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Abstract

In most real-world scenarios, labeled training datasets
are highly class-imbalanced, where deep neural networks
suffer from generalizing to a balanced testing criterion. In
this paper, we explore a novel yet simple way to alleviate
this issue by augmenting less-frequent classes via translat-
ing samples (e.g., images) from more-frequent classes. This
simple approach enables a classifier to learn more gener-
alizable features of minority classes, by transferring and
leveraging the diversity of the majority information. Our ex-
perimental results on a variety of class-imbalanced datasets
show that the proposed method improves the generalization
on minority classes significantly compared to other existing
re-sampling or re-weighting methods. The performance of
our method even surpasses those of previous state-of-the-
art methods for the imbalanced classification.

1. Introduction

The recent success of deep neural networks (DNNs)
across various computer vision problems [18, 37, 17, 36]
has emerged due to the access to large-scale, annotated
datasets collected from our visual world [39, 29, 1]. Despite
having several well-organized datasets in research, e.g., CI-
FAR [25] and ILSVRC [39], real-world datasets usually
suffer from its expensive data acquisition process and the la-
beling cost. This commonly leads a dataset to have a “long-
tailed” label distribution [33, 42]. Such class-imbalanced
datasets make the standard training of DNN harder to gener-
alize [43, 38, 9], particularly if one requires a class-balanced
performance metric for a practical reason.

A natural approach in an attempt to bypass this class-
imbalance problem is to re-balance the training objective
artificially with respect to the class-wise sample sizes. Two
of such methods are representative: (a) re-weighting the
given loss function by a factor inversely proportional to
the sample frequency in a class-wise manner [20, 24], and
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Figure 1. An overview of the proposed method, called Major-to-
minor Translation (M2m). M2m is based on the over-sampling
method, and attempts to replace the over-sampled (duplicated) mi-
nority samples with synthetic ones translated from other majority
samples. The more details are presented in Section 2.

(b) re-sampling the given dataset so that the expected sam-
pling distribution during training can be balanced, either
by “over-sampling” the minority classes [22, 8] or “under-
sampling” the majority classes [16].

However, naively re-balancing the objective usually re-
sults in harsh over-fitting to minority classes, since they
cannot handle the lack of minority information in essence.
Several attempts have been made to alleviate this issue:
Cui et al. [7] proposed the concept of “effective number” of
samples as alternative weights in the re-weighting method.
Cao et al. [4] found that both re-weighting and re-sampling
can be much more effective when applied at the later stage
of training, in case of neural networks. In the context of re-
sampling, SMOTE [5] is a widely-used variant of the over-
sampling method that mitigates the over-fitting via data aug-
mentation, and several variants of SMOTE have been sug-
gested accordingly [14, 15, 35]. A major drawback of these
SMOTE-based methods is that they usually perform poorly
when there exist only a few samples in the minority classes,
i.e., under regime of “extreme” imbalance, because they
synthesize a new minority sample only using the existing
samples of the same class.

Another line of research attempts to prevent the over-
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fitting with a new regularization scheme that minority
classes are more penalized, where the margin-based ap-
proaches generally suit well as a form of data-dependent
regularizer [45, 9, 23, 4]. There have also been works that
view the class-imbalance problem in the framework of ac-
tive learning [10, 2] or meta-learning [43, 38, 40, 31].

Contribution. In this paper, we revisit the over-sampling
framework and propose a new way of generating minor-
ity samples, coined Major-to-minor Translation (M2m). In
contrast to other over-sampling methods, e.g., SMOTE that
applies data augmentation to minority samples to mitigate
the over-fitting issue, we attempt to generate minority sam-
ples in a completely different way. The proposed M2m
does not use the existing minority samples for the over-
sampling. Instead, it use the majority (non-minority) sam-
ples and translate them to the target minority class using
another classifier independently trained under the given im-
balanced dataset. Our key finding is that, this method turns
out to be very effective on learning more generalizable fea-
tures in imbalanced learning: it does not overly use the mi-
nority samples, and leverages the richer information of the
majority samples simultaneously.

Our minority over-sampling method consists of three
components to improve the sampling quality. First, we
propose an optimization objective for generating synthetic
samples: a majority sample can be translated into a syn-
thetic minority sample via optimizing it, while not affecting
the performance of the majority class (even the sample is
labeled to the minority class). Second, we design a sample
rejection criterion based on the observation that generation
from more majority class is more preferable. Third, based
on the proposed rejection criterion, we suggest an optimal
distribution for sampling a majority seed to be translated in
our generation process.

We evaluate our method on various imbalanced clas-
sification problems, covering synthetically imbalanced
datasets from CIFAR-10/100 [25] and ImageNet [31], and
real-world imbalanced datasets including CelebA [30],
SUN397 [44], Twitter [11] and Reuters [27] datasets. De-
spite its simplicity, our method significantly improves the
balanced test accuracy compared to previous re-sampling or
re-weighting methods across all the tested datasets. Our re-
sults even surpass those from LDAM [4], a current state-of-
art margin-based method. Moreover, we found our method
is particularly effective under “extreme” imbalance: in the
case of Reuters of the most severe imbalance, we could im-
prove the balanced accuracy by (relatively) 17.1% and 9.2%
upon standard training and LDAM, respectively.

2. M2m: Major-to-minor translation

We consider a classification problem with K classes
from a dataset D = {(z;,y;)}}*.;, where z € R and y €

{1,---, K} denote an input and the corresponding class la-
bel, respectively. Let f : R? — RX be a classifier designed
to output K logits, which we want to train against the class-
imbalanced dataset D. We let N := ), N denote the
total sample size of D, where Ny, is that of class k. With-
out loss of generality, we assume N; > Ny > --- > Ng.
In the class-imbalanced classification, the class-conditional
data distributions Py, := p(x | y = k) are assumed to be in-
variant across training and test time, but they have different
prior distributions, say Pirain(y) and prest (), respectively:
Prrain(y) is highly imbalanced while pyest () is usually as-
sumed to be the uniform distribution. The primary goal of
the class-imbalanced learning is to train f from D ~ Pyrain
that generalizes well under Pyosy compared to the standard
training, e.g., empirical risk minimization (ERM) with an
appropriate loss function £( f):

mfin E(z,y)ND [L(f;z,v)]. M

Our method is primarily based on over-sampling technique
[22], a traditional and principled way to balance the class-
imbalanced training objective via sampling minority classes
more frequently. In other words, we assume a “virtually
balanced” training dataset Dy, made from D such that the
class k has N; — N, more samples, and the classifier f is
trained on Dy, instead of D.

A key challenge in over-sampling is to prevent over-
fitting on minority classes, as the objective modified is es-
sentially much biased to a few samples of minority classes.
In contrast to most prior works that focus on performing
data augmentation directly on minority samples to mitigate
this issue [5, 31, 35], we attempt to augment minority sam-
ples in a completely different way: our method does not use
the minority samples for the augmentation, but the majority
samples.

2.1. Overview of M2m

Consider a scenario of training a neural network f on a
class-imbalanced dataset D. The proposed Major-to-minor
Translation (M2m) attempts to construct a new balanced
dataset Dy, for training f, by adding synthetic minority
samples that are translated from other samples of (rela-
tively) majority classes. There could be multiple ways to
perform this “Major-to-minor” translation. In particular, a
recent progress on cross-domain generation via generative
adversarial networks [46, 6, 34] has made this more attrac-
tive, provided that much computational cost for additional
training is acceptable. In this paper, on the other hand, we
explore a much simpler and efficient approach: we translate
a majority sample by optimizing it to maximize the target
minority confidence of another baseline classifier g. Here,
we assume the classifier g is a pre-trained neural network
on D so that performs well (at least) on the training imbal-
anced dataset, e.g., via standard ERM training. This implies
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Figure 2. An illustration of M2m generation. A majority seed
X is translated to a synthetic minority ™ based on the decision
boundary of g. By incorporating =™, f learns an extended decision
boundary of the target minority class.

that, g may be over-fitted to minority classes and does not
necessarily generalize well under the balanced test dataset.
We found this mild assumption on g is fairly enough to cap-
ture the information in the small minority classes and could
generate surprisingly useful synthetic minority samples by
utilizing the diversity of majority samples. On the other
hand, f is the target network that we aim to train to perform
well on the balanced testing criterion.

During the training of f, M2m utilizes the given classi-
fier g to generate new minority samples, and the generated
samples are added to D to construct Dy,; on the fly. To ob-
tain a single synthetic minority * of class k, our method
solves an optimization problem starting from another train-
ing sample x of a (relatively) major class ko < k:

¥ =argmin L(g;z, k) + A+ fr, (), (2)

T:=x0+3

where £ denotes the cross entropy loss and A > 0 is a hy-
perparameter. In other words, our method “translates” a ma-
jority seed xg into z*, so that g confidently classifies it as
minority class k. The generated sample x* is then labeled
to class k and fed into f for training to perform better on
Dra1 and match the prediction of f to that of g. We do not
force f in (2) to classify x* to class k as well, but we restrict
that f to have lower confidence on the original class kg by
imposing a regularization term A - fi, (). Here, the regu-
larization term A - fi, () on the logit reduces the risk when
x* is labeled to k, whereas it may contain significant fea-
tures of z( in the viewpoint of f. Intuitively, one can regard
the overall process as teaching f to learn novel minority
features which g considers it significant, i.e., via extension
of the decision boundary from the knowledge g. Figure 2
illustrates the basic idea of our method.

2.2. Underlying intuition on M2m

One may understand our method better by considering
the case when g is an “oracle” (possibly the Bayes optimal)
classifier, e.g., (roughly) humans. Here, solving (2) essen-
tially requires a transition of the original input x( of class

ko with 100% confidence to another class k with respect to
g: this would let g “erase and add” the features related to
the class ko and k, respectively. Hence, in this case, our
process corresponds to collecting more in-distribution mi-
nority data, which may be argued as the best way one could
do to resolve the class-imbalance problem.

An intriguing point here is, however, that neural network
models are very far from this ideal behavior, even when they
achieve super-human performance. Instead, when f and g
are neural networks, (2) often finds z* that is very close to
x, i.e., similar to the phenomenon of adversarial examples
[41, 12]. Nevertheless, we found our method still effec-
tively improves the generalization of minority classes even
in such cases. This observation is, in some sense, aligned to
arecent claim that adversarial perturbation is not a “bug” in
neural networks, but a “generalizable” feature [21].

In this paper, we hypothesize this counter-intuitive effec-
tiveness of our method comes from mainly in two aspects:
(a) the sample diversity in the majority dataset is utilized
to prevent over-fitting on the minority classes, and (b) an-
other classifier g is enough to capture the information in the
small minority dataset. In this respect, adversarial exam-
ples from a majority to a minority can be regarded as one
of natural ways to leverage the diverse features in majority
examples useful to improve the generalization of the minor-
ity classes. It is also notable that our over-sampling method
does not completely replace the existing dataset. Instead,
our method only augment the minority classes, and our find-
ing is that this augmentation turns out to be very effective
than naively duplicating minority examples as done by the
standard over-sampling. We further discuss a more detailed
analysis to verify these claims, by performing an extensive
ablation study in Section 3.4.

2.3. Detailed components of M2m

Sample rejection criterion. An important factor that af-
fects the quality of the synthetic minority samples in our
method is the quality of g, especially for g,: a better gz,
would more effectively “erase” important features of xg
during the translation, thereby making the resulting minor-
ity samples more reliable. In practice, however, g is not that
perfect: the synthetic samples still contain some discrimi-
native features of the original class kg, in which it may even
harm the performance of f. This risk of “unreliable” gener-
ation becomes more harsh when Ny, is small, as we assume
that g is also trained on the given imbalanced dataset D.

To alleviate this risk, we consider a simple criterion for
rejecting each of the synthetic samples randomly with prob-
ability depending on kg and k:

P(Reject z*|kg, k) := B(N’%*N’“)i 3)

where (-)* := max(-,0), and 3 € [0, 1) is a hyperparam-
eter which controls the reliability of g: the smaller /3, the
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Algorithm 1 Over-sampling via M2m

Input: A dataset D = {(z;,y;)}}Y, with N = Zk 1 Ni.
A classifier f. A pre-trained classifier g. \,v,n, T > 0
and 5 € [0,1).

Output: A class-balanced dataset Dy

1: Initialize Dyay < D

2: for k =2to K do

3 A+ Ny — N

4. fori=1to A do

5: ko ~ Q(ko|k) oc 1 — Bk =Ni)™

6 x < A random sample of class kg in D
7 Initialize z* < xq + d with a small noise &
8 fort =1to T do

9: 5<—VI*[ (,x k) 4+ X fi, ()]
10: ¥ —ax*—n- B H
11: end for
12: R ~ Bernoulli(3(Veo—Ni) ™)
13: if £L(g;2*,k) > vor R =1 then
14: x* <— A random sample of class k in D
15: end if

16: Dbal < Dbal U {(fL*, k)}
17:  end for
18: end for

more reliable g. For example, if 3 = 0.999, the synthetic
samples are accepted with probability more than 99% if
N, — Ny > 4602. When 5 = 0.9999, on the other hand, it
requires Ny, — N, > 46049 to achieve the same goal. This
exponential modeling of the rejection probability is moti-
vated by the effective number of samples [7], a heuristic re-
cently proposed to model the observation that the impact of
adding a single data point exponentially decreases at larger
datasets. When a synthetic sample is rejected, we simply
replace it by an existing minority sample from the original
dataset D to obtain the balanced dataset Dy, .

Optimal seed sampling. Another design choice of our
method is how to choose a (majority) seed sample xo with
class kg for each generation in (2). Based on the rejection
criterion proposed in (3), we design a sampling distribution
Q(ko|k) for selecting the class kg of initial point 2 given
target class k, by considering two aspects: (a) ( maximizes
the acceptance probability Ppccept(kolk) under our rejec-
tion criterion, and (b) @) chooses diverse classes as much as
possible, i.e., the entropy H (Q) is maximized. Namely, we
are interested in the following optimization:

max | Eg[log Paccept] + H(Q) |- “)
Q| Y—— —~—
(a) (b)

It is elementary to check that ) = Pjccept is the solution of
the above optimization. Hence, due to the rejection proba-

bility (3), we choose:
Qkolk) oc 1 — BNko=NOT 5)

Once ky is selected, a sample x is sampled uniformly at
random among samples having the class ky. The overall
procedure of M2m is summarized in Algorithm 1.

Practical implementation via re-sampling. In practice
of training a neural network f, e.g., stochastic gradient de-
scent (SGD) with a mini-batch sampling, M2m is imple-
mented using a batch-wise re-sampling. More precisely, in
order to simulate the generation of N; — N} samples for
any k =1,2,--- | K, we perform the generation with prob-

171\,”1

ability = 1— N,, /Ny, for all ¢ in a given class-

balanced mini-batch B = {(z;,;)}™,." For a single gen-
eration at index 4, we first sample ko ~ Q(koly;) following
(5) until kg € {y;}/,, and select a seed z of class kg ran-
domly inside . Then, we solve the optimization (2) from
x( toward class y; via gradient descent for a fixed number
of iterations 71" with a step size 1. We accept the result sam-
ple x* only if £L(g;2z*,y;) is less than v > 0 for stability.
Finally, if accepted, we replace (x;,y;) in B by (z*,y;).

3. Experiments

We evaluate our method on various class-imbalanced
classification tasks: synthetically-imbalanced variants of
CIFAR-10/100 [25], ImageNet-LT?> [31], CelebA [30],
SUN397 [44], Twitter [1 1], and Reuters [27] datasets.> Fig-
ure 3 illustrates the class-wise sample distributions for the
datasets considered in our experiments. The more details on
the tested datasets are given in the supplementary material.
To evaluate the classification performance of the models on
the balanced test distribution, we mainly report two pop-
ular metrics: the balanced accuracy (bACC) [20, 43] and
the geometric mean scores (GM) [26, 3], which are defined
by the arithmetic and geometric mean over class-wise sen-
sitivity (i.e., recall), respectively. We remark that bACC is
essentially equivalent to the standard accuracy metric for
balanced datasets. All the values and error bars in this sec-
tion are mean and standard deviation across three random
trials, respectively. Overall, our results clearly demonstrate
that minority synthesis via translating from majority consis-
tently improves the efficiency of over-sampling, in terms of
the significant improvement of the generalization in minor-
ity classes compared to other re-sampling baselines, across
all the tested datasets. We also perform an ablation study to
verify the effectiveness of our main ideas.

Obtaining such a class-balanced mini-batch can be done via standard
re-sampling.

2Results on ImageNet-LT can be found in the supplementary material.

3Code is available at ht tps: //github.com/alinlab/M2m
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Figure 3. An illustration of histograms on training sample sizes for the datasets used in this paper.

3.1. Experimental setup

Baseline methods. We consider a wide range of baseline
methods, as listed in what follows: (a) empirical risk min-
imization (ERM): training on the cross-entropy loss with-
out any re-balancing; (b) re-sampling (RS) [22]: balanc-
ing the objective from different sampling probability for
each sample; (c) SMOTE [5]: a variant of re-sampling with
data augmentation; (d) re-weighting (RW) [20]: balanc-
ing the objective from different weights on the sample-wise
loss; (e) class-balanced re-weighting (CB-RW) [7]: a vari-
ant of re-weighting that uses the inverse of effective num-
ber for each class, defined as (1 — 8~*) /(1 — 3). Here, we
use 8 = 0.9999; (f) deferred re-sampling (DRS) [4] and
(g) deferred re-weighting (DRW) [4]: re-sampling and re-
weighting is deferred until the later stage of the training,
repsectively; (h) focal loss (Focal) [28]: the objective is up-
weighted for relatively hard examples to focus more on the
minority; (i) label-distribution-aware margin (LDAM) [4]:
the classifier is trained to impose larger margin to minority
classes. Roughly, the considered baselines can be classified
into three categories: (i) “re-sampling” based methods - (b,
¢, f), (ii) “re-weighting” based methods - (d, e, g), and (iii)
different loss functions - (a, A, i).

Training details. We train every model via stochastic gra-
dient descent (SGD) with momentum of weight 0.9. The
initial learning rate is set to 0.1, and “step decay” is per-
formed during training where the exact scheduling across
datasets is specified in the supplementary material. Al-
though it did not affect much to our method, we also adopt
the “linear warm-up” learning rate strategy [13] in the first 5
epochs, as the performance of some baseline methods, e.g.,
re-weighting, highly depends on the use of this strategy.
For CIFAR-10/100 and CelebA, we train ResNet-32 [19]
for 200 epochs with mini-batch size 128, and set a weight
decay of 2 x 10~%. In case of SUN397, the pre-activation
ResNet-18 model is used instead.* We ensure that all the
input images are normalized over the training dataset, and
have the size of 32x32 either by cropping or re-sizing, to

4We remark this model is larger than ResNet-32 used for CIFAR and
CelebA datasets, as it has roughly 4 x more channels.

be compatible with the given architectures. For Twitter and
Reuters datasets, we train 2-layer fully-connected networks
for 15 epochs with mini-batch size 64, and with a weight
decay of 5 x 107°.

Details on M2m. When our method is applied, we use
another classifier g of the same architecture to f that is pre-
trained on the given (imbalanced) dataset via standard ERM
training. Also, in a similar manner to that of [4], we use
the deferred scheduling to our method, i.e., we start to ap-
ply our method after the standard ERM training for a fixed
number of epochs. The actual scheduling across datasets
is specified in the supplementary material. We choose hy-
perparameters in our method from a fixed set of candidates,
namely 8 € {0.9,0.99,0.999}, A € {0.01,0.1,0.5} and
v € {0.9,0.99} based on the validation set. Unless other-
wise stated, we fix 7' = 10 and 7 = 0.1 when performing a
single generation step.

3.2. Long-tailed CIFAR datasets

We consider a “synthetically long-tailed” variant of CI-
FAR [25] datasets (CIFAR-LT-10/100) in order to evaluate
our method on various levels of imbalance, where the orig-
inal datasets are class-balanced. To simulate the long-tailed
distribution frequently appeared in imbalanced datasets, we
control the imbalance ratio p > 1 and artificially reduce
the training sample sizes of each class except the first class,
so that: (a) N1/Ng equals to p, and (b) Ny in between
N; and Np follows an exponential decay across k. We
keep the test dataset unchanged during this process, i.e., it
is still perfectly balanced, thereby measuring accuracy on
this dataset is equivalent to measuring the balanced accu-
racy. We consider two imbalance ratios p € {100, 10} each
for CIFAR-LT-10 and 100. See Figure 3(a) and 3(b) for a
detailed illustration of the sample distribution.

Table 1 summarizes the main results. In overall, the re-
sults show that our method consistently improves the bACC
by a large margin, across all the tested baselines. These re-
sults even surpass the “LDAM+DRW” baseline [4], which
is known to be the state-of-the-art to the best of our knowl-
edge. Moreover, we point out, in most cases, our method
could further improve bACC when applied upon the LDAM
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Dataset CIFAR-LT-10 CIFAR-LT-100

Imbalance ratio Ny /Ng =100 Ny /Ng =10 N;/Ng =100 N;/Ng =10

Loss  Re-balancing bACC GM bACC GM bACC GM bACC GM
ERM - 68. 71145 6641100  86.0x000 85.8+050 37.2x112 2151166 56.2x000 51.8+063
ERM RS 7045115 69.0x136  86.61x037  86.4x03  31.6x126 177113 54.8x047  50.3x06s
ERM SMOTE 7154057 70.2+005 85.7+025 85.5+026 34.0x033 19.6103 53.8+095 49.4+115
ERM RW 72.8+05  72.0+029 86.6x01s8 86.5:016 30.1xos0  17.6x0s5 56.0x03s  52.0x0s
ERM CB-RW 712414 70.0+128 86.8+t049 86.6+055 38.6+046 22.5+040 5591024  52.0x04
ERM DRS 7524026  73.9+017  87.1+02s 87.0+020 41.5+021 31.0+021  57.7+040 54.8+01
ERM M2m (Olll'S) 7831016  77.8+016 87.9+0u1 87.5+015 4291016 33.0:01 58.2+008  55.3+005
Focal - 68.3+110 65.5+1m 85.3 104 85.1+04 37.7+13 2214149 55.3+04 50.7+043
LDAM - 7281037 70.8+06s 86.24012  86.0xo1s 3951000 20.81040  54.7r016 441105
LDAM DRW T7. 14040  76.7+0s0 87.1+02s 86.9+028 42.1+000 29.2+027 56.9+015  50.4+02
LDAM M2m (Olll‘S) 791010 78.6+019 87.5+015 87.4+0v 43510 342:+060  57.6+014  51.8+03

Table 1. Comparison of classification performance on the four different types of long-tailed CIFAR-10/100 datasets.

Datasets CelebA-5 SUN397 Twitter Reuters

Imbalance ratio N;/Ng ~10.7 N;/Ng =~ 46.2 N /N ~ 147.9 N;/Ng =710

Loss  Re-balancing bACC GM bACC GM bACC GM bACC GM
ERM = 72.7i1.24 69.4i0,97 31.5:&0'07 20.2i0.74 74.7i0.46 65.2i],10 59.8il.]7 53.8il.75
ERM RS 72.5+00s 7041137 28409 19.8+100 75.8+030 T70.4+t1er 6331000 57.4x10
ERM SMOTE 7284101 70.7+08¢  23.7+000 14.8+039 75.8+038 69.5+030 62.5+130 56.8+16
ERM RW 74.5i0.50 73.4i(187 31.3i0.20 25.3i0.]2 76.2i0.95 73.5i]A46 65.0i1.08 59.2i1.84
ERM CB-RW 7421050  72.3x050 31.7+x013 25.1x0s1  77.5z040 73.6x079 64.8+045 57.6+16
ERM DRS 73106 7121000 30.7x03s 242040 77.8+0ss T4.3+148 624103 56.0x1:
ERM M2m (OUI’S) 75.61016  74.6:03¢ 3241017 2581029 782103  T48ios  66.3:r022 60.5:05
Focal - 72.7 1057 69.7+1.42 31.2+014 21.3+0m 7424235 T70.4 403 59.4 104 53.0+07
LDAM - 73.04114  68.0+219  30.2+10100 1441085  74.6+£040 66.11228 63.0+136  57.6+05
LDAM DRW 744105 723100 31.6+t0100 23.6:036 78.0+0sr 7441128 64.1:0m  56.9+108
LDAM M2m (OUI’S) 7591100 75.0x094 33.31020 24.9:+076 78.8+02 76.0+02 70.01068  63.9:040

Table 2. Comparison of classification performance on the four naturally imbalanced datasets: CelebA-5, SUN397, Twitter and Reuters. In
case of Reuters, 7 is adjusted to 1.0 when training M2m models regarding the numerical range of the dataset.

training scheme (see “LDAM+AMO”): this indicates that
the performance gain from our method is fairly orthogonal
to that of LDAM, i.e., the margin-based approach, which
suggests a new promising direction of improving the gener-
alization when a neural network model suffers from a prob-
lem of small data.

3.3. Real-world imbalanced datasets

We further verify the effectiveness of M2m on four
well-known, naturally imbalanced datasets: CelebA [30],
SUN397 [44], Twitter [1 1] and Reuters [27] datasets. More
detailed information for each of these datasets is demon-
strated in Figure 3 and the supplementary material.

CelebA is originally a multi-labeled dataset, and we port
this to a 5-way classification task by filtering only the sam-
ples with five non-overlapping labels about hair colors. We

also subsampled the full dataset by 1/20 while maintaining
the imbalance ratio p =~ 10.7, in attempt to make the task
more difficult. We denote the resulting dataset by CelebA-5.

Although Twitter and Reuters datasets are from natural
language processing, we also evaluate our method on them
to test the effectiveness under much extreme imbalance.
Here, we remark that the imbalance ratio N1 /Nj, of these
two datasets are about 150 and 710, respectively, which are
much higher than the other image datasets tested. In case
of Reuters, we exclude the classes having less than 5 sam-
ples in the test set for more reliable evaluation, resulting a
dataset of 36 classes.

Table 2 shows the results. Again, M2m performs best
amongst other baseline methods, demonstrating the effec-
tiveness of our method under natural imbalance, as well
as wider applicability of our algorithm beyond image clas-
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# Seeds bACC (A)

10 74.9+029 (-4.34%)
50 76.2+030 (-2.68%)
100 76.5+034 (-2.30%)
200 76.7 +051 (-2.04%)
500 77.4+03 (-1.15%)

Full 78.3-+0.16 (-0.00%)

GM (A)

73.7+033 (-5.27%)
75.3+029 (-3.21%)
75.6+041 (-2.83%)
75.9+059 (-2.44%)
76.8+031 (-1.29%)

77.8+0.16 (-0.00%)

Table 3. Comparison of classification performance across various
number of samples allowed to be a seed sample xo. A indicates
the relative gap from the original result presented in “Full”.

Methods Major (2) Minor (8) bACC GM

M2m (A = 0) 92.8+097 73.0x000  76.9+015  76.5+0n
M2m-Clean 7841245 72.7 +060 73.5+081 73.0x003
ERM-RS 9284150 64.8115 7044105 69.0+136
M2m-RS 92.91200 69.4 105 7411000  73.1x0m4
M2m-RS-Rand 93.6+2: 66.1+10 T1.6x036  70.3z0s0
M2m 93.3i(\ 85 74.610‘34 78.3iu 16 77.8i(i,|6

Table 4. Comparison of classification performance across various
types of ablations. We report the number of majority and minority
classes in the parentheses.

sification. Remarkably, the significant results on Reuters
dataset compared to the others suggest that our method can
be even more effective under a regime of “extremely” im-
balanced datasets, as Reuters has a much larger imbalance
ratio than the others.

3.4. Ablation study

We conduct an extensive ablation study to present a de-
tailed analysis of the proposed method. All the experi-
ments in this section are performed with ResNet-32 mod-
els, trained on CIFAR-LT-10 with the imbalance ratio p =
100. We additionally report the balanced test accuracy over
majority and minority classes, namely “Major” and “Mi-
nor” respectively, to further identify the relative impacts on
those two classes separately. We divide the whole classes
into “majority” and “minority” classes, so that the majority
classes consist of top-k frequent classes with respect to the
training set where k is the minimum number that ), N},
exceeds 50% of the total. We denote the minority classes as
the remaining classes. We provide more discussion in the
supplementary material.

Diversity on seed samples. In Section 2.1, we hypothe-
size that the effectiveness of our method mainly comes from
utilizing a much diversity in the majority samples to prevent
the over-fitting to the minority classes. To verify this, we
consider an ablation that the candidates of “seed samples”
are limited: more concretely, we control the size of seed
sample pools per each class to a fixed subset of the train-
ing set, made before training f. In Table 3, the accuracy of

minority classes is progressively increased as seed sample
pools become diverse. This clear trend indicates that M2m
makes use of the diversity of majority classes for preventing
the over-fitting to the minority classes.

The effect of \. In the optimization objective (2) for the
generation step in M2m, we impose a regularization term
A+ fr, (z) to improve the quality of synthetic samples: they
might confuse f if themselves still contain important fea-
tures of the original class in a viewpoint of f. To verify the
effect of this term, we consider an ablation that X is set to
0, and compare the performance to the original method. As
reported in Table 4, we found a certain level of degradation
in the balanced test accuracy at this ablation, which shows
the effectiveness of the proposed regularization.

Over-sampling from the scratch. As specified in Sec-
tion 3.1, we use the “deferred” scheduling to our method by
default, i.e., we start to apply our method after the standard
ERM training for a fixed number of epochs. We have also
considered a simple ablation where this strategy is not used,
namely “M2m-RS”. The results in Table 4 show that M2m-
RS still outperforms any other baselines (reported in Ta-
ble 1) except the ones that the deferred scheduling is used,
i.e., DRS and DRW, and this further verifies the effective-
ness of our method.

Labeling as a targeted class. Our primary assumption on
the pre-trained classifier g does not require that g itself to
generalize well on the minority classes (see Section 2.1).
This implies that solving (2) with g may not end up with
a synthetic sample that contains generalizable features of
the target minority class. To examine how much the gen-
erated samples would be correlated to the target classes,
we consider another ablation upon M2m-RS:’ instead of la-
beling the generated sample as the target class, the ablated
method “M2m-RS-Rand” labels it to a “random” class cho-
sen from all the possible classes (except for the target and
original classes). The results shown in Table 4 indicate that
M2m-RS-Rand generalizes much worse than its counterpart
M2m-RS on the minority classes, which indeed confirms
that the correctly-labeled synthetic samples could improve
the generalization of the minority classes.

Comparison of t-SNE embeddings. To further validate
the effectiveness of our method, we visualize and compare
the penultimate features learned from various training meth-
ods (including ours) using t-SNE [32]. Each embedding is
computed from a randomly-chosen subset of training sam-
ples in the CIFAR-LT-10 (p = 100), so that it consists of
50 samples per each class. Figure 4 illustrates the results,
and shows that the embedding from our training method
(M2m) is of much separable features compared to other
methods: one could successfully distinguish each cluster

SHere, we attempt to opt out any potential effect from using DRS, for
more clearer evaluation.
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Figure 4. Visualization of the penultimate features via t-SNE computed from a balanced subset of CIFAR-LT-10 with ResNet-32.

2500
B 2000F-=-==ofm-glmmmmiicp 2 | T =~ &£
[0
2
B 1500 -=—fmof e AT | Bgobe- oS
E
S 1000 |4 - ERM
o -+ ERM-SMOTE ~ ERM-SMOTE
/ LDAM-DRW 1000 LDAM-DRW
500/~ ------ -0~ ERM-M2m 00 === - ERM-M2m
1 -0- LDAM-M2m -~ LDAM-M2m
12 3 45 6 7 8 910 1 20 40 60 80 100
Class index Class index

(a) CIFAR-LT-10 (b) CIFAR-LT-100

Figure 5. Comparisons on cumulative number of false positive
samples across class indices (3, FP) on CIFAR-LT-10/100 test
set in ResNet-32. Each plot reaches the total number of mistakes,
i.e., the sum of off-diagonal entries in the confusion matrix.

under the M2m embedding (even though they are from mi-
nority classes), while others have some obscure region.

Comparison of cumulative false positive. In Figure 5,
we plot how the number of false positive (FP) samples in-
creases as summed over classes, namely > . FPy, from the
most frequent class to the least one. Here, FPj, indicates
the number of misclassified samples by predicting them to
class k in the test set. We compute each plot with the bal-
anced test sets of CIFAR-LT-10/100, thereby a well-trained
classifier would show a plot close to linear: it indicates the
classifier mistakes more evenly over the classes. Overall,
one could see that the curve made by our method consis-
tently below the others with much linearity. This implies
our method makes less false positives, and even better, they
are more uniformly distributed over the classes. This is a
desirable property in the context of imbalanced learning.

The use of adversarial examples. As mentioned in Sec-
tion 2.2, the generation under M2m often ends up with a
synthetic minority sample that is very close to the original
(before translation) as like the adversarial example. This in-
deed happens when f and g are neural networks as assumed
here, i.e., ResNet-32, as illustrated in Figure 6. To un-
derstand more on how such adversarial perturbations affect
our method, we consider a simple ablation, which we call
“M2m-Clean”: recall that our method synthesizes a minor-
ity sample * from a seed majority sample xq. This ablation

g(0) : “99% Do0g” m—— g(r*) :“99% Truck”

f(xo) : “99% Dog” f(x*) : “54% Bird”

Figure 6. An illustration of a synthetic minority sample by M2m,

where g is assumed to be ResNet-32 trained by standard ERM.
The noise image is amplified by 10 for better visibility.

uses the “clean” x instead of x* for over-sampling. Under
the identical training setup, we notice a significant reduction
in the balanced accuracy of M2m-Clean compared to the
original M2m (see Table 4). This observation reveals that
the adversarial perturbations ablated are extremely crucial
to make our method to work, regardless of a small noise.

4. Conclusion

We propose a new over-sampling method for imbalanced
classification, called Major-to-minor Translation (M2m).
We found the diversity in majority samples could much help
the class-imbalanced training, even with a simple trans-
lation method using a pre-trained classifier. This sug-
gests a promising way to overcome the long-standing class-
imbalance problem, and exploring more powerful methods
to perform this Major-to-minor translation, e.g., CycleGAN
[46], would be an interesting future research. The prob-
lems we explored in this paper also lead us to an essential
question that whether an adversarial perturbation could be a
good feature. Our findings suggest that it could be, at least
for the purpose of imbalanced learning, where the minority
classes suffer over-fitting due to insufficient data. We be-
lieve our method could open up a new direction of research
both in imbalanced learning and adversarial examples.
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