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Abstract

The accuracy of monocular 3D human pose estimation

depends on the viewpoint from which the image is captured.

While freely moving cameras, such as on drones, provide

control over this viewpoint, automatically positioning them

at the location which will yield the highest accuracy re-

mains an open problem. This is the problem that we address

in this paper. Specifically, given a short video sequence,

we introduce an algorithm that predicts which viewpoints

should be chosen to capture future frames so as to max-

imize 3D human pose estimation accuracy. The key idea

underlying our approach is a method to estimate the un-

certainty of the 3D body pose estimates. We integrate sev-

eral sources of uncertainty, originating from deep learning

based regressors and temporal smoothness. Our motion

planner yields improved 3D body pose estimates and out-

performs or matches existing ones that are based on person

following and orbiting.

1. Introduction

Monocular approaches for 3D human pose estimation

have improved significantly in recent years, but their ac-

curacy remains relatively low. In this paper, we explore the

use of a moving camera whose motion we can control to re-

solve ambiguities inherent to monocular 3D reconstruction

and to increase pose estimation accuracy. This is known as

active vision and has received surprisingly little attention in

the context of using modern approaches to body pose esti-

mation. An active motion capture system, such as one based

on a personal drone, would allow one to film themselves

performing a physical activity and analyze their motion,

for example to get feedback on their performance. When

using only one camera, the quality of such feedback will

strongly depend on selecting the most beneficial viewpoints

for pose estimation. Fig. 1 depicts an overview of our ap-

proach based on a drone-based monocular camera.

In this paper, we introduce an algorithm designed to con-

tinuously position a moving camera at optimal viewpoints

Figure 1. Method overview. The 2D and 3D human pose is in-

ferred from the current frame of the drone footage, using off the

shelf CNNs. The 2D pose and relative 3D pose of the last k frames

is then used to optimize for the global 3D human motion. The next

view of the drone is chosen so that the uncertainty of the human

pose estimation from that view is minimized, which improves re-

construction accuracy.

to maximize the 3D pose estimation accuracy for a freely

moving subject. We achieve this by moving the camera in

6D pose space to viewpoints that maximize a utility func-

tion designed to predict reconstruction accuracy. However,

the utility function cannot be defined in terms of reconstruc-

tion accuracy because doing so would require knowing the

true person and camera position, leading to a chicken and

egg problem. Instead we use prediction uncertainty as a sur-

rogate for accuracy. This is a common strategy used in robot

navigation systems for unknown scenes where the robot ex-

plores areas that are most incomplete in its internal map

representation [20]. However, in our situation, estimating

uncertainty is much more difficult since multiple sources of

uncertainty need to be considered. These include uncertain-

ties about what the subject will do next, the reliability of

the pose estimation algorithm, and the accuracy of distance

estimation along the camera’s line of sight.
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Our key contribution is therefore a formal model that

provides an estimate of the posterior variance and proba-

bilistically fuses these sources of uncertainty with appro-

priate prior distributions. This has enabled us to develop

an active motion capture technique that takes raw video

footage as input from a moving aerial camera and contin-

uously computes future target viewpoints for positioning

the camera, in a way that is optimized for human motion

capture. We demonstrate our algorithm in two different

scenarios and compare it against standard heuristics, such

as constantly rotating around the subject and maintaining

a constant angle with respect to the subject. We find that

when allowed to choose the next viewpoint without phys-

ical constraints, our algorithm outperforms the baselines

consistently. For simulated drone flight, our results are on

par with constant rotation, which we conclude is the best

trajectory to choose in the case of no obstacles blocking

the circular flight path. Our code is available at https:

//github.com/senakicir/ActiveMoCap

2. Related work

Most recent approaches to markerless motion capture

rely on deep networks that regress 3D pose from monocular

images [16, 17, 21, 38, 25, 31, 22, 44, 36, 34, 41, 39, 15].

While a few of these methods improve robustness by en-

forcing temporal consistency [23], none considers the effect

that actively controlling the camera may have on accuracy.

The methods most closely related to ours are therefore those

that optimize camera placement in multi-camera setups and

those that guide robots in a previously-unknown environ-

ment.

Optimal Camera Placement for Motion Capture. Op-

timal camera placement is a well-studied problem in the

context of static multi-view setups. Existing solutions rely

on maximizing image resolution while minimizing self-

occlusion of body parts [5, 2] or target point occlusion and

triangulation errors [27]. However, these methods operate

offline and on pre-recorded exemplar motions. This makes

them unsuitable for motion capture using a single mov-

ing camera that films a priori unknown motions in a much

larger scene where estimation noise can be high.

In [24] multiple cameras poses are optimized for tri-

angulation of joints in a dome environment using a self-

supervised reinforcement learning approach. In our case,

we consider the monocular problem. Our method is not

learning based, we try to obtain the next best view from

the loss function itself.

View Planning for Static and People Reconstruction.

There has been much robotics work on active reconstruction

and view planning. This usually involves moving so as to

maximize information gain while minimizing motion cost,

for example by a discretizing space into a volumetric grid

and counting previously unseen voxels [14, 8] or by accu-

mulating estimation uncertainty [20]. When a coarse scene

model is available, an optimal trajectory can be found us-

ing offline optimization [30, 13]. This has also been done to

achieve desired aesthetic properties in cinematography [11].

Another approach is to use reinforcement learning to de-

fine policies [7] or to learn a metric [12] for later online

path planning. These methods deal with rigid unchang-

ing scenes, except the one in [6] that performs volumet-

ric scanning of people during information gain maximiza-

tion. However, this approach can only deal with very slowly

moving people who stay where they are.

Human Motion Capture on Drones. Drones can be

viewed as flying cameras and are therefore natural targets

for our approach. One problem, however, is that the drone

must keep the person in its field of view. To achieve this,

the algorithm of [45] uses 2D human pose estimation in a

monocular video and non-rigid structure from motion to re-

construct the articulated 3D pose of a subject, while that

of [18] reacts online to the subject’s motion to keep them in

view and to optimize for screen-space framing objectives.

AirCap [32] calculates trajectories of multiple drones that

aim to keep the person in view while simultaneously per-

forming object avoidance. This was extended in [35] so as

to optimize multiple MAV trajectories by minimizing the

uncertainty of the 3D human joint positions being tracked,

but focusing on the 3D human pose estimation as an offline

step. In [19], this was integrated into an autonomous sys-

tem that actively directs a swarm of drones and simultane-

ously reconstructs 3D human and drone poses from onboard

cameras. This strategy implements a pre-defined policy to

stay at constant distance to the subject and uses pre-defined

view angles (90◦ between two drones) to maximize trian-

gulation accuracy. This enables mobile large-scale motion

capture, but relies on markers for accurate 2D pose estima-

tion. In [40], three drones are used for markerless motion

capture, using an RGBD video input for tracking the sub-

ject.

In short, existing methods either optimize for drone

placement but for mostly rigid scenes, or estimate 3D hu-

man pose but without optimizing the camera placement.

[24] performs optimal camera placement for multiple cam-

eras. Here, we propose an approach that aims to find the

best next drone location for monocular view so as to maxi-

mize 3D human pose estimation accuracy.

3. Active Human Motion Capture

Our goal is to continuously position the camera in 6D

pose space so that the acquired by the camera can be used

to achieve the best overall human pose estimation accuracy.

What makes this problem challenging is that, when we de-

cide where to send the camera, we do not yet know where
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the subject will be and in what position exactly. We there-

fore have to guess. To this end, we propose the following

three-step approach depicted by Fig. 1:

1. Estimate the 3D pose up to the current time instant.

2. Predict the person’s future location and 3D pose at the

time the camera acquires the next image, including an

uncertainty estimate.

3. Select the optimal camera pose based on the uncer-

tainty estimate and move the camera to that viewpoint.

We will consider two ways the camera can move. In the

first case, the camera can teleport from one location to the

next without restriction, allowing us to explore the theo-

retical limits of our approach. Such a teleportation mode

can be simulated using a multi-camera setup, enabling us to

evaluate our model on both simulated data and real image

datasets acquired from multiple viewpoints. In the second,

more realistic scenario, the camera is carried by a simulated

drone, and we must take into account physical limits about

the motion it can undertake.

3.1. 3D Pose Estimation

The 3D pose estimation step takes as input the video

feed from the on-board camera over the past N frames and

outputs for each frame, t ∈ (1, . . . , N), the 3D human

pose, represented as 15 3D points Θ
t ∈ R

15×3, and the

drone pose, as 3D position and rotation angles Dt ∈ R
2×3.

Our focus is on estimating the 3D human pose using the

real-time method proposed by [3], which detects the 2D

locations of the human’s major joints in the image plane,

M
t ∈ R

15×2, and the subsequent use of [36], which lifts

these 2D predictions to 3D pose, Lt ∈ R
15×3. However,

these per-frame estimates are error prone and relative to the

camera. To remedy this, we fuse 2D and 3D predictions

with temporal smoothness and bone-length constraints in

a space-time optimization. This exploits the fact that the

drone is constantly moving so as to disambiguate the indi-

vidual estimates. The bone lengths, bcalib, of the subject’s

skeleton are computed during an apriori calibration stage,

where the subject has to stand still for 20 seconds. This is

performed only once for each subject. Formally, we opti-

mize for the global 3D human pose by minimizing an ob-

jective function Epose, which we detail below.

3.1.1 Formulation

Our primary goal is to improve the global 3D human pose

estimation of a subject changing position and pose. We op-

timize the time-varying pose trajectories across the last k

frames. Let t be the last observed frame. We capture the

trajectory of poses Θ
t−k to Θ

t in the pose matrix Θ. We

then write an energy function

Epose = Eproj(Θ,M,D) + Elift(Θ,L)

+ Esmooth(Θ) + Ebone(Θ,b) . (1)

The individual terms are defined as follows. The lift term,

Elift, leverages the 3D pose estimates, L, from LiftNet [36].

Because these are relative to the hip and without absolute

scale, we subtract the hip position from our absolute 3D

pose, Θt, and apply a scale factor m to L to match the bone

lengths bcalib in the least-square sense. We write

Elift(Θ,L) = ωl

t
∑

i=t−k

‖m · Li − (Θi −Θ
i
hip joint)‖

2
2 , (2)

with ωl its relative weight.

The projection term measures the difference between the

detected 2D joint locations and the projection of the esti-

mated 3D pose in the least-square sense. We write it as

Eproj(Θ,M,D) = ωp

t
∑

i=t−k

‖Mi −Π(Θi,Di,K)‖22 ,

(3)

where Π is the perspective projection function, K is the

matrix of camera intrinsic parameters, and ωp is a weight

that controls the influence of this term.

The smoothness term exploits that we are using a contin-

uous video feed and that the motion is smooth by penalizing

velocity computed by finite differences as

Esmooth(Θ) = ωs

t
∑

i=t−k+1

‖(Θi+1 −Θ
i)‖22 . (4)

with ωs as its weight.

To further constrain the solution space, we use our

knowledge of the bone lengths bcalib found during cali-

bration and penalize deviations in length. The length of

each bone b in the set of all bones ball is found as b
t
b =

‖(Θb1 −Θb2)‖2 for frame t. The bone length term is then

defined as

Ebone(Θ) = ωb

t
∑

i=t−k

∑

b∈ball

d(bi
b,bcalib,b) , (5)

with ωb as its weight.

The complete energy Epose is minimized by gradient de-

scent at the beginning of each control cycle, to get a pose

estimate for control. The resulting pose estimate Θ̂ is the

maximum a posteriori estimate in a probabilistic view.

3.1.2 Calibration Mode

Calibration mode only has to be run once for each subject to

find the bone lengths, bcalib. In this mode, the subject is as-

sumed to be stationary. The situation is equivalent to having

the scene observed from multiple stationary cameras, such

as in [29]. We find the single static pose Θ
c that minimizes

Ecalib = Eproj(Θ
c,M,D) + Esymmetry(Θ

c). (6)
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Energy functions

Distributions

Simple case
Complex case and its

quadratic/Gaussian approximation

Figure 2. Probabilistic interpretation. Left: A quadratic energy

function and its associated Gaussian error distribution. Right: A

complex energy function, which is locally approximated with a

Gaussian (blue) near the minimum. The curvature of the energy

function is a measure of the confidence in the estimate and the vari-

ance of the associated error distribution. The energy on the right

is more constrained and its error distribution has a lower variance.

In this objective, the projection term, Eproj, is akin to the one

in our main formulation but acts on all calibration frames.

It can be written as

Eproj(Θ
c,M,D) = ωp

t
∑

i=0

‖Mi −Π(Θc,Di,K)‖22 , (7)

with ωp controlling its influence. The symmetry term,

Esymmetry, ensures that the left and right limbs of the es-

timated skeleton have the same lengths by penalizing the

squared difference of their lengths.

3.2. Next Best View Selection

Our goal is to find the next best view for the drone

at the future time step t + 1, Dt+1. We will model the

uncertainty of the pose estimate in a probabilistic setting.

Let p(Θ|M,D,L,b) be the posterior distribution of poses.

Then, Epose is its negative logarithm and its minimization

corresponds to maximum a posteriori (MAP) estimation.

In this formalism, the sum of the individual terms in Epose

models that our posterior distribution is composed of in-

dependent likelihood and prior distributions. For a purely

quadratic term, E(x) = ω(x − µ)2, the corresponding dis-

tribution pE = exp (−E) is a Gaussian with mean µ and

standard deviation σ = 1√
2ω

. Notably, σ is directly linked

to the weight ω of the energy. Most of our energy terms

involve non-linear operations, such as perspective projec-

tion in Eproj, and therefore induce non-Gaussian distribu-

tions, as visualized in Fig. 2. Nevertheless, as for the simple

quadratic case, the weights ωp and ωl of Eproj and Elift can

be interpreted as surrogates for the amount of measurement

noise in the 2D and 3D pose estimates.

A good measure of uncertainty is the sum of the eigen-

values of the covariance Σp of the underlying distribution

Figure 3. Uncertainty estimates for each candidate drone posi-

tion, visualized on the left as 3D ellipsoids and on the right from

a 2D top-down view. Each ellipse visualizes the eigenvalues of

the hip location when incorporating an additional view from its

displayed position. Here, the previous image was taken from the

top (position 16) and uncertainty is minimized by moving to an

orthogonal view. The complete distribution has more than three

eigenvectors and cannot straightforwardly be visualized in 3D.

p. The sum of the eigenvalues captures the spread of a mul-

tivariate distribution with a single variable, similarly to the

variance in the univariate case. To exploit this uncertainty

estimation for our problem, we now extend Epose to model

not only the current and past poses but also the future ones

and condition it on the choice of the future drone position.

To determine the best next drone pose, we sample candi-

date positions and chose the one with the lowest uncertainty.

This process is illustrated in Figure 3.

Future pose forecasting. In our setting, accounting for

the dynamic motion of the person is key to successfully po-

sitioning the camera. We model the motion of the person

from the current frame t to the next M future frames t + i,

i ∈ (1, . . . ,M) linearly, i.e. we aim to keep the velocity of

the joints constant across our window of frames. We also

constrain the future poses by the bone length term. The fu-

ture pose vectors Θ
t+i are constrained by the smoothness

and bone length terms, but for now not by any image-based

term since the future images are not yet available at time

t. Minimizing this extended Epose for future poses gives

the MAP poses Θ̂t+i. It continues the motion Θ̂
t−k,··· ,t+K

smoothly while maintaining the bone lengths. As we pre-

dict only the near future, we have found this simple extrap-

olation to be sufficient. We leave as future work the use of

more advanced methods [10, 42] to forecast further.

Future measurement forecasting. We aim to find the

future drone position, Dt+1, that reduces the posterior un-

certainty, but we do not have footage from future viewpoints

to condition the posterior on. Instead, we use the predicted

future human pose Θ̂
t+i, i ∈ (1, . . . ,M), as a proxy for

L
t+i and approximate M

t+i with the projection
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M̂
t+1 = Π(Θ̂t+1,Dt+1,K) . (8)

At first glance, constraining the future pose on these vir-

tual estimates in Epose does not add anything since the

terms Eproj and Elift are zero at Θ̂t+1 by this construction.

However, it changes the energy landscape and models how

strong a future observation would constrain the pose poste-

rior. In particular, the projection term, Eproj, narrows down

the solution space in the direction of the image plane but

cannot constrain it in the depth direction, creating an el-

liptical uncertainty as visualized in Fig 3. The combined

influence of all terms is conveniently modeled as the energy

landscape of Epose and its corresponding posterior.

In our current implementation we assume that the 2D and

3D detections are affected by pose-independent noise, and

their variance is captured by ωp and ωl, respectively. These

factors could, in principle, be view dependent and in rela-

tion to the person’s pose. For instance, [4] may be more ac-

curate at reconstructing a front view than a side view. How-

ever, while estimating the uncertainty in deep networks is

an active research field [26], predicting the expected uncer-

tainty for an unobserved view has not yet been attempted for

pose estimation. It is an interesting future work direction.

Variance estimator. Epose and its corresponding pos-

terior has a complex form due to the projection and prior

terms. Hence, the sought-after covariance Σp cannot be ex-

pressed in closed form and approximating it by sampling

the space of all possible poses would be expensive. In-

stead, for the sake of uncertainty estimation, we approxi-

mate p(Θ|D,M,L,b) locally with a Gaussian distribution

q, such that

Σp(Θ|D,M,L) ≈ Σq where q = N(Θ|Θ̂,Σq) , (9)

with Θ̂ and Σq the Gaussians mean and covariance matrix,

respectively. Such an approximation is exemplified in Fig-

ure 2. For a Gaussian, the covariance of q can be com-

puted in closed form as the inverse of the Hessian of the

negative log likelihood, Σq = H−1
− log q , where H− log q =

∂2−log q(Θ)
∂Θ

∣

∣

∣

Θ=Θ̂

. Under the Gaussian assumption, Σp is

thereby well approximated by the second order gradients,

H−1
Epose

, of Epose. Our experiments show that this simplifica-

tion holds well for the introduced error terms.

To select the view with minimum uncertainty among a

set of K candidate drone trajectories, we therefore

1. optimize Epose once to forecast M human poses Θ̂t+i,

for 1 ≤ i ≤ M

2. use these forecasted poses to set L̂t+i and M̂
t+i for

each 1 ≤ i ≤ M for each candidate trajectory c,

3. compute the second order derivatives of Epose for each

c, which form Hc, and

4. compute and sum up the respective eigenvalues to se-

lect the candidate with the least uncertainty.

Discussion. In principle, p(Θ|M,D,L,b), i.e. the

probability of the most likely pose, could also act as a mea-

sure of certainty, as implicitly used in [27] on a known mo-

tion trajectory to minimize triangulation error. However,

the term Eproj(Θ̂, M̂) of Epose is zero for the future time

step t + i, because the projection of Θ̂t+i is by construc-

tion equal to M̂
t+i and therefore uninformative. Another

alternative that has been proposed in the literature is to ap-

proximate the covariance through first order estimates [37],

as a function of the Jakobi matrix. However, as also the first

order gradients of Eproj vanish at the MAP estimate, this

approximation is not possible in our case.

3.3. Drone Control Policies and Flight Model

In the experiments where we simulate drone flight, the

algorithm decides between 9 candidate trajectories in the di-

rections up, down, left, right, up-right, up-left, down-right,

down-left and center. To ensure that the drone stays a fixed

distance away from the person, the direction vector is nor-

malized by the fixed-distance value.

In the remainder of this section, we describe how we

model the flight of the drone so that we can predict the po-

sition of the drone along a potential trajectory in future time

steps. By forecasting the future M locations of the drone

on a potential trajectory c, we can predict the 2D pose esti-

mations M̂t+i for each {i}Mi=1 more accurately.

We control the flight of our drone by passing it the de-

sired velocity vector and the desired yaw rotation amount

with the maximum speed kept constant at 5 m/s. The drone

is sent new commands once every ∆t = 0.2 seconds.

We model the drone flight in the following manner. We

assume that the drone moves with constant acceleration

during a time step ∆t. If the drone has current position

xcurrent and velocity Vcurrent, then with an current accelera-

tion acurrent, its next position xgoal in ∆t time will be

xgoal = xcurrent + Vcurrent∆t+ 0.5acurrent∆t2 . (10)

The current acceleration at time t is found as a weighted

average of the input acceleration ainput and the acceleration

of the previous step aprevious. This can be written as

acurrent = αainput + (1− α)aprevious. (11)

ainput is determined according to the candidate trajectory

being evaluated. The direction of the acceleration vector is

set to the direction of the candidate trajectory. We determine

the magnitude of the input acceleration through least-square

minimization of the difference between the predicted xgoal

and the actual drone position. α is found by line search.

By estimating the future positions of the drone, we are

able to forecast more accurate future 2D pose estimations,
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Figure 4. Predicted trajectories as the drone is circling the sub-

ject. The future drone positions are predicted for the future 3 steps,

represented by triangle markers on the trajectories. Red depicts the

chosen trajectory.

leading to more accurate decision making. Examples of pre-

dicted trajectories are shown in Figure 4. Further details are

provided in the supplementary material.

4. Evaluation

In this section we evaluate the improvement on 3D hu-

man pose estimation that is achieved through optimization

of the drone flight.

Simulation environment. Although [28, 3, 36] run in

real time, and online SLAM from a monocular camera [9]

is possible, we use a drone simulator since the integration of

all components onto constrained drone hardware is difficult

and beyond our expertise. We make simulation realistic by

driving our characters with real motion capture data from

the CMU Graphics Lab Motion Capture Database [1] and

using the AirSim [33] drone simulator that builds upon the

Unreal game engine and therefore produces realistic images

of natural environments. Simulation also has the advantage

that the same experiment can be repeated with different pa-

rameters and be directly compared to baseline methods and

ground-truth motion.

Simulated test set. We test our approach on three CMU

motions of increasing difficulty: Walking straight (subject

2, trial 1), Dance with twirling (subject 5, trial 8), and Run-

ning in a circle (subject 38, trial 3). Additionally, we use

a validation set consisting of Basketball dribble (subject 6,

trial 13), and Sitting on a stool (subject 13, trial 6), to con-

duct a grid search for hyperparameters.

Real test set. To show that our planner also works out-

side the simulator, we evaluate our approach on a section of

the MPI-INF-3DHP dataset, which includes motions such

as running around in a circle and waving arms in the air.

The dataset provides 14 fixed viewpoints that are at varying

distances from one another and from the subject, as depicted

in Figure 6. In this case, the best next view is restricted to

one of the 14 fixed viewpoints. This dataset lets us evaluate

whether the object detector of [28], the 2D pose estimation

method of [4], and the 3D pose regression technique of [36]

Average errorPredicted uncertainty

Figure 5. Uncertainties estimates across potential viewpoints

(left image) compared with the average error we would obtain if

we were to visit these locations (right image). The star represents

the location of the subject and the large circle depicts the chosen

viewpoint according to the lowest uncertainty.

Figure 6. MPI INF 3DHP dataset, which has images taken from

14 viewpoints with various distances to the subject. We use this

dataset to evaluate our performance on datasets with realistic cam-

era positioning and real images.

are reliable enough in real environments. Since we cannot

control the camera in this setting, we remove those cam-

eras from the candidate locations where we predict that the

subject will be out of the viewpoint.

Baselines. Existing drone-based pose estimation meth-

ods use predefined policies to control the drone position

relative to the human. Either the human is followed from

a constant angle and the angle is set externally by the

user [19] or the drone undergoes a constant rotation around

the human [45]. As another baseline, we use a random de-

cision policy, where the drone picks uniformly randomly

among the proposed viewpoints. Finally, the oracle is ob-

tained by moving the drone to the viewpoint where the re-

construction in the next time step will have the lowest aver-

age error, which is achieved by exhaustively trying all view-

points with the corresponding image in the next time frame.

Hyper parameters. We set the weights of the loss term

for the reconstruction as follows: ωp = 0.0001 (projec-
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Noisy ground truth Networks

CMU-Walk CMU-Dance CMU-Run MPI-INF-3DHP MPI-INF-3DHP Total

Oracle 0.101±0.001 0.101±0.001 0.109±0.001 0.136±0.002 0.17±0.0005 0.142±0.027

Ours (Active) 0.113±0.001 0.116±0.003 0.19±0.001 0.145±0.006 0.21±0.0008 0.155±0.39

Random 0.123±0.002 0.125±0.003 0.159±0.003 0.286±0.027 0.28±0.03 0.195±0.07

Constant Rotation 0.157±0.002 0.146±0.004 0.223±0.003 0.265±0.010 0.29±0.03 0.216±0.06

Constant Angle 0.895±0.54 0.683±0.31 0.985±0.24 1.73±0.61 1.26±0.53 1.11±0.36

Table 1. 3D pose accuracy on the teleportation experiment, using noisy ground truth to estimate M and L in the first three columns,

and using the networks of [43, 36] in the fourth column. We outperform all predefined baseline trajectories and approach the accuracy of

the oracle that has access to the average error of each candidate position.

tion), ωs = 1 (smoothness), ωl = 0.1 (lift term), ωb = 1
(bone length), which were found by grid search. We set the

weights for the decision making as ωp = 0.001, ωs = 1,

ωl = 0.1, ωb = 1 . Our reasoning is, we need to set

the weights of the projection and lift terms slightly lower

because they are estimated with large noise, which is intro-

duced by the neural networks or as additive noise. However,

they do not need to be as low for the uncertainty estimation.

4.1. Analyzing Reconstruction Accuracy

We report the mean Euclidean distance per joint in me-

ters in the middle frame of the temporal window we opti-

mize over. For teleportation mode, the size of the temporal

window is set to k = 2 past frames and 1 future frame, and

for the drone flight simulations, to k = 6 for past frames

and 3 future frames.

Simulation Initialization. The frames are initialized by

back-projecting the 2D joint locations estimated in the first

frame, Mt=0, to a distance d from the camera that is chosen

such that the back-projected bone lengths match with the

average human height. We then refine this initialization by

running the optimization without the smoothness term, as

there is only one frame. All the sequences are evaluated for

120 frames, with the animation sequences played at 5 Hz.

Teleportation Mode. To understand whether our uncer-

tainty predictions for potential viewpoints coincide with the

actual 3D pose errors we will have at these locations, we run

the following simulation: We sample a total of 18 points on

a ring around the person, as shown in Fig. 5, and allow the

drone to teleport to any of these points. We optimize over

a total of k = 2 past frames and forecast 1 frame into the

future. We chose this window size to emphasize the impor-

tance of the next choice of frame.

We perform two variants of this experiment. In the first

one, we simulate the 2D and 3D pose estimates, M,L, by

adding Gaussian noise to the ground-truth data. The mean

and standard deviation of this noise is set as the error of [3]

and [36], run on the validation set of animations. Figure 7

shows a comparison between the ground truth values, noisy

ground truth values and the network results. The results

of this experiment are reported in Table 1, where we also

provide the standard deviations across 5 trials with vary-

ing noise and starting from different viewpoints. On the

MPI-INF-3DHP dataset, we also provide results using [3]

d) Liftnet Resultc) Openpose Result

a) GT 2D Pose b) GT Relative 3D Pose

e) Noisy GT 


2D Pose

f) Noisy GT 


    Relative3D Pose

Figure 7. Example image from the MPI-INF-3DHP dataset

along with the 2D pose detections M and 3D relative pose detec-

tions L obtained using ground truth, noisy ground truth or the net-

works of [3] and [36]. The noise we add on the ground truth poses

is determined according to the statistics of [3] and [36], measured

on our validation set.

and [36] on the simulator images to obtain the 2D and 3D

pose estimates. Further results are in the supplementary

material.

Altogether, the results show that our active motion plan-

ner achieves consistently lower error values than the base-

lines and we come the closest to achieving the best possible

error for these sequences and viewpoints, despite having no

access to the true error. The random baseline also performs

quite well in these experiments, as it takes advantage of the

drone teleporting to a varied set of viewpoints. The trajec-

tories generated by our active planner and the baselines is

depicted in Figure 8. Importantly, Figure 5 evidences that

our predicted uncertainties accurately reflect the true pose

errors, thus making them well suited to our goal.

Simulating Drone Flight. To evaluate more realistic

cases where the drone is actively controlled and constrained

to only move to nearby locations, we simulate the drone

flight using the AirSim environment. While simulating

drone flight, we target a fixed radius of 7m from the sub-

ject and therefore provide direction candidates that lead to

preserving this distance. We do not provide samples at dif-

ferent distances, as moving closer is unsafe and moving far-

ther leads to more concentrated image projections and thus

higher 3D errors. We also restrict the drone from flying out-

side the altitude range 0.25m-3.5m, so as to avoid crashing

into the ground and flying above the subject.

In this set of experiments, we fly the drone using the
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Dancing

MPI-INF-3DHP

a) Active b) Random c)  Constant Rotation

Figure 8. Trajectories found by our active planner along with

random and constant rotation baselines. The first row depicts the

trajectories for the MPI-INF-3DHP dataset, and the second row

shows the trajectories for the dancing motion. The trajectories ob-

tained with our algorithm are regular and look different from the

random trajectories, especially for the dancing motion. Our algo-

rithm prefers trajectories resulting in large angular variance with

respect to the subject between viewpoints.

CMU-Walk CMU-Dance CMU-Run Total

Ours (Active) 0.26±0.03 0.22±0.04 0.44±0.04 0.31±0.10

Constant Rotation 0.28±0.06 0.21±0.04 0.41±0.02 0.30±0.08

Random 0.60±0.13 0.44±0.19 0.81±0.16 0.62±0.15

Constant Angle 0.41±0.07 0.63± 0.06 1.26±0.17 0.77±0.36

Table 2. Results of drone full flight simulation, using noisy

ground truth as input to estimate M and L. The results of constant

rotation are the average of 10 runs, with 5 runs rotating clockwise

and 5 counter-clockwise. Our approach yields results comparable

to those of constant rotation, outperforming the other baselines.

The trajectory our algorithm draws also results in a constant rota-

tion, the only difference being the rotation direction.

simulator’s realistic physics engine. To this end, we sam-

ple 9 candidate directions towards up, down, left, right, up-

right, up-left, down-right, down-left and center. We then

predict the 3 consecutive future locations using our simpli-

fied (closed form) physics model, to get and estimate where

the drone will be at when continuing in each of the 9 di-

rections. We then estimate the uncertainty at these sampled

viewpoints and choose the minimum.

We achieve comparable results to constant rotation on

simulated drone flight. In fact, except for the first few

frames where the drone starts flying, we observe the same

trajectory as constant rotation, only the rotation direction

varies. Constant rotation being optimal in this setting is not

counter-intuitive, as constant rotation is very useful for pre-

serving momentum. This allows the drone to sample view-

points as far apart from one another as possible, while keep-

ing the subject in view. Figure 9 depicts the different base-

line trajectories and the active trajectory.

a) Active b) Random c)  Constant Rotation

Figure 9. Trajectories found during flight by our active planner

and the baselines. Our algorithm also chose to perform constant

rotation. Because of the drone momentum, the random baseline

cannot increase the distance between its camera viewpoints.

5. Conclusion and Future Work

We have proposed a theoretical framework for estimating

the uncertainty of future measurements from a viewpoint.

This permits us to improve 3D human pose estimation by

optimizing the viewpoint selection to visit those locations

with the lowest expected uncertainty. We have demon-

strated with increasingly complex examples, in simulation

with synthetic and real footage, that this theory translates to

closed-loop drone control and improves pose estimation ac-

curacy. We envision our approach being developed further

for improving the performance of athletes and performance

artists. It is important to preserve the subjects’ privacy in

such autonomous systems. We encourage researchers to be

sensitive to this issue.

Key to the success of our approach is the integration of

several sources of uncertainty. Our primary goal was to

make uncertainty estimation tractable, but further improve-

ments are needed to run it on an embedded drone system.

The current implementation runs at 0.1Hz, but the opti-

mization is implemented in Python using the convenient but

slow automatic differentiation of PyTorch to obtain second

derivatives. Furthermore, we have considered a physically

plausible drone model but neglected physical obstacles and

virtual no-go areas that would restrict the possible flight tra-

jectories. In the case of complex scenes with dynamic ob-

stacles, we expect our algorithm to outperform any simple,

predefined policy. Currently, we assume a constant error for

the 2D and 3D pose estimates. In future work, we will in-

vestigate how to derive situation-dependent noise models of

deep neural networks. Furthermore, we plan to study new

ways of estimating the uncertainty of the deployed deep

learning methods and extend our work to optimize drone

trajectories for different computer vision tasks.
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