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Abstract

Humans learn to drive through both practice and theory,

e.g. by studying the rules, while most self-driving systems

are limited to the former. Being able to incorporate hu-

man knowledge of typical causal driving behaviour should

benefit autonomous systems. We propose a new approach

that learns vehicle control with the help of human advice.

Specifically, our system learns to summarize its visual ob-

servations in natural language, predict an appropriate ac-

tion response (e.g. “I see a pedestrian crossing, so I stop”),

and predict the controls, accordingly. Moreover, to enhance

interpretability of our system, we introduce a fine-grained

attention mechanism which relies on semantic segmentation

and object-centric RoI pooling. We show that our approach

of training the autonomous system with human advice,

grounded in a rich semantic representation, matches or out-

performs prior work in terms of control prediction and ex-

planation generation. Our approach also results in more in-

terpretable visual explanations by visualizing object-centric

attention maps. Code is available at https://github.

com/JinkyuKimUCB/advisable-driving.

1. Introduction

Autonomous driving control has made dramatic progress

in the last several years. The proposed vehicle controllers

use a variety of approaches; recent efforts [5] suggest that

deep neural networks can be effectively applied to the con-

trollers in an end-to-end manner. These models, however,

are known to be opaque. One way to simplify and expose

the underlying reasoning, is via a situation-specific depen-

dence on visible objects in the scene, i.e. by only attending

to image areas that are causally linked to the driver’s ac-

tions [15]. However, the resulting attention maps are not

always compelling or human interpretable. Another option

is to verbalize the autonomous vehicle’s behaviour with nat-

ural language [17], Figure 2 (B). The resulting textual ex-

planations are human understandable, but tend to be rather

“shallow”, as they report the more common objects over
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(Offline) Human-to-Vehicle Advice

“Vehicle should slow

when the road is wet”

Figure 1: Our model consists of four main parts: (1) an

object-centric visual encoder built upon a semantic segmen-

tation model, (2) an observation generator, which generates

textual observation about the scenes (“The road is wet”),

(3) an observation-to-action module, which maps a visual

scene description to a (high-level) action command (“Slow

down”), and (4) a vehicle controller conditioned on the gen-

erated action command.

the less common ones, which may be more important (e.g.

construction cones). Both approaches fall short of demon-

strating causal behaviour akin to a typical human driver.

To address this issue, [16] augment an imitation learning

dataset with instantaneous human advice (e.g. “there is a

pedestrian ahead”, or “turn left”), see Figure 2 (A). They

show that providing such inputs helps more closely imitate

a human driver’s behavior. While promising, this method

requires ground-truth human inputs at test time.

Humans learn to drive not only from practice and demon-

stration, but also from theory, e.g. by studying the rules. We

advocate for a more principled way of integrating human

advice during learning. We assume that at training time,

human advice is available in the form of observation-action
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Figure 2: (A) Existing goal-conditioned end-to-end driving models that takes (as an input) discrete [7], natural language

commands [16, 28], and intended navigational route [12]. (B) Existing explainable end-to-end driving models that transduce

DNN states to natural language [17] or visual explanations [15]. (C) Combining two above-mentioned ideas, we can create

“Advisable” driving model that takes human-to-vehicle advice in the form of observation-action rules. To incorporate such

rules, our model involves a Sequence-to-Sequence Observation-to-Action module, which generates a soft condition-action

rule that maps a textual observation to a high-level action command. For details see Section 3.

rules (e.g. “if the road is wet, slow down”). Incorporating

such rules could help driving models learn more human-like

behavior, see Figure 1.

A key requirement of an advisable driving model is its

explainability – exposing the controller’s internal state is

important for a user as an acknowledgement that the system

is following advice. As mentioned earlier, visual attention

is often used in recent explainable models [15, 17]. These

models generate spatial attention maps, which are then dis-

played over the original images. However, such attention

maps are coarse and have limited interpretability. They

usually have a low spatial resolution (as the last convolu-

tional layer) and are upsampled with a 2D Gaussian ker-

nel. This blurs out the details and makes it difficult to de-

termine what the model actually attends to. We advocate

for using a richer representation, such as semantic segmen-

tation, which provides pixel-wise prediction and delineates

object boundaries in images. The output of the last convo-

lutional layer retains information of the corresponding lo-

cal image regions, which can be advantageous for obtaining

more fine-grained attention maps. We thus propose to use

semantic segmentation as our input representation. To fur-

ther improve the quality of the attention maps, we also use

an instance segmentation model, which allows us to dis-

tribute attention over individual objects.

Overall, we propose a novel self-driving model that is

both advisable and explainable, see Figure 2 (C). Our model

learns advice from human inputs which convey global rules

that the user expects the vehicle to follow (e.g. “If a heavy

fog interferes with your forward visibility, drive slowly”).

We can also provide both visual explanations – by produc-

ing fine-grained attention maps, and textual explanations –

by generating textual utterances (e.g. “the traffic light ahead

turned red”, thus “the car stopped”). We ground both func-

tionalities in our object-centric visual representation.

We evaluate our approach on the BDD-X dataset [17]

and show that our model matches or outperforms prior work

in control prediction and textual observation generation.

Our attention maps, tied to the semantic segmentation, re-

sult in object-centric (and thus more interpretable) visual-

ization of internal states. Our human evaluation in a simu-

lated environment (Carla [8]) further shows that our advis-

able system can increase user trust.

2. Related Work

End-to-End Learning for Self-driving Vehicles. Recent

works [4, 12] suggest that a driving policy can be success-

fully learned by neural networks through supervised learn-

ing over observation (e.g. video) and action (e.g. steering)

pairs, that are collected from human demonstration. Bo-

jarski et al. [5] trained a 5-layer ConvNet to predict steering

controls from a dashcam image, while Xu et al. [39] utilized

a dilated ConvNet combined with an LSTM so as to predict

vehicle’s discretized future motions. Recently, Hecker et

al. [12] explored the extended model that takes a surround-

view multi-camera system, a route planner, and a CAN bus

reader. Codevilla et al. [7] explored a conditional end-to-

end driving model that takes high-level command input (i.e.
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left-/right-turn, lane following, and intersection passing) at

test time, see Figure 2 (A). To reduce the complexity, there

is growing interest in end-to-mid [41] and mid-to-mid [4]

driving models that produce a mid-level output representa-

tion in the form of a drivable trajectory by consuming either

raw sensor or an intermediate scene representation as input.

Their behavior, however, is opaque and learning to drive

in urban areas remains challenging. These driving models

are also known to be “black boxes” and thus lack of trans-

parency may be a major drawback in self-driving applica-

tions where a high level of user trust is required to accept

such a radical technology.

Visual and Textual Explanations. Explainability of deep

neural networks has become a growing field in computer

vision and machine learning communities [10]. In land-

mark work, [40] utilized deconvolution layers to visual-

ize the internal representation of a ConvNet. Other ap-

proaches [42, 30] have explored synthesizing an image that

highly activates a neuron. However, they lack formal mea-

sures of how the function estimated by the network is af-

fected by spatially-extended features. Attention-based ap-

proaches may be exceptions to this rule. Kim et al. [15]

utilized an attention model followed by additional salience

filtering to show regions that causally affect the output.

Wang et al. [36] and Wu et al. [38] introduced an instance-

level attention model that finds objects (e.g., cars, pedes-

trians) that the network needs to pay attention to. How-

ever, such attention may be less convenient (especially in

the driving domain) for users to “replay”. It is also impor-

tant to be able to justify the decisions that were made and

explain why they are reasonable in a human understandable

manner, i.e. in natural language [13, 14]. Kim et al. [17]

proposed a textual explanation model to explain the ratio-

nales behind the vehicle controller, see Figure 2 (B). Ex-

plainable models can help reveal what the model is doing

and show the basis for its decisions, which makes it eas-

ier to expose weaknesses and further improve. We propose

a model that is both explainable and advisable. Human-

to-vehicle advice can take a variety of forms, while natural

language is an intuitive form of communication for humans.

Our approach is inspired by [17], but we incorporate advice

through learning to generate observations and correspond-

ing actions in natural language.

Advice-taking Models. Recognition of the value of advice-

taking has a long history in AI community [23], but few

attempts have been made to exploit textual advice. Sev-

eral approaches have been proposed to translate natural lan-

guage advice to formal semantic representations, which are

then used to bias actions for simulated soccer [19], mobile

manipulation [24, 25, 31], and navigation [2]. Recent work

suggests that incorporating natural language human feed-

back can improve text-based QA agents [21, 37] and image

captioning performance [22]. Despite its potential, there are
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Figure 3: The detailed overview of our Object-centric Vi-

sual Encoder that is built upon an instance mask detector

and a semantic segmentation model, both of which provide

pixel-wise category predictions from images along with de-

lineating the boundaries of object.

various challenges with collecting human feedback on the

actions taken by self-driving cars (e.g. safety and liability).

Other notable approaches (in the reinforcement learning set-

ting) include the work by Tung et al. [32] that learns a visual

reward detector conditioned on natural language action de-

scriptions, which is then used to train agents. Kim et al. [16]

introduced an approach to ground instantaneous human-to-

vehicle advice w.r.t. perception and action and showed that

accepting such advice improves overall control prediction

accuracy, while Roh et al. [28] focused on conditioning nat-

ural language instructions to the driving model, see Figure 2

(A). Inspired by these work, we incorporate observation-

action rules at training time, and learn to recognize when to

follow advice at test time, rather than expecting such advice

to be given by a “passenger” at test time.

3. Advisable Learning

In this paper, we propose a novel driving model that is

both explainable and advisable. Our model can provide the

basis of its decision both by visualizing image regions that

it attends to and by verbalizing the observations of what it

sees (e.g. “it is snowing”). Our model is also advisable by

incorporating general observation-action rules, which it is

expected to follow.

As shown in Figure 2 (C), our model includes four main

components. Our Object-centric Visual Encoder extracts

visual (semantic) representations through a ConvNet that

is pretrained on the task of semantic segmentation (Sec-

tion 3.1). The Vehicle Controller is trained to predict con-

trol commands conditioned on the high-level action com-

mands (e.g. “stop at the crosswalk”) (Section 3.2). The Ob-
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Figure 4: The detailed overview of our goal-conditioned

Vehicle Controller. We take an action command in natural

language as an input and ground it into the controller. Our

model adopts spatial attention mechanism π, which guides

where the controller looks. Conditioned on the attended fea-

ture and (optionally) the current speed vt, our model outputs

future trajectory P and speed v̂t.

servation Generator produces variable-length textual obser-

vations about the scenes (e.g. “pedestrians are waiting to

cross”) (Section 3.3). Finally, our Sequence-to-Sequence

Observation-to-Action module generates soft condition-

action rules that map visual scene descriptions (e.g.“it is

snowing”) to high-level action commands (e.g.“maintain

a slow speed”) (Section 3.4). Note that, our Vehicle Con-

troller utilizes a visual (spatial) attention mechanism, which

can highlight image regions the model fixates on for the net-

work’s output. This attended feature is then fed into the

Observation Generator for the final prediction.

3.1. Object­centric Visual Encoder

We use images that are down-sampled to 10Hz and are

resized to have dimensionality 144×256×3 by applying bi-

linear interpolation. Each image is normalized by subtract-

ing the global mean from the raw pixels and dividing by the

global standard deviation [29], see Figure 3.

Segmentation as an Input Representation. Instead of

training a ConvNet from scratch, we use a semantic seg-

mentation model that is pre-trained on the Mapillary Vistas

street-view scene understanding dataset [26]. Our front-end

vision module is therefore trained to recognize pixel-wise

category predictions from images along with delineating the

boundaries of each object. Here, we use the DeepLab v3

model [6], a state-of-the-art network that uses atrous spa-

tial pyramid pooling to robustly segment objects at mul-

tiple scales with various filters of different sampling rates

and fields-of-view. We obtain a high-level visual represen-

tation of an input image at each time step t. This repre-

sentation Xt (of size 18×32×256) contains a set of 256-

dimensional latent vectors over the spatial dimension, i.e.

Xt = {xt,1,xt,2, . . . ,xt,l}, where l (= w × h) is the spa-

tial dimension. Note, that the use of semantic segmentation

as the internal representation of visual scenes is generally

transferable between real-world and simulated setting.

Object-centric RoI Pooling. To further provide object-

centric attention heat maps, which highlight more precise

object regions, we use an instance detection model, MaskR-

CNN model [11], and tie the predicted instance masks to the

feature Xt. Given the instance regions (RoIs), a position-

sensitive RoI pooling layer is used to aggregate the latent

vectors xt,i for i = {1, 2, . . . , l} for each RoI to obtain the

visual feature y. Note, that the pooled latent vector is then

distributed equally to replace the original representations.

This provides a subset of feature slices that share the same

latent representation, and thus allows the model to equally

attend to parts of RoI.

3.2. Goal­conditioned Vehicle Controller

Grounding Natural Language Action Command. Our

vehicle controller is trained to predict control commands

conditioned on the high-level action command (e.g. “main-

tains a slow speed”). We use a textual encoder that takes a

variable-length textual command and grounds it into the ve-

hicle controller. Following [16], we use an LSTM to encode

an input word sequence and yield a 256-dimensional latent

vector ut. We combine this vector with the visual feature

yt,i by an element-wise multiplication and obtain a feature

vector zt,i = yt,i ⊙ ut for i = {1, 2, . . . , l}, which is then

fed into visual attention module to generate attention maps.

We provide detailed model architecture in Figure 4.

Visual Attention. Visual attention provides introspective

(visual) explanations by filtering out non-salient image re-

gions, while the attended regions have a potential causal ef-

fect on the output. The goal of visual attention mechanism

is to find a context Ct = {ct,1, ct,2, . . . , ct,l} by minimiz-

ing a loss function, where ct,i = π(αt,i, zt,i) = αt,izt,i for

i = {1, 2, . . . , l}. Note that a scalar attention weight value

αt,i is in [0, 1] such that
∑

i αt,i = 1. We use a multi-

layer perceptron to compute these attention weights, i.e.

αt,i = fattn(zt,i,ht−1), conditioned on the previous hidden

state ht−1 (of the Attention LSTM), and the current advice-

grounded feature vector zt,i. Softmax regression function

is used to obtain the final normalized attention weight.

Output. Inspired by the prior work [4, 41], our

vehicle controller predicts a future trajectory P =
[pt,∆, pt,2∆, . . . , pt,N∆] along with speed v̂t. Each point

pt,j∆ for j = {1, 2, . . . , N} is characterized by its future

longitudinal and latitudinal location after the time j∆. This

trajectory can be converted into low-level driving control

commands (i.e. steering, braking, and acceleration) by an

optimizer within the constraints of the vehicle’s dynamics.

Different types of vehicles may utilize different control out-

puts to achieve the same driving trajectory, which argues
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against training a network to directly output low-level steer-

ing and acceleration control.

To predict the future trajectory, we use additional hid-

den layers fout conditioned on the latent representation Ct

(from our Advice-grounded Visual Attention) and the cur-

rent speed vt, i.e. P = fout([fflatten(Ct), fspeed(vt)]), where

fspeed denotes additional hidden layers to encode the speed

in a high-dimensional latent space. fflatten is a flattening

function. We use ∆ as 0.5 seconds and N as 6 (thus, we

predict the future trajectory in the next 3 seconds).

Loss Function. We minimize the proportional control error

(i.e. the difference between human-demonstrated and pre-

dicted) to train our future trajectory predictor.

Lctl =
1

NT

∑T

t=1

∑N

j=1
λj‖pt,j∆ − p̂t,j∆‖

2
2 + λ0‖vt − v̂t‖

2
2 (1)

where λj and λ0 control the strength of each term, chosen

to be inversely proportional to the global variance.

3.3. Textual Observation Generator

The main goal of our textual observation generator is to

summarize visual observations, which need to be consid-

ered while driving, e.g. “there is a school bus with lights

flashing” (this usually means the vehicle should pull over

and remain stopped). Here, we use the term “observation”

to convey the notion of the model’s ability to actively per-

ceive and register visual cues as being important for the ve-

hicle controller. These observations can take a variety of

forms with different levels of urgency and will be provided

to the vehicle controller at every time step.

To generate such observations, our model involves a

video-to-text module that takes a sequence of video frames

and generates variable-length textual observations. In or-

der to implement such a model, we start from the work

of [17] that is originally designed to generate textual de-

scriptions/explanations such as a pair “vehicle slows down”

(description) and “because it is approaching an intersection

and the light is red” (explanation). Unlike [17], where de-

scriptions/explanations are predicted jointly as a single se-

quence (separated by a token), we focus on generating the

later part (i.e. explanations) and treat them as observations.

These observations are then used to predict the correspond-

ing textual action commands, directing the vehicle to be-

have in a certain way (e.g. go, pass, turn), in Section 3.4.

We collect the latent vector c̄t over the past T timesteps

by summing over the attended feature vectors {ct,i}, i.e.

c̄t =
∑l

i=1
ct,i. We then apply a temporal attention mech-

anism with weights βk,t to those vectors at each time step

k (of sentence generation), i.e. gk =
∑t0

t=t0−T+1
βk,tc̄t

where t0 is the current timestep and
∑

t βk,t = 1 with βk,t

is in [0, 1]. The weight βk,t is computed by an attention

model, which is similar to the spatial attention. This is com-

mon practice in sequence-to-sequence models and allows

flexibility in output tokens relative to input samples [3].

Our decoder outputs per-word softmax probabilities. We

minimize the following negative log-likelihood Lobs =
−
∑

k log p(ok|ok−1,gk).

3.4. Sequence­to­Sequence Observation­to­Action

We want our model to incorporate natural language

human-to-vehicle advice. Such advice is typically high-

level, rather than low-level (where the vehicle controller

operates). Recent work [16] proposed a model that allows

short-term (or local) textual advice from passengers (e.g.

“there are construction cones” or “slow down”). More gen-

erally, advice might take the form of condition-action rules.

In this work, we focus on such long-term (or global) advice

from humans (e.g. driving instructors).

We use a general encoder-decoder framework to in-

corporate the observation-action rules. Our LSTM en-

coder takes a generated variable-length textual observation

(“there is a sharp turn ahead”) and yields a representative

latent vector, while the decoder (another LSTM) outputs an

action command sequence (“slow down”). The model is

trained by minimizing the negative log-likelihood (similar

to the observation generator). Our model is supervised by

human inputs in the form of observation-action rules that

the user expects the vehicle to follow. The predicted ac-

tion commands are given as input to the vehicle controller.

Note that such rules are learned during offline training sep-

arately from our vehicle controller and textual observation

generator – we can learn such rules with different datasets.

Our approach can also be applicable in an online setting

by reinforcing the learning of our observation-action rules.

A policy-gradient method can be used to train an agent to

generate such rules in an online setting while estimating the

reward signal by measuring automatic scores.

Human-to-Vehicle Instantaneous Advice. We currently

assume that advice is given offline, rather than during online

human-vehicle interaction. Note, however, that our model

can also take instantaneous human-to-vehicle advice. As

shown in Figure 2 (C), we use two multiplexers to accept

observational and navigational advice. The observational

advice is mapped to an action command by our model.

Loss Function. Our Observation-to-Action module outputs

per-word softmax probabilities and we minimize the fol-

lowing negative log-likelihood Lobs2act:

Lobs2act = −
∑

m log p(am|am−1, {o1,o2, . . . ,oK}) (2)

We minimize the following loss function L to train our en-

tire driving model end-to-end, L = Lobs +Lctl +Lobs2act.

4. Experiments

Dataset. We use the Berkeley DeepDrive-eXplanation

(BDD-X) dataset [17] to train and evaluate our proposed
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Figure 5: (A) Example observations and action commands generated by our model. We provide input raw images and

attention maps of the vehicle controller. (B) The distribution of our top-100 generated observation/action pairs by their first

four or three words, respectively. The ordering of the words starts from the center, and the length of the arc indicates the

proportion of the number of words. Note that we remove areas where the number of words is too small to show.

Table 1: We report the vehicle control prediction perfor-

mance for our approach and existing baselines. We com-

pare the performance in terms of the median of average dis-

placement errors (ADEs) as well as the 1st (Q1) and 3rd

(Q3) quartiles (lower is better), i.e. Median [Q1, Q3].

Model
ADE (in meters) ↓

without speed inputs with speed inputs

A. CNN+FC [5] 2.36 [1.18, 4.61] -

B. A + LSTM [39] 3.29 [1.49, 6.93] -

C. B + Attention [15] 2.22 [1.17, 4.61] -

D. A + Discrete commands (w/ branched output) [7] 2.28 [0.89, 4.56] 1.35 [0.66, 2.76]

E. C + (natural language) commands [16] 2.11 [0.84, 4.86] 1.35 [0.42, 2.94]

F. D + Long-term (global) Advice 2.14 [0.93, 4.57] 0.81 [0.45, 1.61]

G. F + Object-centric Visual Encoder (ours) 1.93 [1.03, 4.26] 0.65 [0.46, 1.43]

model. BDD-X contains front-view dashcam videos (≈
40 seconds) collected during urban driving in the United

States, covering all the typical driving events. Alongside

the video data, the dataset provides corresponding time-

stamped IMU sensor measurements, which we use as a

ground-truth control signal. We provide the dataset details

in supplemental material.

Moreover, the dataset provides textual (i) descriptions of

the vehicle’s actions (what the driver is doing), and (ii) ex-

planations for the driver’s actions (why the driver took that

action from the point of view of a driving instructor), such

as the pair: “the car slows down” and “because it is ap-

proaching an intersection”. This dataset is collected from

human annotators in Amazon Mechanical Turk. We super-

vise our Textual Observation Generator with the textual ex-

planations, while our Sequence-to-Sequence Observation-

to-Action module is supervised with action descriptions

(i.e. as navigational commands).

Training and Evaluation Details. Except for our object-

centric visual encoder, we train other parts end-to-end us-

ing random initialization (i.e. no pre-trained weights). Un-

less otherwise stated, we use a single LSTM layer for all

the components of our framework. For training, we use

Adam optimization algorithm [18] and Xavier initializa-

tion [9]. For evaluation, we use the average displace-

ment error (ADE) to quantitatively evaluate control pre-

diction performance by comparing to ground-truth human-

demonstrated control commands. To evaluate the textual

utterances generated by our model, we use popular auto-

matic metrics: BLEU [27], METEOR [20], CIDEr-D [34],

and SPICE [1].

Driving Performance Evaluation. We report the vehicle

control prediction performance for our model and a number

of baselines to evaluate the ability to control a vehicle con-

ditioned on the determined actions. We compare to end-to-

end driving models, CNN+FC [5], CNN+FC+LSTM [39],

and CNN+FC+LSTM+Attention [15] and goal-conditioned

driving models that ground different types of goal: discrete

commands [7], top-down view intended route [12], and nat-

ural language commands [16]. For a fair comparison, we

use the same base CNN [7] in all cases except the model
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Figure 6: (A) The sum of normalized attention weights (blue) over the individual semantic regions for the baseline [15]

and our model; differences shown in red. Our model attends more to road, car, pedestrian area, lane markings, and less

to buildings, sky, vegetation. (We chose the top-20 most frequently attended regions of our model.) (B) We provide input

images and compare attention maps from the baseline and our model. Attention maps are overlaid by their contour lines and

shown over the input images. Higher value (red) of attention weight shows what the driving model attends to.

G, which uses our object-centric front-end visual encoder.

All models have the same output layer and are trained by

minimizing the same loss function.

We report performance of the aforementioned models in

Table 1 (lower is better). Consistent with the prior work,

goal-conditioned models [7, 16] (D and E) generally pro-

vide better control prediction performance against the non-

goal-conditioned models (top three rows). Our model is

built upon the model D – a goal-conditioned driving model

that takes four different discrete navigational commands

(i.e. lane following, turning, merging, parking). Based

on this, our model F takes natural language commands for

stimulus-driven action, e.g. the vehicle may make a stop,

slow and/or deviate because of traffic participants, obsta-

cles, any other environmental reasons. We observe that our

model is further improved by adding long-term (or global)

advising module (compare F vs. D). Our controller shares

the attended feature with the Observation Generator, and

thus encourages the model to attend to important visual

cues (e.g. stop sign, traffic lights, pedestrians). Using our

Object-centric Visual Encoder (instead of training a Con-

vNet from scratch) further improves control prediction per-

formance (compare G vs. F).

Analysis of Observation-to-Action Module. In Figure 5

(A), we provide qualitative examples of the textual observa-

tions (e.g. “because the car in front is stopped”) and corre-

sponding high-level action commands (“the car is stopped”)

generated by our model. We also show the generated atten-

tion maps, which highlight image regions that have influ-

enced the network’s outputs (i.e. both textual observations

and control commands). Our model attends to relevant vi-

sual cues and generates corresponding textual sequences.

The vehicle controller also looks at other driving-related ob-

jects, e.g. lane markings. Importantly, our model is able to

learn observation-action rules, which are provided by hu-

Table 2: We report the quality of the generated textual ob-

servations (top) and action commands (bottom). We rely on

standard automatic metrics: BLEU-4 [27], METEOR [20],

CIDEr-D [34], and SPICE [1]. †: reported by [17]

Model
Textual Observation Generation

BLEU-4 METEOR CIDEr-D SPICE

S2VT [35]+SA+TA† 5.84 10.9 52.7 14.3

S2VT+SA+TA+WAA [17]† 7.28 12.2 69.5 17.5

Transformer-based Decoder [33] 9.90 13.6 70.1 17.5

Ours 11.7 16.0 98.2 20.7

Model Textual Action Commands Generation

S2VT [35]+SA+TA† 27.1 26.4 157.0 55.1

S2VT+SA+TA+WAA [17]† 32.3 29.2 215.8 59.6

Ours 42.6 34.6 338.5 62.6

mans at training time, and correctly reflect typical links be-

tween visual causes and actions of human driving behavior.

To see the distribution of the learned observation-to-

action rules, we cluster observation/action pairs based on

the first few words (e.g. the-light-is-red-car-is-stopped from

the pair: “because the light is red” and “the car is stopped”)

as shown in Figure 5 (B). Our model generates a variety of

observation-to-action pairs, which are compatible with the

human driver’s general knowledge. For example, the ob-

servation starts with “the road is wet” produces an action

command starting with “the car maintains slow speed”.

Towards Semantically Rich Driving Model. Analyzing

the generated attention maps confirms that our model fo-

cuses more on important object-related visual cues (e.g.

vehicles, lane markings, etc). In contrast, a baseline

model [15] often attends to background (e.g. sky, trees,

buildings, etc) but under-attends to important visual cues.
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In Figure 6 (A), we provide the top 20 semantic segmenta-

tion labels where our model attends to. Blue bars represent

the sum of normalized attention weights for each label. The

top 3 attended regions for our model are road, ego-vehicle,

pedestrian area, while the baseline focuses on building,

road, sky. To see the difference between those models, we

also visualize the differences as a red bar. Ours clearly fo-

cuses more on driving-related features, e.g. road, car, pedes-

trian area, lane markings, snow, and less on buildings, sky,

vegetation, etc. In Figure 6 (B), we further compare the at-

tention maps between ours and a baseline model [15]. We

provide input video frames (1st row), attention maps gen-

erated by the baseline model (2nd row), and our attention

maps (3rd row). Attention maps show that our model at-

tends to important object-related visual cues (e.g. vehicles,

lane markings, etc) with delineated object boundaries.

Generated Observation/Action Quality. Next we evaluate

the quality of our generated observations and action com-

mands, see Table 2 (higher is better). Our Textual Observa-

tion Generator predicts natural language observations based

on the visual inputs. Some of our baselines are video cap-

tioning approaches, which do not take the vehicle control

into account (S2VT [35]+SA (spatial attention)+TA (tem-

poral attention) and Transformer-based approach [33]). At

the same time, our full system is trained end-to-end, includ-

ing the loss on the predicted controls, thus our textual ob-

servations are encouraged to be relevant to driving behavior.

Therefore, we also compare to the best version of [17], the

WAA model (weakly-aligned attention). This model gen-

erates action descriptions and explanations conditioned on

predicted vehicle control, and we interpret the latter as ob-

servations. This is unlike our approach, where, conversely,

vehicle control is predicted based on observations/action

commands. Nevertheless, these are meaningful reference

numbers for our approach. As we see, our model obtains

the highest scores in all metrics both for generated observa-

tions and action commands.

Simulation and Human Evaluation. Explainable and ad-

visable driving models can increase user trust by providing

effective communication, which helps users convey their

preferences/guidance to the vehicle and vice versa. To ver-

ify this, we run a human evaluation. We first migrate our

driving model from the offline setting to a simulated envi-

ronment, Carla [8], i.e. our model is trained on the BDD-X

dataset and tested in the Carla simulator. We choose three

different driving scenarios: (i) stopping at red lights, (ii)

stopping at red lights in heavy rain, and (iii) stopping at

a stop marking. In these experiments our driving model

fails to stop for (ii) and (iii) scenarios. We then test the

model with the following advice: “the light is red” and

“there is a stop sign” for respective scenarios. We ob-

serve that the failure rate drops (see Figure 7 (A)). Further,

we recruit 20 human judges and study the following three
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Figure 7: (A) We report the failure rate with and without

advice inputs in the following three scenarios on a Carla

simulator. (B-C) We also report the responses from our hu-

man study for the questions: (B) “How much do you trust

this system?”, and (C) “To what level has the system im-

proved with the human-to-vehicle advice?”. Answers were

measured on a 1-5 Likert scale.

cases: (i) user only observes the car’s behavior, (ii) user

observes the model’s behavior along with the attention and

textual explanations, and (iii) user observes the model’s be-

havior, attention, and textual explanations, before and af-

ter providing advice. As shown in Figure 7 (B), our ex-

plainable and advisable system shows better responses for

user-trust. Specifically, providing visual and textual expla-

nations slightly improves the user trust (blue vs. red). Fur-

ther, showing users an example where the driving model

accepts human-to-vehicle advice significantly improves the

user-trust (red vs. yellow). In addition, we obtain feedback

from the users by asking “To what level has the system im-

proved with the human-to-vehicle advice?”. Our evaluators

acknowledge that advice improves the driving system, see

Figure 7 (C). We provide the details of our evaluation in the

Carla simulator in the supplemental material.

5. Conclusion

Towards learning more human-like driving behavior, we

propose to use human advice in the form of observation-

action rules. Specifically, we present a new approach where

such advice is used as supervision during training and the

controls are predicted based on the textual action com-

mands. We rely on a semantic visual representation to better

ground the textual observations and generate object-centric

attention maps. Our experiments on the BDD-X dataset

show that our model matches or outperforms prior work in

control prediction and textual observation generation. Our

human evaluation on the Carla simulator further shows that

our advisable system can increase user trust.
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