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Abstract

In the field of face recognition, a model learns to distin-

guish millions of face images with fewer dimensional em-

bedding features, and such vast information may not be

properly encoded in the conventional model with a single

branch. We propose a novel face-recognition-specialized

architecture called GroupFace that utilizes multiple group-

aware representations, simultaneously, to improve the qual-

ity of the embedding feature. The proposed method provides

self-distributed labels that balance the number of samples

belonging to each group without additional human annota-

tions, and learns the group-aware representations that can

narrow down the search space of the target identity. We

prove the effectiveness of the proposed method by show-

ing extensive ablation studies and visualizations. All the

components of the proposed method can be trained in an

end-to-end manner with a marginal increase of computa-

tional complexity. Finally, the proposed method achieves

the state-of-the-art results with significant improvements in

1:1 face verification and 1:N face identification tasks on

the following public datasets: LFW, YTF, CALFW, CPLFW,

CFP, AgeDB-30, MegaFace, IJB-B and IJB-C.

1. Introduction

Face recognition is a primary technique in computer vi-

sion to model and understand the real world. Many meth-

ods and enormous datasets [3, 10, 16, 25, 32, 41] have been

introduced, and recently, methods that use deep learning

[7, 9, 14, 19, 34, 35, 44] have greatly improved the face

recognition accuracy, but it still falls short of expectations.

To reduce the shortfall, most of the recent research in

face recognition focused on improving the loss function.

The streams from CenterLoss [35], CosFace [34], Arc-

Face [7] and RegularFace [44] all tried to minimize the

intra-class variation and maximize the inter-class variation.

These methods are effective and have gradually improved

the accuracy by elaborating the objective of learning.

Despite the development of loss functions, general-
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Figure 1. Conceptual scheme of the proposed method. The pro-

posed method enhances the quality of the embedding feature by

supporting the instance-based representation of Robert Downey

Jr. using the group-aware representation considering Brown-

beard Man Group.

purpose networks, not a network devised for a face recog-

nition, can have difficulty in enabling effective training of

the network to recognize a huge number of person identi-

ties. Unlike common problems such as classification, in the

evaluation stage, a face-recognition model encounters new

identities, which are not included in the training set. Thus,

the model has to embed nearly 100k identities [10] in the

training set and also consider a huge number of unknown

identities. However, most of the existing methods just at-

tach several fully-connected layers after widely-used back-

bone networks such as VGG [25] and ResNet [12] without

any designs for the characteristics of face recognition.

Grouping is a key idea to efficiently-and-flexibly embed

a significant number of people and briefly describe an un-

known person. Each person has own characteristics in his or

her face. At the same time, they have common ones shared

in a group of people. In the real world, group-based de-

scription (man with deep, black eyes and red beard) that

involves common characteristics in the group, can be useful

to narrow down the set of candidates, even though it cannot

identify the exact person. Unfortunately, explicit grouping

requires manual categorizing on huge data and may be lim-

ited by the finite range of descriptions by human knowledge,

However, by adopting the concept of grouping, the recogni-
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tion network can reduce the search space and flexibly em-

bed a significant number of identities into an embedding

feature.

We propose a novel face-recognition architecture called

GroupFace that learns multiple latent groups and constructs

group-aware representations to effectively adopt the con-

cept of grouping (Figure 1). We define Latent Groups,

which are internally determined as latent variables by com-

prehensively considering facial factors (e.g., hair, pose,

beard) and non-facial factors (e.g., noise, background, il-

lumination). To learn the latent groups, we introduce a

self-distributed grouping method that determines group la-

bels by considering the overall distribution of latent groups.

The proposed GroupFace structurally ensembles multi-

ple group-aware representations into the original instance-

based representation for face recognition.

We summarize the contributions as follows:

• GroupFace is a novel face-recognition-specialized ar-

chitecture that integrates the group-aware representa-

tions into the embedding feature and provides well-

distributed group-labels to improve the quality of fea-

ture representation. GroupFace also suggests a new sim-

ilarity metric to consider the group information addi-

tionally.

• We prove the effectiveness of GroupFace in extensive

experiments and ablation studies on the behaviors of

GroupFace.

• GroupFace can be applied many existing face-

recognition methods to obtain a significant improve-

ment with a marginal increase in the resources. Es-

pecially, a hard-ensemble version of GroupFace can

achieve high recognition-accuracy by adaptively using

only a few additional convolutions.

2. Related Works

Face Recognition has been studied for decades. Many re-

searchers proposed machine learning techniques with fea-

ture engineering [1, 5, 6, 28, 17, 23, 31, 38, 42]. Re-

cently, deep learning methods have overcome the limita-

tions of traditional face-recognition approaches with pub-

lic face-recognition datasets [3, 10, 16, 25, 32, 41]. Deep-

Face [30] used 3D face frontalization to achieve a break-

through in face recognition methods that use deep learning.

FaceNet [26] proposed triplet loss to maximize the distance

between an anchor and its negative sample, and to minimize

the distance between the same anchor and its positive sam-

ple. CenterLoss [35] proposed center loss to minimize the

distance between samples and their class centers. Marginal-

Loss [8] adopted the concept of margin to minimize intra-

class variations and to keep inter-class distances with mar-

gin. RangeLoss [43] used long-tailed data during the train-

ing stage. RingLoss [47] constrained a feature’s magnitude

to be a certain number. NormFace [33] proposed to nor-

malize features and fully connected layer weights; verifi-

cation accuracy increased after normalization. SphereFace

[19] proposed angular softmax (A-Softmax) loss with mul-

tiplicative angular margin. Based on A-Softmax, CosFace

[34] proposed an additive cosine margin and ArcFace [7]

applies an additive angular margin. The authors of Regular-

Face [44] and UniformFace [9] argued that approaches that

use angular margin [7, 19, 34] concentrated on intra-class

compactness only, then suggested new losses to increase

the inter-class variation. These previous methods, in gen-

eral, focused on how to improve loss functions to improve

face recognition accuracy with conventional feature repre-

sentation. A slight change such as adding a few layers or

increasing the number of channels, commonly did not bring

a noticeable improvement. However, GroupFace improves

the quality of feature representation and achieves a signifi-

cant improvement by adding a few more layers in parallel.

Grouping or clustering methods such as k-means internally

categorize samples by considering relative metrics such as

a cosine similarity or Euclidean distance without explicit

class labels. In general, these clustering methods attempt

to to construct well-distinguished categories by preventing

the assignment of most images to one or a few clusters. Re-

cently, several methods that used deep learning [4, 24, 40]

have been introduced. These methods are effective, how-

ever, they use full batches as in previous methods, not mini-

batches as in deep learning. Thus, these methods are not

readily incorporate deeply and end-to-end in an applica-

tion framework. To efficiently learn the latent groups, our

method introduces a self-distributed grouping method that

considers an expectation-normalized probability in a deep

manner.

3. Proposed Method

Our GroupFace learns the latent groups by using a self-

distributed grouping method, constructs multiple group-

aware representations and ensembles them into the standard

instance-based representation to enrich the feature represen-

tation for face recognition.

3.1. GroupFace

We discuss that how the scheme of latent groups are ef-

fectively integrated into the embedding feature in Group-

Face.

Instance-based Representation. We will call a feature

vector in conventional face recognition scheme [7, 34, 35,

44] as an Instance-based Representation in this paper (Fig-

ure 2). The instance-based representation is commonly

trained as an embedding feature by using softmax-based

loss (e.g., CosFace [34] and ArcFace [7]) and is used to
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Figure 2. GroupFace generates a shared feature of 4096 dimension and deploys a fully-connected layer for an instance-based representation

vx and K fully-connected layers for group-aware representations v
G
x

for a given sample x. A group-decision-network, which is super-

vised by the self-distributed labeling, outputs a set of group probabilities {p(G0|x), p(G1|x), ..., p(GK−1|x)} from the instance-based

representation. The final representation of 512 dimension is an aggregation of the instance-based representation and the weighted sum v
G
x

of the group-aware representations with the group probabilities. W is a weight of the function g.

predict an identity as:

p(yi|x) = softmaxk(g(vx)), (1)

where yi is an identity label, vx is the instance-based rep-

resentation of a given sample x, and g is a function which

projects an embedding feature of 512 dimension into M di-

mensional space. M is the number of person identities.

Group-aware Representation. GroupFace uses a novel

Group-aware Representation as well as the instance-based

representation to enrich the embedding features. Each

group-aware representation vector is extracted by deploy-

ing fully-connected layers for each corresponding group

(Figure 2). The embedding feature (v̄x, Final Represen-

tation in Figure 2) of GroupFace is obtained by aggregat-

ing the instance-based representation vx and the weighted-

summed group-aware representation vG
x . GroupFace pre-

dicts an identity by using the enriched final representation

v̄xi
as:

p(yi|x) = softmaxk(g(v̄x)),

= softmaxk(g(vx + vGx )),
(2)

where vGx is an ensemble of multiple group-aware represen-

tations with group probabilities.

Structure. GroupFace calculates and uses instance-based

representation and group-aware representations, concur-

rently. The instance-based representation is obtained by the

same procedures that are used in conventional face recogni-

tion methods [7, 34, 35, 44], and the K group-aware rep-

resentations are obtained similarly by deploying a fully-

connected layer. Then, the group probabilities are calcu-

lated from the instance-based representation vector by de-

ploying a Group Decision Network (GDN) that consists of

three fully-connected layers and a softmax layer. Using the

group probabilities, the multiple group-aware representa-

tions are sub-ensembled in a soft manner (S-GroupFace) or

a hard manner (H-GroupFace).

1. S-GroupFace aggregates multiple group-aware repre-

sentations with corresponding probabilities of groups

as weights, and is defined as:

vG
x =

∑

k∈K

p(Gk|x)v
Gk
x . (3)

2. H-GroupFace selects one of the group-aware represen-

tations for which the corresponding group probability

has the highest value, and is defined as:

vGx = argmax
p(Gk|x)

vGk
x . (4)

S-GroupFace provides a significant improvement of recog-

nition accuracy with a marginal requirement for additional

resources, and H-GroupFace is more suitable for practical

applications than S-GroupFace, at the cost of a few addi-

tional convolutions. The final representation v̄x is enriched

by aggregating both the instance-based representation and

the sub-ensembled group-aware representation.

Group-aware Similarity. We introduce a group-aware

similarity that is a new similarity considering both the stan-

dard embedding feature and the intermediate feature of

GDN in the inference stage. The group-aware similarity

is penalized by a distance between intermediate features

of two given instances because the intermediate feature is

not trained on the cosine space and just describes the group

identity of a given sample, not the explicit identity of a given

sample. The group-aware similarity S∗ between the ith im-

age Ii and the jth image Ij is defined as:

S∗(xi,xj) = S(v̄xi
, v̄xj

)− βD(v̂xi
, v̂xj

)γ , (5)
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where S is a cosine similarity metric, D is a distance metric,

v̂x denotes the intermediate feature of GDN and, β and γ
are a constant parameter. The parameters are determined

empirically to be β = 0.1 and γ = 1/3.

3.2. Selfdistributed Grouping

In this work, we define a group as a set of samples that

share any common visual-or-non-visual features that are

used for face recognition. Such a group is determined by

a deployed GDN. Our GDN is gradually trained in a self-

grouping manner that provides a group label by consider-

ing the distribution of latent groups without any explicit

ground-truth information.

Naı̈ve Labeling. A naı̈ve way to determine a group label is

to take an index that has the maximum activation of softmax

outputs.We build a GDN f to determine a belonging group

G∗ for a given sample x by deploying MLP and attaching a

softmax function:

p(Gk|x) = softmaxk(f(x)), (6)

G∗(x) = argmax
k

p(Gk|x), (7)

where Gk is the kth group. The lack of the consideration for

the group distribution can cause the naı̈ve solution to assign

most of samples to one or few groups.

Self-distributed Labeling. We introduce an efficient la-

beling method that utilizes a modified probability regulated

by a prior probability to generate uniformly-distributed

group labels in a deep manner. We define an expectation-

normalized probability p̃ to balance the number of samples

among K groups:

p̃(Gk|x) =
1

K
{p(Gk|x)− Ex∼data [p(Gk|x)]}+

1

K
, (8)

where the first 1/K bounds the normalized probability be-

tween 0 and 1. Then, the expectation of the expectation-

normalized probability is computed as:

Ex∼data [p̃(Gk|x)] ,

=
1

K
{Ex∼data [p(Gk|x)]− Ex∼data [p(Gk|x)]}+

1

K
,

=
1

K
.

(9)

The optimal self-distributed label is obtained as:

G∗(x) = argmax
k

p̃(Gk|x). (10)

The trained GDN estimates a set of group probabilities that

represent the degree to which the sample belongs to the la-

tent groups. As the number of samples approaches infinity,

the proposed method stably outputs the uniform-distributed

labels (Figure 3).
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Figure 3. Conceptual scheme of self-distributed labeling. When

group probabilities of 5 samples on 4 groups is obtained by GDN,

the expectation-normalized probability is computed by subtracting

the corresponding expectation of the group probabilities from the

group probabilities. The group identifier of the maximum prob-

ability is selected as the label of a given sample and the consid-

eration of the expectation makes the distribution of labels more

uniform.

3.3. Learning

The network of GroupFace is trained by both the stan-

dard classification loss, which is a softmax-based loss to

distinguish identities, and the self-grouping loss, which is a

softmax loss to train latent groups, simultaneously.

Loss Function. A softmax-based loss L1 (ArcFace [7] is

mainly used in this work) is used to train a feature represen-

tation for identities and is defined as:

L1 = −
1

N

N∑

i=1

log
es(cos(θyi

+m))

es(cos(θyi
+m)) +

∑n
j=1,j 6=yi

es(cos(θj))
,

(11)

where N is a number of samples in a mini-batch, θ is the

angle between a feature and the corresponding weight, s
is a scale factor, m is a marginal factor. To construct the

optimal group-space, a self-grouping loss, which reduces

the difference between the prediction and the self-generated

label, is defined as:

L2 = −
1

N

N∑

i=1

CrossEntropy(softmax(f(xi)), G
∗(xi)).

(12)

Training. The whole network is trained by using the aggre-

gation of two losses:

L = L1 + λL2, (13)

where the parameter λ balances the weights of different

losses and is empirically set to 0.1. Thus, GDN can learn
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the group, which is an attribute beneficial to face recogni-

tion.

4. Experiments

We describe implementation details and extensively per-

form experiments and ablation studies to show the effective-

ness of GroupFace.

4.1. Implementation Details

Datasets. For the train, we use MSCeleb-1M [10] which

has contain about 10M images for 100K identities. Due to

the noisy labels of MSCeleb-1M original dataset, we use

the refined version [7] which contains 3.8M images for 85k

identities. For the test, we conduct our experiments with

nine commonly used datasets as follows:

• LFW [13] which contains 13,233 images from 5,749

identities and provides 6000 pairs from them. CALFW

[46] and CPLFW [45] are the reorganized datasets

from LFW to include higher pose and age variations.

• YTF [37] which consists of 3,425 videos of 1,595 iden-

tities.

• MegaFace [16] which composed of more than 1

million images from 690K identities for challenge

1(MF1).

• CFP-FP [27] which contains 500 subjects, each with

10 frontal and 4 profile images.

• AgeDB-30 [22] which contains 12,240 images of 440

identities.

• IJB-B [36] which contains 67,000 face images, 7,000

face videos and 10,000 non-face images.

• IJB-C [21] which contains 138,000 face images,

11,000 face videos and 10,000 non-face images.

Metrics. We compare the verification-accuracy for identity-

pairs on LFW [13], YTF [37], CALFW [46], CPLFW [45],

CFP-FP [27], AgeDB-30 [22] and MegaFace [16] verifica-

tion task. MegaFace [16] identification task is evaluated

by rank-1 identification accuracy with 1 million distractors.

We compare a True Accept Rate at a certain False Accept

Rate (TAR@FAR) from 1e-4 to 1e-6 on IJB-B [36] and IJB-

C [21].

Experimental Setting. We construct a normalized face im-

age [7, 19, 34] (112× 112) by warping a face-region using

five facial points from two eyes, nose and two corners of

mouth. We employ the ResNet-100 [12] as the backbone

network similar to the recent works [7, 14]. We vector-

ize the activation and reduced # activations to 4096 (shared

feature in Figure 2) by a block of BN-FC. Our GroupFace

TAR

FAR=1e-6 FAR=1e-5

Baseline [7] 0.3828 0.8933

- 4 Groups 0.4395 0.8962

- 16 Groups 0.4435 0.8993

- 32 Groups 0.4678 0.9115

(a) Number of Groups

TAR@FAR=1e-6

Baseline [7] 0.3828

- without Loss 0.4468

- Naive Labeling 0.4535

- Self-distributed Labeling 0.4678

(b) Learning for GDN

TAR@FAR=1e-6 GFLOPS

Baseline [7] 0.3828 24.2G

- H-GroupFace 0.4439 24.4G

- S-GroupFace 0.4678 24.5G

(c) Hard vs. Soft Ensemble

TAR

FAR=1e-6 FAR=1e-5

Baseline [7] 0.3828 0.8933

- Concat 0.4745 0.8999

- Aggregation 0.4678 0.9115

(d) Aggregation vs. Concatenataion

TAR@FAR=1e-6

Baseline [7] 0.3828

- GroupFace 0.4678

- GroupFace† 0.5212

(e) Group-aware Similarity

TAR

FAR=1e-6 FAR=1e-5 FAR=1e-4

ResNet-100 [7] 0.3828 0.8933 0.9425

ResNet-34 [7] 0.3962 0.8669 0.9308

+ GroupFace 0.4361 0.8820 0.9316

+ GroupFace† 0.4823 0.8842 0.9354

(f) Lightweight Model

Table 1. Ablation studies for the proposed GroupFace on IJB-B

dataset. The baseline is a recognition-model trained by ArcFace

[7] and † denotes an evaluation procedure using the group-aware

similarity (Eq. 5).

is attached after res5c in ResNet-100, where its activation

dimension is 512×7×7. The MLP in GDN consists of two

blocks of BN-FC and a FC for group classification. We fol-

low [7, 34] to set the hyper-parameters of the loss function.

5625



Learning. We train the model with 8 synchronized GPUs

and a mini-batch involving 128 images per GPU. To stable

the group-probability, the network of GroupFace is trained

from the pre-trained network that is trained by only the

softmax-based loss [7, 34]. We used a learning rate of 0.005
for the first 50k, 0.0005 for the 20k, and 0.00005 for 10k

with a weight decay of 0.0005 and a momentum of 0.9 with

stochastic gradient descent (SGD). We compute the expec-

tation of group probabilities by computing the group prob-

abilities of 128× 8 samples on all GPUs and averaging the

expectations over the recent B-batches to accurately esti-

mate the expectation of the group probabilities on the pop-

ulation; B between 32 and 128 empirically shows a similar

performance.

4.2. Ablation Studies

To show the effectiveness of the proposed method, we

perform the ablation studies on the it’s behaviors. For all

experiments, we also use the same network structure with

the hyper-parameters mentioned earlier. To clearly show the

effect of each ablation study, TAR@FAR of the models are

compared on IJB-B dataset [36]; all models in the ablation

studies shows around 99.85% on LFW.

Number of Groups. We compare the recognition perfor-

mance according to the number of groups (Table 1a). As

the number of groups grows, the performance increases

steadily. In particular, a few initial groups can benefit

greatly, and by deploying more groups, significant improve-

ment of performance can be obtained.

Learning for GDN. We compare the learning method for

GDN (Table 1b): (1) without loss (adopt the group-aware

network structure only), (2) naive labeling, and (3) self-

distributed labeling. Just by applying our novel network

structure, the recognition performance is greatly improved.

In particular, the performance is further increased by adjust-

ing the proposed self-distributed labeling method.

Hard vs. Soft. S-GroupFace shows a high improvement

in the performance because it uses all group-aware rep-

resentations comprehensively with a reasonable additional

resource (Table 1c). Since H-GroupFace uses only one

strongest group-aware representation even if many groups

are deployed, the burden of increasing the number of groups

is fixed to a slight amount of additional resource. Thus,

H-GroupFace can be applied immediately for high perfor-

mance gains in practical applications.

Aggregation vs. Concatenation. We compare how to

combine the instance-based representation and the group-

aware representations into an one embedding feature (Table

1d): (1) aggregation and (2) concatenation. Concatenation-

based GroupFace shows a better TAR@FAR=1e-6 by

0.67 percentage points than Aggregation-based GroupFace,

however, Aggregation-based GroupFace shows a much bet-

Method #Image LFW YTF

DeepID [29] 0.2M 99.47 93.2

DeepFace [30] 4.4M 97.35 91.4

VGGFace [25] 2.6M 98.95 97.3

FaceNet [26] 200M 99.64 95.1

CenterLoss [35] 0.7M 99.28 94.9

RangeLoss [43] 5M 99.52 93.7

MarginalLoss [8] 3.8M 99.48 95.9

SphereFace [19] 0.5M 99.42 95.0

RegularFace [44] 3.1M 99.61 96.7

CosFace [34] 5M 99.81 97.6

UniformFace [9] 6.1M 99.80 97.7

AFRN [14] 3.1M 99.85 97.1

ArcFace [7] 5.8M 99.83 97.7

GroupFace 5.8M 99.85 97.8

Table 2. Verification accuracy (%) on LFW and YTF.

ter TAR@FAR=1e-5 by 1.16 percentage points. We chose

the Aggregation-based GroupFace that is generally better

performing with fewer feature dimensions.

Group-aware Similarity. The recognition-performance is

once again improved significantly by evaluating the group-

aware similarity (Table 1e). Even though the group-aware

similarity increases the feature dimension for calculating

a similarity, it is easy to extract the required feature be-

cause the feature is the intermediate output of the recog-

nition network. Especially, this experiment shows that the

group-based information is distinct from the conventional

identity-based information enough to improve performance

in practical usages. We show more detailed experiments in

Table 5.

Lightweight Model. GroupFace is also effective for a

lightweight model such as ResNet-34 [12] that requires

only 8.9 GFLOPS less than ResNet-100 [12], which re-

quires 24.2 GFLOPS. ResNet-34 based GroupFace shows a

similar performance of ResNet-100 based ArcFace [7] and

greatly outperforms ResNet-100 in a most difficult criterion

(FAR=1e-6). In addition, the group-aware similarity signif-

icantly exceed the basic performance of ResNet-34 model

(Table 1f).

4.3. Evaluations

LFW, YTF, CALFW, CPLFW, CFP-FP and AgeDB-

30. We compare the verification-accuracy on LFW [13]

and YTF [37] with the unrestricted with labelled outside

data protocol (Table 2). On YTF, we evaluate all the im-

ages without the exclusion of noisy images from image se-

quences. Even though both datasets are highly-saturated,

Our GroupFace surpasses the other recent methods. We

also report the verification accuracy on the variant of LFW

(CALFW [46], CPLFW [45]), CFP-FP [27] and AgeDB-30
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Method CALFW CPLFW CFP-FP AgeDB-30

CenterLoss [35] 85.48 77.48 - -

SphereFace [19] 90.30 81.40 - -

VGGFace2 [3] 90.57 84.00 - -

CosFace [34] 95.76 92.28 98.12 98.11

ArcFace [7] 95.45 92.08 98.27 98.28

GroupFace 96.20 93.17 98.63 98.28

Table 3. Verification accuracy (%) on CALFW, CPLFW, CFP-FP

and AgeDB-30.

Method Protocol Ident Verif

RegularFace [44] Large 75.61 91.13

UniformFace [9] Large 79.98 95.36

CosFace [34] Large 80.56 96.56

ArcFace [7] Large 81.03 96.98

GroupFace Large 81.31 97.35

SphereFace [19] Large / R 97.91 97.91

AdaptiveFace [18] Large / R 95.02 95.61

CosFace [34] Large / R 97.91 97.91

ArcFace [7] Large / R 98.35 98.49

GroupFace Large / R 98.74 98.79

Table 4. Identification and verification evaluation on MegaFace.

Ident means rank-1 identification accuracy (%) and Verif means

TAR@FAR=1e-6 (%). R denotes the evaluation procedure on the

refined version [7] of MegaFace dataset.

[22] (Table 3). Our GroupFace shows the better accuracy

on all of the above datasets.

MegaFace. We evaluate our GroupFace under the large-

training-set protocol, in which models are trained by us-

ing the training set containing more than 0.5M images, on

MegaFace [16] (Table 4). GroupFace is the top-ranked face

recognition model among the recent published state-of-the-

art methods. On the refined MegaFace [7], our GroupFace

also outperforms the other models.

IJB-B and IJB-C. We compare the proposed method with

other methods on IJB-B [36] and IJB-C [21] datasets (Table

5). Recent angular-margin-softmax based methods [7, 34]

show great performance in the datasets. We reports the im-

provement of GroupFace in the verification accuracy based

on both CosFace [34] and ArcFace [7] without any test-

time augmentations such as horizontal flipping. Our Group-

Face shows significant improvements on all FAR criteria by

8.5 percentage points on FAR=1e-6, 1.8 percentage points

on FAR=1e-5 and 0.2 percentage points on FAR=1e-4 than

the ArcFace [7] on IJB-B and by 4.3 percentage points on

FAR=1e-6, 1.2 percentage points on FAR=1e-5 and 0.4 per-

centage points on FAR=1e-4 than the ArcFace [7] on IJB-C.

The recognition-performance is once again improved sig-

nificantly by applying the group-aware similarity (Eq. 5),

especially on the most difficult criterion (TAR@FAR=1e-

(a) Baseline (b) vx (c) v̄x

Figure 4. A quantitative comparison of the baseline network (Ar-

cFace [7]), vx that denotes an instance-based representation of

GroupFace and v̄x that denotes a final representation of Group-

Face for the first eight identities in the refined MSCeleb-1M [10]

dataset on a 2D space. The eight colored-circles represents the

eight identities.
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Figure 5. Average probabilities of 32 groups on the refined

MSCeleb-1M [10] dataset. 12 groups can mainly activate and the

rest groups, R, softly affect.

6) on IJB-B by 5.3 percentage points.

4.4. Visualization

To show the effectiveness of the proposed method, we

visualize the feature representation, the average activation

of groups and the visual interpretation of groups.

2D Projection of Representation. Figure 4 shows a quan-

titative comparison among (a) the final representation of

the baseline network (ArcFace [7]), (b) the instance-based

representation of GroupFace and the final representation of

GroupFace on a 2D space. We select the first eight iden-

tities in the refined MSCeleb-1M dataset [10] and map the

extracted features onto the angular space by using t-SNE

[20]. The quantitative comparison shows that the proposed

model generates more distinctive feature representations

rather than the baseline model and also the proposed model

enhances the instance-based representation.

Activation Distribution of Groups. The proposed Self-

Grouping tries to make the samples evenly spread through-

out the all groups, and at the same time, the softmax-based

loss also simultaneously propagates gradients into GDN so

that the identification works best. Thus, the probability dis-

tribution is not exactly uniform (Figure 5). Some probabili-

ties of the groups are low and the others are high (e.g., 1, 2,

5, 6, 14, 15, 17, 18, 28, 29, 30, 31th groups). The overall
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Method
TAR on IJB-B TAR on IJB-C

FAR=1e-6 FAR=1e-5 FAR=1e-4 FAR=1e-6 FAR=1e-5 FAR=1e-4

VGGFace2 [3] - 0.671 0.800 - 0.747 0.840

CenterFace [35] - - - - 0.781 0.853

ComparatorNet [39] - - 0.849 - - 0.885

PRN [15] - 0.721 0.845 - - -

AFRN [14] - 0.771 0.885 - 0.884 0.931

CosFace [34] 0.3649 0.8811 0.9480 0.8801 0.9370 0.9615

ArcFace [7] 0.3828 0.8933 0.9425 0.8625 0.9315 0.9565

GroupFace− 0.4166 0.8983 0.9453 0.8858 0.9399 0.9606

GroupFace 0.4678 0.9115 0.9445 0.9053 0.9437 0.9602

GroupFace† 0.5212 0.9124 0.9493 0.8928 0.9453 0.9626

Table 5. Verification evaluation according to different FARs on IJB-B and IJB-C. GroupFace is trained by ArcFace [7]. − denotes that a

model is trained by CosFace [34] and † denotes that a model is evaluated by using the group-aware similarity.

distribution is not uniform as we expected, but we see that

there is no dominant one among the high activated group.

Interpretation of Groups. The trained latent groups are

not always visually distinguishable because they are cate-

gorized by a non-linear function of GDN using a latent fea-

ture, not a facial attribute (e.g., hair, glasses, and mustache).

However, there are two cases of groups (Group 5 and 20 in

Figure 6) that we can clearly see their visual properties; 95

of randomly-selected 100 images are men in Group 5 and

94 of randomly-selected 100 images are bald men in Group

20. Others are not described as an one visual property, how-

ever, they seems to be described as multiple visual proper-

ties such as smile women, right-profile people and scared

people in Group 1.

5. Conclusion

We introduce a new face-recognition-specialized archi-

tecture that consists of a group-aware network structure and

a self-distributed grouping method to effectively manipu-

late multiple latent group-aware representations. By exten-

sively conducting the ablation studies and experiments, we

prove the effectiveness of our GroupFace. The visualiza-

tion also shows that GroupFace fundamentally enhances the

feature representations rather than the existing methods and

the latent groups have some meaningful visual descriptions.

Our GroupFace provides a significant improvement in the

recognition-performance ans is practically applicable to ex-

isting recognition systems. The rationale behind the effec-

tiveness of GroupFace is summarized in two main ways: (1)

It is well known that additional supervisions from different

objectives can bring an improvement of the given task by

sharing a network for feature extraction, e.g., a segmenta-

tion head can improve accuracy in object detection [2, 11].

Likewise, learning the groups can be a helpful cue to train a

more generalized feature extractor for face recognition. (2)

GroupFace proposes a novel structure that fuses instance-

Group 5

Group 20

Group 1

Group 29

Figure 6. Example images belonging to each groups. As enormous

identities (80k∼) of large scale dataset cannot be mapped to a few

groups (32), each group contains identities of multiple character-

istics. Some groups have one common visual description (Group

5: Some Men, Group 20: Bald Men) with some variations while

others have multi-mode visual descriptions.

based representation and group-based representation, which

is empirically proved its effectiveness.
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