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Abstract

Simulation is a crucial component of any robotic system.

In order to simulate correctly, we need to write complex

rules of the environment: how dynamic agents behave, and

how the actions of each of the agents affect the behavior of

others. In this paper, we aim to learn a simulator by sim-

ply watching an agent interact with an environment. We

focus on graphics games as a proxy of the real environment.

We introduce GameGAN, a generative model that learns

to visually imitate a desired game by ingesting screenplay

and keyboard actions during training. Given a key pressed

by the agent, GameGAN “renders” the next screen using

a carefully designed generative adversarial network. Our

approach offers key advantages over existing work: we de-

sign a memory module that builds an internal map of the

environment, allowing for the agent to return to previously

visited locations with high visual consistency. In addition,

GameGAN is able to disentangle static and dynamic com-

ponents within an image making the behavior of the model

more interpretable, and relevant for downstream tasks that

require explicit reasoning over dynamic elements. This en-

ables many interesting applications such as swapping dif-

ferent components of the game to build new games that do

not exist. We will release the code, enabling human players

to play generated games with our GameGAN.

1. Introduction

Before deployment to the real world, an artificial agent

needs to undergo extensive testing in challenging simulated

environments. Designing good simulators is thus extremely

important. This is traditionally done by writing procedural

models to generate valid and diverse scenes, and complex

behavior trees that specify how each actor in the scene be-

haves and reacts to actions made by other actors, including

the ego agent. However, writing simulators that encompass

a large number of diverse scenarios is extremely time con-

suming and requires highly skilled graphics experts. Learn-

∗Correspondence to {seungwookk,sfidler}@nvidia.com
†YZ worked on this project during his internship at NVIDIA.

Figure 1. If you look at the person on the left picture, you might think

she is playing Pacman of Toru Iwatani, but she is not! She is actually

playing with a GAN generated version of Pacman. In this paper, we in-

troduce GameGAN that learns to reproduce games by just observing lots

of playing rounds. Moreover, our model can disentangle background from

dynamic objects, allowing us to create new games by swapping compo-

nents as shown in the center and right images.

ing to simulate by simply observing the dynamics of the real

world is the most scaleable way going forward.

A plethora of existing work aims at learning behavior

models [2, 28, 16, 3]. However, these typically assume a

significant amount of supervision such as access to agents’

ground-truth trajectories. We aim to learn a simulator by

simply watching an agent interact with an environment. To

simplify the problem, we frame this as a 2D image gener-

ation problem. Given sequences of observed image frames

and the corresponding actions the agent took, we wish to

emulate image creation as if “rendered” from a real dynamic

environment that is reacting to the agent’s actions.

We focus on graphics games as a proxy of the real en-

vironment. Our goal is to replace the graphics engine at

test time, by visually imitating the game using a learned

model. This is a challenging problem: different games have

different number of components as well as different physi-

cal dynamics. Furthermore, many games require long-term

consistency in the environment. For example, imagine a

game where an agent navigates through a maze. When the

agent moves away and later returns to a location, it expects

the scene to look consistent with what it has encountered

before. In visual SLAM, detecting loop closure (returning

to a previous location) is already known to be challenging,

let alone generating one. Last but not least, both determin-

istic and stochastic behaviors typically exist in a game, and

modeling the latter is known to be particularly hard.

In this paper, we introduce GameGAN, a generative
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model that learns to imitate a desired game. GameGAN in-

gests screenplay and keyboard actions during training and

aims to predict the next frame by conditioning on the ac-

tion, i.e. a key pressed by the agent. It learns from rollouts

of image and action pairs directly without having access to

the underlying game logic or engine. We make several ad-

vancements over the recently introduced World Model [11]

that aims to solve a similar problem. While [11] employs

a straightforward conditional decoder, GameGAN features

a carefully designed architecture. In particular, we propose

a new memory module that encourages the model to build

an internal map of the environment, allowing the agent to

return to previously visited locations with high visual con-

sistency. Furthermore, we introduce a purposely designed

decoder that learns to disentangle static and dynamic com-

ponents within the image. This makes the behavior of the

model more interpretable, and it further allows us to modify

existing games by swapping out different components.

We test GameGAN on a modified version of Pacman

and the VizDoom environment [17], and propose several

synthetic tasks for both quantitative and qualitative evalua-

tion. We further introduce a come-back-home task to test

the long-term consistency of learned simulators. Note that

GameGAN supports several applications such as transfer-

ring a given game from one operating system to the other,

without requiring to re-write code. Our GameGAN will

be made available to human players, enabling them to play

games with a GAN and modify them in creative ways.

2. Related Work

Generative Adversarial Networks: In GANs [9], a gen-

erator and a discriminator play an adverserial game that en-

courages the generator to produce realistic outputs. To ob-

tain a desired control over the generated outputs, categorical

labels [23], images [15, 21], captions [29], or masks [27] are

provided as input to the generator. Works such as [33] syn-

thesize new videos by transferring the style of the source to

the target video using the cycle consistency loss [35, 18].

Note that this is a simpler problem than the problem con-

sidered in our work, as the dynamic content of the target

video is provided and only the visual style needs to be modi-

fied. In this paper, we consider generating the dynamic con-

tent itself. We adopt the GAN framework and use the user-

provided action as a condition for generating future frames.

To the best of our knowledge, ours is the first work on using

action-conditioned GANs for emulating game simulators.

Video Prediction: Our work shares similarity to the task

of video prediction which aims at predicting future frames

given a sequence of previous frames. Several works [31, 5,

26] train a recurrent encoder to decode future frames. Most

approaches are trained with a reconstruction loss, resulting

in a deterministic process that generates blurry frames and

often does not handle stochastic behaviors well. The er-
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Figure 2. Overview of GameGAN: The dynamics engine takes

at, zt,mt−1, and xt as input to update the hidden state at time t. Op-

tionally, it can write to and read from the external memory module M (in

the dashed box). Finally, the rendering engine is used to decode the output

image xt+1. All modules are neural networks and trained end-to-end.

rors typically accumulate over time and result in low quality

predictions. Action-LSTM models [5, 26] achieved success

in scaling the generated images to higher resolution but do

not handle complex stochasticity present in environments

like Pacman. Recently, [11, 7] proposed VAE-based frame-

works to capture the stochasticity of the task. However, the

resulting videos are blurry and the generated frames tend to

omit certain details. GAN loss has been previously used in

several works [8, 20, 32, 6]. [8] uses an adversarial loss to

disentangle pose from content across different videos. In

[20], VAE-GAN [19] formulation is used for generating the

next frame of the video. Our model differs from these works

in that in addition to generating the next frame, GameGAN

also learns the intrinsic dynamics of the environment.
World Models: In model-based reinforcement learning,

one uses interaction with the environment to learn a dynam-

ics model. World Models [11] exploit a learned simulated

environment to train an RL agent instead. Recently, World

Models have been used to generate Atari games in a con-

current work [1]. The key differences with respect to these

models are in the design of the architecture: we introduce

a memory module to better capture long-term consistency,

and a carefully designed decoder that disentangles static and

dynamic components of the game.

3. GameGAN

We are interested in training a game simulator that can

model both deterministic and stochastic nature of the envi-

ronment. In particular, we focus on an action-conditioned

simulator in the image space where there is an egocentric

agent that moves according to the given action at ∼ A at

time t and generates a new observation xt+1. We assume

there is also a stochastic variable zt ∼ N (0; I) that corre-

sponds to randomness in the environment. Given the history

of images x1:t along with at and zt, GameGAN predicts the

next image xt+1. GameGAN is composed of three main

2https://www.bandainamcoent.com/landing/pac-man
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Figure 3. Screenshots of a human playing with GameGAN trained on the official version of Pac-Man2. GameGAN learns to produce

a visually consistent simulation as well as learning the dynamics of the game well. On the bottom row, the player consumes a capsule,

turning the ghosts purple. Note that ghosts approach Pacman before consuming the capsule, and run away after.

modules. The dynamics engine (Sec 3.1), which maintains

an internal state variable, takes at and zt as inputs and up-

dates the current state. For environments that require long-

term consistency, we can optionally use an external memory

module (Sec 3.2). Finally, the rendering engine (Sec 3.3)

produces the output image given the state of the dynamics

engine. It can be implemented as a simple convolutional

decoder or can be coupled with the memory module to dis-

entangle static and dynamic elements while ensuring long-

term consistency. We use adversarial losses along with a

proposed temporal cycle loss (Sec 3.4) to train GameGAN.

Unlike some works [11] that use sequential training for sta-

bility, GameGAN is trained end-to-end. We provide more

details of each module in the supplementary materials.

3.1. Dynamics Engine

GameGAN has to learn how various aspects of an envi-

ronment change with respect to the given user action. For

instance, it needs to learn that certain actions are not pos-

sible (e.g. walking through a wall), and how other objects

behave as a consequence of the action. We call the primary

component that learns such transitions the dynamics engine

(see illustration in Figure 2). It needs to have access to the

past history to produce a consistent simulation. Therefore,

we choose to implement it as an action-conditioned LSTM

[13], motivated by the design of Chiappa et al. [5]:

vt = ht−1 ⊙H(at, zt,mt−1), st = C(xt) (1)

it = σ(W ivvt +W isst), ft = σ(W fvvt +W fsst),

ot = σ(W ovvt +W osst)
(2)

ct = ft ⊙ ct−1 + it ⊙ tanh(W cvvt +W csst) (3)

ht = ot ⊙ tanh(ct) (4)

where ht, at, zt, ct, xt are the hidden state, action, stochas-

tic variable, cell state, image at time step t. mt−1 is the

retrieved memory vector in the previous step (if the mem-

ory module is used), and it, ft, ot are the input, forget, and

output gates. at, zt,mt−1 and ht are fused into vt, and st is

t=0 t=6
Time
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Figure 4. Visualizing attended memory location α: Red dots marking the

center are placed to aid visualization. Note that we learn the memory shift,

so the user action does not always align with how the memory is shifted.

In this case, Right shifts α to the left, and Left shifts α to the right. It also

learns not to shift when an invalid action is given.

the encoding of the image xt. H is a MLP, C is a convolu-

tional encoder, and W are weight matrices. ⊙ denotes the

hadamard product. The engine maintains the standard state

variables for LSTM, ht and ct, which contain information

about every aspect of the current environment at time t. It

computes the state variables given at, zt, mt−1, and xt.

3.2. Memory Module

Suppose we are interested in simulating an environment

in which there is an agent navigating through it. This re-

quires long-term consistency in which the simulated scene

(e.g. buildings, streets) should not change when the agent

comes back to the same location a few moments later. This

is a challenging task for typical models such as RNNs be-

cause 1) the model needs to remember every scene it gen-

erates in the hidden state, and 2) it is non-trivial to design a

loss that enforces such long-term consistency. We propose

to use an external memory module, motivated by the Neural

Turing Machine (NTM) [10].

The memory module has a memory block M ∈
R

N×N×D, and the attended location αt ∈ R
N×N at time t.

M contains N ×N D-dimensional vectors where N is the

spatial width and height of the block. Intuitively, αt is the

current location that the egocentric agent is located at. M
is initialized with random noise ∼ N(0, I) and α0 is initial-

ized with 0s except for the center location (N/2, N/2) that

is set to 1. At each time step, the memory module computes:

w = softmax(K(at)) ∈ R
3×3 (5)
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Figure 5. Example showing how static and dynamic elements are dis-

entangled in VizDoom and Pacman games with GameGAN . Static com-

ponents usually include environmental objects such as walls. Dynamic

elements typically are objects that can change as the game progresses such

as food and other non-player characters.

g = G(ht) ∈ R (6)

αt = g · Conv2D(αt−1, w) + (1− g) · αt−1 (7)

M = write(αt, E(ht),M) (8)

mt = read(αt,M) (9)

where K,G and E are small MLPs. w is a learned shift ker-

nel that depends on the current action, and the kernel is used

to shift αt−1. In some cases, the shift should not happen

(e.g. cannot go forward at a dead end). With the help from

ht, we also learn a gating variable g ∈ [0, 1] that determines

if α should be shifted or not. E is learned to extract informa-

tion to be written from the hidden state. Finally, write and

read operations softly access the memory location specified

by α similar to other neural memory modules [10]. Using

this shift-based memory module allows the model to not be

bounded by the block M’s size while enforcing local move-

ments. Therefore, we can use any arbitrarily sized block at

test time. Figure 4 demonstrates the learned memory shift.

Since the model is free to assign actions to different kernels,

the learned shift does not always correspond to how humans

would do. We can see that Right is assigned as a left-shift,

and hence Left is assigned as a right-shift. Using the gating

variable g, it also learns not to shift when an invalid action,

such as going through a wall, is given.

Enforcing long-term consistency in our case refers to re-

membering generated static elements (e.g. background) and

retrieving them appropriately when needed. Accordingly,

the benefit of using the memory module would come from

storing static information inside it. Along with a novel cy-

cle loss (Section 3.4.2), we introduce inductive bias in the

architecture of the rendering engine (Section 3.3) to encour-

age the disentanglement of static and dynamic elements.

3.3. Rendering Engine

The (neural) rendering engine is responsible for render-

ing the simulated image xt+1 given the state ht. It can be

simply implemented with standard transposed convolution

layers. However, we also introduce a specialized render-

ing engine architecture (Figure 6) for ensuring long-term
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Figure 6. Rendering engine for disentangling static and dynamic compo-

nents. See Sec 3.3 for details.

consistency by learning to produce disentangled scenes. In

Section 4, we compare the benefits of each architecture.

The specialized rendering engine takes a list of vectors

c = {c1, ..., cK} as input. In this work, we let K = 2,

and c = {mt, ht}. Each vector ck corresponds to one type

of entity and goes through the following three stages (see

Fig 6). First, ck is fed into convolutional networks to pro-

duce an attribute map Ak ∈ R
H1×H1×D1 and object map

Ok ∈ R
H1×H1×1. It is also fed into a linear layer to get

the type vector vk ∈ R
D1 for the k-th component. O for

all components are concatenated together and fed through

either a sigmoid to ensure 0 ≤ Ok[x][y] ≤ 1 or a spa-

tial softmax function so that
∑K

k=1
Ok[x][y] = 1 for all

x, y. The resulting object map is multiplied by the type

vector vk in every location and fed into a convnet to pro-

duce Rk ∈ R
H2×H2×D2 . This is a rough sketch of the lo-

cations where k-th type objects are placed. However, each

object could have different attributes such as different style

or color. Hence, it goes through the attribute stage where

the tensor is transformed by a SPADE layer [27, 14] with

the masked attribute map Ok ⊙ Ak given as the contex-

tual information. It is further fed through a few transposed

convolution layers, and finally goes through an attention

process similar to the rough sketch stage where concate-

nated components goes through a spatial softmax to get fine

masks. The intuition is that after drawing individual ob-

jects, it needs to decide the “depth” ordering of the objects

to be drawn in order to account for occlusions. Let us de-

note the fine mask as ηk and the final tensor as Xk. Af-

ter this process, the final image is obtained by summing up

all components, x =
∑K

k=1
ηk ⊙ Xk. Therefore, the ar-

chitecture of our neural rendering engine encourages it to

extract different information from the memory vector and

the hidden state with the help of temporal cycle loss (Sec-

tion 3.4.2). We also introduce a version with more capacity

that can produce higher quality images in Section A.5 of the

supplementary materials.
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3.4. Training GameGAN

Adversarial training has been successfully employed for

image and video synthesis tasks. GameGAN leverages ad-

versarial training to learn environment dynamics and to pro-

duce realistic temporally coherent simulations. For certain

cases where long-term consistency is required, we propose

temporal cycle loss that disentangles static and dynamic

components to learn to remember what it has generated.

3.4.1 Adversarial Losses

There are three main components: single image discrimina-

tor, action discriminator, and temporal discriminator.

Single image discriminator: To ensure each gener-

ated frame is realistic, the single image discriminator and

GameGAN simulator play an adversarial game.

Action-conditioned discriminator: GameGAN has

to reflect the actions taken by the agent faithfully. We

give three pairs to the action-conditioned discriminator:

(xt, xt+1, at), (xt, xt+1, āt) and (x̂t, x̂t+1, at). xt denotes

the real image, x̂t the generated image, and āt ∈ A a sam-

pled negative action āt 6= at. The job of the discriminator

is to judge if two frames are consistent with respect to the

action. Therefore, to fool the discriminator, GameGAN has

to produce realistic future frame that reflects the action.

Temporal discriminator: Different entities in an envi-

ronment can exhibit different behaviors, and also appear or

disappear in partially observed states. To simulate a tempo-

rally consistent environment, one has to take past informa-

tion into account when generating the next states. There-

fore, we employ a temporal discriminator that is imple-

mented as 3D convolution networks. It takes several frames

as input and decides if they are a real or generated sequence.

Since conditional GAN architectures [22] are known for

learning simplified distributions ignoring the latent code

[34, 30], we add information regularization [4] that max-

imizes the mutual information I(zt, φ(xt, xt+1)) between

the latent code zt and the pair (xt, xt+1). To help the action-

conditioned discriminator, we add a term that minimizes the

cross entropy loss between at and apredt = ψ(xt+1, xt).
Both φ and ψ are MLP that share layers with the action-

conditioned discriminator except for the last layer. Lastly,

we found adding a small reconstruction loss in image and

feature spaces helps stabilize the training (for feature space,

we reduce the distance between the generated and real

frame’s single image discriminator features). A detailed de-

scriptions are provided in the supplementary material.

3.4.2 Cycle Loss

RNN based generators are capable of keeping track of the

recent past to generate coherent frames. However, it quickly

forgets what happened in the distant past since it is encour-

aged simply to produce realistic next observation. To en-

sure long-term consistency of static elements, we leverage

Figure 7. Samples from datasets studied in this work. For Pacman and

Pacman-Maze, training data consists of partially observed states, shown in

the red box. Left: Pacman, Center: Pacman-Maze, Right: VizDoom

the memory module and the rendering engine to disentangle

static elements from dynamic elements.

After running through some time steps T , the memory

block M is populated with information from the dynamics

engine. Using the memory location history αt, we can re-

trieve the memory vector m̂t which could be different from

mt if the content at the location αt has been modified. Now,

c = {m̂t,0} is passed to the rendering engine to produce

Xm̂t where 0 is the zero vector andXm̂t is the output com-

ponent corresponding to m̂t. We use the following loss:

Lcycle =

T∑

t

||Xmt −Xm̂t || (10)

As dynamic elements (e.g. moving ghosts in Pacman) do

not stay the same across time, the engine is encouraged to

put static elements in the memory vector to reduce Lcycle.

Therefore, long-term consistency is achieved.

To prevent the trivial solution where the model tries to ig-

nore the memory component, we use a regularizer that min-

imizes the sum of all locations in the fine mask min
∑
ηh

from the hidden state vector so thatXmt has to contain con-

tent. Another trivial solution is if shift kernels for all actions

are learned to never be in the opposite direction of each

other. In this case, m̂t and mt would always be the same

because the same memory location will never be revisited.

Therefore, we put a constraint that for actions awith a nega-

tive counterpart â (e.g. Up and Down), â’s shift kernel K(â)
is equal to horizontally and vertically flipped K(a). Since

most simulators that require long-term consistency involves

navigation tasks, it is trivial to find such counterparts.

3.4.3 Training Scheme

GameGAN is trained end-to-end. We employ a warm-up

phase where real frames are fed into the dynamics engine

for the first few epochs, and slowly reduce the number of

real frames to 1 (the initial frame x0 is always given). We

use 18 and 32 frames for training GameGAN on Pacman

and Vizddom environments, respectively.

4. Experiments

We present both qualitative and quantitative experi-

ments. We mainly consider four models: 1) Action-LSTM:
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Figure 8. Rollout of models from the same initial screen. Action-LSTM trained with reconstruction loss produces frames without refined

details (e.g. foods). World Model has difficulty keeping temporal consistency, resulting in occasional significant discontinuities. GameGAN

can produce consistent simulation.

model trained only with reconstruction loss which is in

essence similar to [5], 2) World Model [11], 3) GameGAN-

M: our model without the memory module and with the

simple rendering engine, and 4) GameGAN: the full model

with the memory module and the rendering engine for dis-

entanglement. Experiments are conducted on the following

three datasets (Figure 7):

Pacman: We use a modified version of the Pacman

game3 in which the Pacman agent observes an egocen-

tric 7x7 grid from the full 14x14 environment. The en-

vironment is randomly generated for each episode. This

is an ideal environment to test the quality of a simulator

since it has both deterministic (e.g., game rules & view-

point shift) and highly stochastic components (e.g., game

layout of foods and walls; game dynamics with moving

ghosts). Images in the episodes are 84x84 and the action

space is A = {left, right, up, down, stay}. 45K episodes

of length greater than or equal to 18 are extracted and 40K

are used for training. Training data is generated by using

a trained DQN [25] agent that observes the full environ-

ment with high entropy to allow exploring diverse action

sequences. Each episode consists of a sequence of 7x7

Pacman-centered grids along with actions.

Pacman-Maze: This game is similar to Pacman ex-

cept that it does not have ghosts, and its walls are randomly

generated from a maze-generation algorithm, thus are struc-

tured better. The same number of data is used as Pacman.

Vizdoom: We follow the experiment set-up of Ha and

Schmidhuber [11] that uses takecover mode of the Viz-

Doom platform [17]. Training data consists of 10k episodes

extracted with random policy. Images in the episodes are

64x64 and the action space is A = {left, right, stay}

4.1. Qualitative Evaluation

Figure 8 shows rollouts of different models on the Pac-

man dataset. Action-LSTM, which is trained only with re-

3http://ai.berkeley.edu/project overview.html

construction loss, produces blurry images as it fails to cap-

ture the multi-modal future distribution, and the errors ac-

cumulate quickly. World model [11] generates realistic im-

ages for VizDoom, but it has trouble simulating the highly

stochastic Pacman environment. In particular, it sometimes

suffers from large unexpected discontinuities (e.g. t = 0 to

t = 1). On the other hand, GameGAN produces temporally

consistent and realistic sharp images. GameGAN consists

of only a few convolution layers to roughly match the num-

ber of parameters of World Model. We also provide a ver-

sion of GameGAN that can produce higher quality images

in the supplementary materials Section A.5.

Disentangling static & dynamic elements: Our

GameGAN with the memory module is trained to disentan-

gle static elements from dynamic elements. Figure 5 shows

how walls from the Pacman environment and the room from

the VizDoom environment are separated from dynamic ob-

jects such as ghosts and fireballs. With this, we can make

interesting environments in which each element is swapped

with other objects. Instead of the depressing room of Viz-

Doom, enemies can be placed in the user’s favorite place,

or alternatively have Mario run around the room (Figure 9).

We can swap the background without having to modify the

code of the original games. Our approach treats games as a

black box and learns to reproduce the game, allowing us to

easily modify it. Disentangled models also open up many

promising future directions that are not possible with ex-

isting models. One interesting direction would be learning

multiple disentangled models and swapping certain com-

ponents. As the dynamics engine learns the rules of an

environment and the rendering engine learns to render im-

ages, simply learning a linear transformation from the hid-

den state of one model to make use of the rendering engine

of the other could work.

Pacman-Maze generation: GameGAN on the

Pacman-Maze produces a partial grid at each time step

which can be connected to generate the full maze. It can
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Figure 9. GameGAN on Pacman and VizDoom with swapping background/foreground with random images.

Figure 10. Generated mazes by traversing with a pacman agent on

GameGAN model. Most mazes are realistic. Right shows a failure

case that does not close the loop correctly.

generate realistic walls, and as the environment is suffi-

ciently small, GameGAN also learns the rough size of the

map and correctly draws the rectangular boundary in most

cases. One failure case is shown in the bottom right corner

of Figure 10, that fails to close the loop.

4.2. Task 1: Training an RL Agent

Quantitatively measuring environment quality is chal-

lenging as the future is multi-modal, and the ground truth

future does not exist. One way of measuring it is through

learning a reinforcement learning agent inside the simulated

environment and testing the trained agent in the real envi-

ronment. The simulated environment should be sufficiently

close to the real one to do well in the real environment. It

has to learn the dynamics, rules, and stochasticity present

in the real environment. The agent from the better simula-

tor that closely resembles the real environment should score

higher. We note that this is closely related to model-based

RL. Since GameGAN do not internally have a mechanism

for denoting the game score, we train an external classifier.

The classifier is given N previous image frames and the

current action to produce the output (e.g. Win/Lose).

Pacman: For this task, the Pacman agent has to achieve

a high score by eating foods (+0.5 reward) and capturing

the flag (+1 reward). It is given -1 reward when eaten by

a ghost, or the maximum number of steps (40) are used.

Note that this is a challenging partially-observed reinforce-

ment learning task where the agent observes 7x7 grids. The

agents are trained with A3C [24] with an LSTM component.

VizDoom: We use the Covariance Matrix Adaptation

Evolution Strategy [12] to train RL agents. Following [11],

we use the same setting with corresponding simulators.

Pacman VizDoom

Random Policy -0.20 ± 0.78 210 ± 108

Action-LSTM[5] -0.09 ± 0.87 280 ± 104

WorldModel[11] 1.24 ± 1.82 1092 ± 556

GameGAN −M 1.99 ± 2.23 724 ± 468

GameGAN 1.13 ± 1.56 765 ± 482

Table 1. Numbers are reported as mean scores ± standard de-

viation. Higher is better. For Pacman, an agent trained in real

environment achieves 3.02 ± 2.64 which can be regarded as the

upper bound. VizDoom is considered solved when a score of 750

is achieved.

Table 1 shows the results. For all experiments, scores

are calculated over 100 test environments, and we report the

mean scores along with standard deviation. Agents trained

in Action-LSTM simulator performs similar to the agents

with random policy, indicating the simulations are far from

the real ones. On Pacman, GameGAN-M shows the best

performance while GameGAN and WorldModel have sim-

ilar scores. VizDoom is considered solved when a score

of 750 is achieved, and GameGAN solves the game. Note

that World Model achieves a higher score, but GameGAN

is the first work trained with a GAN framework that solves

the game. Moreover, GameGAN can be trained end-to-

end, unlike World Model that employs sequential training

for stability. One interesting observation is that GameGAN

shows lower performance than GameGAN-M on the Pac-

man environment. This is due to having additional com-

plexity in training the model where the environments do not

need long-term consistency for higher scores. We found

that optimizing the GAN objective while training the mem-

ory module was harder, and this attributes to RL agents

exploiting the imperfections of the environments to find a

way to cheat. In this case, we found that GameGAN some-
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Figure 11. Come-back-home task rollouts. The forward rows show the path going from the initial position to the goal position. The

backward rows show the path coming back to the initial position. Only the full GameGAN can successfully recover the initial position.

Figure 12. Box plot for Come-back-home metric. Lower is better.

As a reference, a pair of randomly selected frames from the same

episode gives a score of 1.17 ± 0.56

times failed to prevent agents from walking through the

walls while GameGAN-M was nearly perfect. This led to

RL agents discovering a policy that liked to hit the walls,

and in the real environment, this often leads to premature

death. In the next section, we show how having long-term

consistency can help in certain scenarios.

4.3. Task 2: Comebackhome

This task evaluates the long-term consistency of simula-

tors in the Pacman-Maze environment. The Pacman starts

at a random initial position (xA, yA) with state s. It is

given K random actions (a1, ..., aK), ending up in posi-

tion (xB , yB). Using the reverse actions (âK , ..., â1)(e.g.

ak = Down, âk = Up) , it comes back to the initial po-

sition (xA, yA), resulting in state ŝ. Now, we can measure

the distance d between ŝ and s to evaluate long-term con-

sistency (d = 0 for the real environment). As elements other

than the wall (e.g. food) could change, we only compare the

walls of ŝ and s. Hence, s is an 84x84 binary image whose

pixel is 1 if the pixel is blue. We define the metric d as

d =
sum(abs(s− ŝ))

sum(s) + 1
(11)

where sum() counts the number of 1s. Therefore, d mea-

sures the ratio of the number of pixels changed to the initial

number of pixels. Figure 12 shows the results. We again ob-

serve occasional large discontinuities in World Model that

hurts the performance a lot. When K is small, the differ-

ences in performance are relatively small. This is because

other models also have short-term consistency realized

through RNNs. However, as K becomes larger, GameGAN

with memory module steadily outperforms other models,

and the gaps become larger, indicating GameGAN can

make efficient use of the memory module. Figure 11 shows

the rollouts of different models in the Pacman-Maze envi-

ronment. As it can be seen, models without the memory

module do not remember what it has generated before. This

shows GameGAN opens up promising directions for not

only game simulators, but as a general environment sim-

ulator that could mimic the real world.

5. Conclusion

We propose GameGAN which leverages adversarial

training to learn to simulate games. GameGAN is trained

by observing screenplay along with user’s actions and does

not require access to the game’s logic or engine. GameGAN

features a new memory module to ensure long-term consis-

tency and is trained to separate static and dynamic elements.

Thorough ablation studies showcase the modeling power of

GameGAN . In future works, we aim to extend our model

to capture more complex real-world environments.
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[5] Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and

Shakir Mohamed. Recurrent environment simulators. arXiv

preprint arXiv:1704.02254, 2017. 2, 3, 6, 7

[6] Aidan Clark, Jeff Donahue, and Karen Simonyan. Effi-

cient video generation on complex datasets. arXiv preprint

arXiv:1907.06571, 2019. 2

[7] Emily Denton and Rob Fergus. Stochastic video generation

with a learned prior. arXiv preprint arXiv:1802.07687, 2018.

2

[8] Emily L Denton and vighnesh Birodkar. Unsupervised learn-

ing of disentangled representations from video. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 30, pages 4414–4423. Curran

Associates, Inc., 2017. 2

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 2

[10] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing

machines. arXiv preprint arXiv:1410.5401, 2014. 3, 4

[11] David Ha and Jürgen Schmidhuber. Recurrent world models

facilitate policy evolution. In Advances in Neural Informa-

tion Processing Systems, pages 2450–2462, 2018. 2, 3, 6,

7

[12] Nikolaus Hansen and Andreas Ostermeier. Completely de-

randomized self-adaptation in evolution strategies. Evolu-

tionary computation, 9(2):159–195, 2001. 7

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Comput., 9(8):1735–1780, Nov. 1997. 3

[14] Minyoung Huh, Shao-Hua Sun, and Ning Zhang. Feedback

adversarial learning: Spatial feedback for improving genera-

tive adversarial networks. In IEEE Conference on Computer

Vision and Pattern Recognition, 2019. 4

[15] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.

Efros. Image-to-image translation with conditional adver-

sarial networks. CoRR, abs/1611.07004, 2016. 2

[16] Ajay Jain, Sergio Casas, Renjie Liao, Yuwen Xiong, Song

Feng, Sean Segal, and Raquel Urtasun. Discrete residual

flow for probabilistic pedestrian behavior prediction. arXiv

preprint arXiv:1910.08041, 2019. 1

[17] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub
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