011 contains

11, 788 images of birds depicting 200 species. The first

100 bird species (5, 864 images) are used for training and

the rest are reserved for evaluation. CARS-196 contains

16, 185 images of cars depicting 196 car models. The first

98 car models (8, 054 images) are used for training and the

rest for evaluation. Stanford Online Products, the largest

among our datasets, contains 120, 053 images depicting

22, 634 product categories. The first 11, 318 product

categories (59, 551 images) are used for training and the

remaining for testing. Note, the evaluation conducted in

previous works vary by whether cropped imagery is used

based on the provided bounding boxes in the datasets. We
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evaluate our method and compare with previous work using

the original images without cropping.

Evaluation metrics. To evaluate image retrieval, we use

the standard Recall@k metric [39], computed as the per-

centage of queries that have at least one example from the

same category in the k nearest neighbours. For our cluster-

ing evaluation, we use the Normalized Mutual Information

(NMI) score [28]. The clusters are realized with K-means

clustering. NMI is defined as the ratio of mutual infor-

mation and mean entropy of the clusters and ground truth,

NMI(Ω,C) = 2I(Ω;C)/(H(Ω) +H(C)), where I(·, ·)
and H(·) denote mutual information and entropy, respec-

tively, Ω = {ω1, . . . , ωK} the ground truth clusters, and

C = {c1, . . . , cK} the (K-means) cluster assignments.

4.1. Implementation details

Following previous work [27, 5], in all our experiments

we use the standard ResNet-50 architecture [15] as the fea-

ture extractor, pre-trained on ImageNet [18]. Both margin-

based [27] and FastAP [5] represent high performing (non-

ensemble) baselines in our tables. ResNet-50 is followed by

a dense layer to produce embeddings of the desired dimen-

sionality. We train our models using Adam [21], and a batch

size of 120 for all datasets. For the negative sampling pro-

cedure, we adopt distance-weighted sampling [27]. As in

prior work, we use horizontal mirroring and random crop-

ping for data augmentation during training. In all experi-

ments, β0 = 1, α = 0.2, lrφ = lrθ = 0.001, and k = 1.

Following common practice, the learning rate is divided by

a factor of 100 for pre-trained convolutional filters. We use

a weight decay multiplier equal to 0.0001 for all param-

eters in both networks. When sampling mini-batches, we

sample at least m images for each class represented in the

batch with m = 5 for CARS-196 and CUB200-2011, and

m = 2 for Stanford Online Products. We set the dimension-

ality of the embedding space to a compact size of 128 for

all datasets. These settings were chosen to keep our evalua-

tion in line with previous work and thus isolate performance

differences to our loss function and training algorithm. Our

method is implemented in PyTorch [32].

Our network architecture for Vφ in (3) is as follows:

dij −→ Linear(1,H ) −→ LeakyRelu(0.1)

−→ (Linear(H ,H ) −→ LeakyRelu(0.1)) × L

−→ Linear(H , 1) −→ Vφ(dij), (14)

where H = 128 and L = 2 for all our experiments, and the

network weights initialized with Xavier initialization [11].

4.2. Quantitative results

Tables 1, 2, and 3 compare image retrieval and cluster-

ing results of our method with previous reported results. We

Methods
Recall@k

NMI
1 2 4 8

Triplet Semi-hard [35] 128O 42.6 55.0 66.4 77.2 55.4

LiftedStruct [39, 38] 64B 43.6 56.6 68.6 79.6 56.5

StructClustering [38] 64B 48.2 61.4 71.8 81.9 59.2

Proxy NCA [29] 64B 49.2 61.9 67.9 72.4 59.5

Binomial Deviance [41] 512G 50.3 61.9 72.6 82.4 -

N-pairs [37] 64G 51.0 63.3 74.3 83.2 60.4

DVML + Triplet2 + DWS [26] 512G 52.7 65.1 75.5 84.3 61.4

Histogram [41] 512G 52.8 64.4 74.7 83.9 -

Angular Loss [42] 512G 53.6 65.0 75.3 83.7 61.0

HDML + N-pairs [46] 512G 53.7 65.7 76.7 85.7 62.6

HTL [10] 512G 57.1 68.8 78.7 86.5 -

Margin [27] 128R 63.6 74.4 83.1 90.0 69.0

Ensemble

HDC [45] 384G 53.6 65.7 77.0 85.6 -

BIER [31] 512G 55.3 67.2 76.9 85.1 -

ABE-8 [20] 512G 60.6 71.5 79.8 87.4 -

RankMI (Ours) 128R 66.7 77.2 85.1 91.0 71.3

Table 1. Recall@k and NMI on CUB200-2011 [44]. Baseline

results are taken from the respective papers. The number after

each citation denotes the embedding dimensionality. The letter af-

ter each embedding dimension indicates the embedding network

used. The letters R, G, B, and O denote ResNet-50, GoogLeNet,

BN-Inception and Other, respectively.

also compare to various embedding ensemble methods that

realize embedding vectors by combining embeddings gath-

ered from different layers from the same network or from

different networks. As can be seen, we achieve state-of-

the-art results on CUB-200-2011, compared to all baselines

including the ensemble methods. On CARS-196, we gen-

erally improve upon the state of the art across all recalls,

with the exception of the ensemble method ABE-8 [20].

On Stanford Online Products, we improve upon or perform

competitively with most of the non-ensemble methods, ex-

cept for FastAP [5]. Note that FastAP (batch = 256) real-

izes an additional performance boost via a heuristic that en-

ables large-batch training. More generally, FastAP makes

use of hierarchical class relationships for sampling. While

appropriate for Stanford Products Online, such hierarchies

are generally not available, and hence not applicable to all

datasets, e.g., CUB200-2011 and CARS-196.

An ablation study is provided in the supplementary ma-

terials analyzing the sensitivity of RankMI to the statis-

tics network depth/width, alternating gradient descent ratio

(AGDR), embedding size, and batch size.

4.3. Qualitative results

Figure 4 shows example retrieval results of our learned

embeddings on all three datasets. As can be seen, the

datasets contain classes with subtle inter-class (e.g., same

car make but different model) and large intra-class varia-

tions, such as object color, scene illumination, camera view-

point, and background. Despite these challenges, we can

successfully perform retrieval. Even the failure retrievals

are reasonable, as the differences between the query and re-

trieval are difficult to tease out by visual inspection.
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Methods
Recall@k

NMI
1 2 4 8

Triplet Semi-hard [35] 128O 51.5 63.8 73.5 82.4 53.4

LiftedStruct [39, 38] 64B 53.0 65.7 76.0 84.3 56.9

StructClustering [38] 64B 58.1 70.6 80.3 87.8 59.0

Angular Loss [42] 512G 71.3 80.7 87.0 91.8 62.4

N-pairs [37] 64G 71.1 79.7 86.5 91.6 64.0

Proxy NCA [29] 64B 73.2 82.4 86.4 88.7 64.9

Margin [27] 128R 79.6 86.5 91.9 95.1 69.1

HTL [10] 512G 81.4 88.0 92.7 95.7 -

DVML + Triplet2 + DWS [26] 512G 82.0 88.4 93.3 96.3 67.6

Ensemble

HDC [45] 384G 73.7 83.2 89.5 93.8 -

BIER [31] 512G 78.0 85.8 91.1 95.1 -

ABE-8 [20] 512G 85.2 90.5 94.0 96.1 -

RankMI (Ours) 128R 83.3 89.8 93.8 96.5 69.4

Table 2. Recall@k and NMI on CARS-196 [23]. Baseline re-

sults are taken from the respective papers. The number after each

citation denotes the embedding dimensionality. The letter after

each embedding dimension indicates the embedding network used.

The letters R, G, B, and O denote ResNet-50, GoogLeNet, BN-

Inception and Other, respectively.

Methods
Recall@k

NMI
1 10 100 1000

LiftedStruct [39, 38] 64B 62.5 80.8 91.9 - 88.7

Histogram [41] 512G 63.9 81.7 92.2 97.7 -

Binomial Deviance [41] 512G 65.5 82.3 92.3 97.6 -

Triplet Semi-hard [35] 128O 66.7 82.4 91.9 - 89.5

StructClustering [38] 64B 67.0 83.7 93.2 - 89.5

N-pairs [37] 512G 67.7 83.8 93.0 97.8 88.1

Angular Loss [42] 512G 67.9 83.2 92.2 97.7 87.8

HDML + N-pairs [46] 512G 68.7 83.2 92.4 - 89.3

DVML + Triplet2 + DWS [26] 512G 70.2 85.2 93.8 - 90.8

Margin [27] 128R 72.7 86.2 93.8 98.0 90.7

Proxy NCA [29] 64B 73.7 - - - -

FastAP [5] 128R 73.8 88.0 94.9 98.3 -

HTL [10] 512G 74.8 88.3 94.8 98.4 -

FastAP [5] (batch = 96) 512R 75.8 89.1 95.4 98.5 -

FastAP [5] (batch = 256 512R 76.4 89.0 95.1 98.2 -

Ensemble

HDC [45] 384G 70.1 84.9 93.2 97.8 -

BIER [31] 512G 72.7 86.5 94.0 98.0 -

ABE-8 [20] 512G 76.3 88.4 94.8 98.2 -

RankMI (Ours) 128R 74.3 87.9 94.9 98.3 90.5

Table 3. Recall@k and NMI on Stanford Online Products [39].

Baseline results are taken from the respective papers. The num-

ber after each citation denotes the embedding dimensionality. The

letter after each embedding dimension indicates the embedding

network used. The letters R, G, B, and O denote ResNet-50,

GoogLeNet, BN-Inception and Other, respectively.

5. Conclusions

We proposed RankMI, a new loss function and associ-

ated training algorithm for representation learning. Our ap-

proach is based on connections to variational divergence

maximization and mutual information estimation. We

showed that our loss function performs competitively or

surpasses state-of-the-art results on standard image retrieval

benchmarks. To do this, we use neural networks as function

approximators to simultaneously estimate and maximize

the divergence between the distance score distributions of

matching and non-matching pairs to learn the ranking. Our

carefully designed training algorithm can easily incorporate

architectural improvements to the embedding network (e.g.,

ensemble of embeddings), and orthogonal improvements to

the negative sampling procedure (e.g., distance-weighted

sampling).

109 109 109 109 109109 109

158 158 158 158158 158

128 182 182 124182 182

110 110 110 110110 110

193 193 193 193193 193

150 151 150 151150 151

21512 21512 21512 2151221512 21512

11720 11360 11612 1172011720 11421

11329 11329 11329 1132911329 11329

Figure 4. Example retrieval results. (left-to-right) query and five

nearest neighbours. The three top, middle, and bottom rows corre-

spond to examples from CUB200-2011, CARS-196, and Stanford

Online Products, respectively. The number over each image indi-

cates the class label. Blue and red outlines around the retrievals

indicate correct and incorrect retrievals, respectively. The last row

for each dataset contains incorrect retrievals.

Our approach draws on recent techniques for mutual in-

formation estimation, which suffer from high variance es-

timates. We conjecture that future developments to reduce

the variance of these estimates should benefit our proposed

approach by making optimization easier. Also, better func-

tion approximators (e.g., neural architecture search) for the

statistics network may improve performance.
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