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Abstract

This paper considers a network referred to as Modality

Shifting Attention Network (MSAN) for Multimodal Video

Question Answering (MVQA) task. MSAN decomposes the

task into two sub-tasks: (1) localization of temporal moment

relevant to the question, and (2) accurate prediction of the

answer based on the localized moment. The modality re-

quired for temporal localization may be different from that

for answer prediction, and this ability to shift modality is es-

sential for performing the task. To this end, MSAN is based

on (1) the moment proposal network (MPN) that attempts to

locate the most appropriate temporal moment from each of

the modalities, and also on (2) the heterogeneous reasoning

network (HRN) that predicts the answer using an attention

mechanism on both modalities. MSAN is able to place im-

portance weight on the two modalities for each sub-task us-

ing a component referred to as Modality Importance Mod-

ulation (MIM). Experimental results show that MSAN out-

performs previous state-of-the-art by achieving 71.13% test

accuracy on TVQA benchmark dataset. Extensive ablation

studies and qualitative analysis are conducted to validate

various components of the network.

1. Introduction

Bridging the field of computer vision and that of natu-

ral language processing appears to be a desiderata of cur-

rent vision-language tasks. Sundry efforts that have made

progress towards binding the two fields include [8, 5, 22,

32] in visual grounding, [31, 30, 36, 25] in image/video

captioning, [10, 2, 35, 37] in video moment retrieval, and

*This work was partly supported by Institute for Information & com-

munications Technology Planning & Evaluation(IITP) grant funded by the

Korea government(MSIT) (2017-0-01780, The technology development

for event recognition/relational reasoning and learning knowledge based

system for video understanding) and partly supported by Institute for In-

formation & communications Technology Planning & Evaluation(IITP)

grant funded by the Korea government(MSIT) (No. 2019-0-01396, De-

velopment of framework for analyzing, detecting, mitigating of bias in AI

model and training data)

Figure 1. Multimodal Video QA is a challenging task as it requires

retrieving the queried information which is interspersed in multi-

ple modalities. For complex question such as “What did Robin do

after he said I have a half hour to make it to the studio?”, we first

need to localize the moment by observing subtitle and then infer

the answer by looking into video.

[3, 33, 1, 11] in visual question answering. Among the

many tasks, VQA is especially challenging as it requires the

capability to perform fine-grained reasoning using both im-

age and text. This task that requires reasoning has been ex-

tended to video question answering (VideoQA) and multi-

modal video question answering (MVQA).

This paper focuses on the task of answering multiple-

choice questions regarding a scene in a long untrimmed

video based on both video clip and its subtitle. This task is

referred to as MVQA. In comparison to VQA or VideoQA,

MVQA is a more challenging task as it (1) requires to lo-

cate the temporal moment relevant to the QA, and (2) also

requires to perform reasoning on video and subtitle modali-

ties. To illustrate, consider the question in Fig. 1 “What did

Robin do after he said I have a half hour to make it to the

studio?”. To accurately answer the question, the QA system

would require the video modality to decipher Robin’s action

to answer “What did Robin do”, and the subtitle modality

to localize time-index corresponding to “after he said ...”.

The first challenge of MVQA is to locate vital moments

in all heterogeneous modalities conducive to answering the

question. As [14] pointed out, the information in the video

required to answer the question is not distributed uniformly
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across the temporal axis. The temporal attention mecha-

nism has been widely adopted [28, 23, 21, 15, 14] to retrieve

relevant information to the question. However, it is ob-

served that previous temporal attention are often too blurry

or inaccurate in attending important regions of the video and

subtitle, and as a result, may introduce itself as noise during

the inference. Aside from qualitatively assessing the pre-

dicted attention, until now, no quantitative metric to mea-

sure its accuracy was available, which made it difficult to

validate the ability to retrieve appropriate information for

answering the question.

The second challenge of MVQA is to be capable of

reasoning on heterogeneous modalities for answering the

question. Early studies on MVQA adopted an early-fusion

framework [16, 23] that fuse video and subtitle into a joint

embedding space at the early stage of the prediction pipeline

which thereafter is the basis for subsequent reasoning fol-

lowed by final prediction. Recent methods are based on the

late-fusion framework [15, 19, 14], which independently

process video and subtitle and then combine the two pro-

cessed outputs for final prediction. The two extreme frame-

works have their upsides as well as downsides. The early-

fusion framework can be extremely useful for moment loca-

tion as well as for performing reasoning for answer predic-

tion only when the sample space is well populated such that

joint embedding space is well defined; otherwise, extreme

overfitting can occur, and one modality will act as noise on

the other modality. The late-fusion framework is often in-

adequate for answering questions that require one modality

for temporal localization and another for answer prediction

as shown in the example Fig. 1. We think such Modality

Shifting Ability is an essential component of MVQA, which

existing methods are incapable of.

To resolve the aforementioned challenges, we first pro-

pose to decompose the problem of MVQA into two sub-

tasks: temporal moment localization and answer predic-

tion. The key motivation of this paper comes from the

fact that the modality required for temporal moment lo-

calization may be different from that required for answer

prediction. To this end, Modality Shifting Attention Net-

work (MSAN) is proposed with the following two compo-

nents: (1) moment proposal network (MPN) and (2) het-

erogeneous reasoning network (HRN). MPN localizes the

temporal moment of interest (MoI) that is required for an-

swering the question. Here, the MoI candidates are de-

fined over both video and subtitle, and MPN learns the mo-

ment scores for each MoI candidate. Based on the local-

ized MoI, HRN infers the correct answer through a multi-

modal attention mechanism called Heterogeneous Attention

Mechanism (HAM). HAM is composed of three attention

units: self-attention (SA) that models the intra-modality

interactions (i.e., word-to-word, object-to-object relation-

ships), context-to-query (C2Q) attention that models the

inter-modality interactions between question and context

(i.e., video and subtitle), and context-to-context (C2C) at-

tention to model the inter-modality interactions between

video and subtitle. The results of MPN and HRN are further

adjusted by Modality Importance Modulation (MIM) which

is an additional attention mechanism over modalities.

2. Related Works

2.1. Visual Question Answering

Visual Question Answering (VQA) [3] aims at inferring

the correct answer of a given question regarding the visual

contents in an image. Yang et al. [33] proposed stacked at-

tention mechanism which performs multi-step reasoning by

repeatedly attending relevant image regions, and refines the

query after each reasoning step. Anderson et al. [1] intro-

duced extracting object proposals in the image using Faster

R-CNN [27] and the question is used to attend to the propos-

als. DFAF [11] utilizes both self- and co-attention mecha-

nism to dynamically fuse multi-modal representations with

intra- and inter-modality information flows.

Video Question Answering (VideoQA) [38, 12] is a nat-

ural extension of VQA into the video domain. Jang et al.

[12] extracted both the appearance feature and motion fea-

tures as visual representation, and used spatial and temporal

attention mechanism to attend to the moments in video and

the regions in frames. Co-memory attention [9] contains

two separate memory modules each for appearance and mo-

tion cues, and each memory guides the other memory while

generating the attention. Fan et al. [7] proposed heteroge-

neous video memory to capture global context from both

appearance and motion features, and question memory to

understand high-level semantics in question.

2.2. Multi­modal Video Question Answering

Multi-modal Video Question Answering (MVQA) fur-

ther extends VideoQA to leverage text modality, such as a

subtitle, in addition to video modality. The inclusion of text

modality makes the reasoning more challenging as the vital

information required to answer the question is interspersed

in both video and text modality. In the early stage of MVQA

research, early-fusion was commonly used to fuse multi-

ple modalities. Na et al. [23] proposed a read-write mem-

ory network (RWMN) which utilizes a CNN-based memory

network to write and read the information to and from mem-

ory. As video conveys a fairly different context compared to

the subtitle, early-fusion may produce noise at feature-level

and interfere with retrieving semantic context. To this end,

recent methods [15, 14, 19, 13] took late-fusion approaches

to merge multiple modalities. The two-stream network [19]

provides a simple late-fusion method with a bi-LSTM con-

text encoder followed by context-to-query attention mecha-

nism. Multi-task Learning (MTL) [13] further extends the
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Figure 2. Illustration of modality shifting attention network (MSAN) which is composed of the following components: (a) Video and

text representation utilizing BERT for embedding, (b) Moment proposal network to localize the required temporal moment of interest for

answering the question, (c) Heterogeneous reasoning network to infer the correct answer based on the localized moment, and (d) Modality

importance modulation to weight the output of (b) and of (c) differently according to their importance.

two-stream network by leveraging modality alignment and

temporal localization as additional tasks. Progressive At-

tention Memory Network (PAMN) [14] utilizes QA pairs to

temporally attend video and subtitle memories, and merge

using a soft attention mechanism.

3. Modality Shifting Attention Network

Figure 2 shows the overall pipeline of modality shifting

attention network (MSAN) with two sub-networks: Mo-

ment Proposal Network (MPN) and Heterogeneous Reason-

ing Network (HRN). The main focus of MSAN comes from

the observation that the reasoning in MVQA can be accom-

plished by two consecutive sub-tasks: (1) temporal moment

localization, and (2) answer prediction and that each sub-

task may require different modality more than the other.

3.1. Input Representation

Video Representation. The input video is represented

as a set of detected object labels (i.e. visual concepts) as

in other recent methods on MVQA [19, 13, 14]. Specifi-

cally, the video was sampled at 3 FPS to form set of frames

{vt}
F
t=1 where F is the number of frames. Then Faster R-

CNN [27] pre-trained on Visual Genome benchmark [18] is

used to detect visual concepts composed of object label and

its attribute (e.g. gray pants, blue sweater, brown hair, etc).

We divide the input video into a set of video shots to re-

move redundancy. When a scene is not changing fast, the

visual concepts in nearby frames may be redundant. We

define video shot as the set of successive frames whose in-

tersection over union (IoU) of visual concepts is more than

0.3. The input video is divided into video shots in chrono-

logical order for removing duplicate concepts. In contrast to

video, we do not define shots for the subtitle as it is assumed

there is little redundancy in the conversation.

Inspired by VideoQA [12, 7], we also incorporate mo-

tion cues in our framework. To our knowledge, while none

of the existing methods on MVQA utilize motion cues, we

observed that motion cues might help understanding video

clip to answer the question. For each video shot generated

above, I3D [4] pre-trained on Kinetics benchmark [4] is

used to produce top-5 action labels which we refer to as ac-

tion concept. Visual and action concepts are concatenated

to represent the corresponding video shot. As visual and ac-

tion concepts are in the text domain, they are embedded in

the manner as the subtitle.

Text Representation. We extracted 768-dimensional

word-level text representations for shots in a video, sen-

tences in the subtitle, and QA pairs from the second-to-last

layer of BERT-Base model [6]. The extracted representa-

tions were fixed during training. The question and each of

answer candidates were concatenated to form five hypothe-

sis {hk}
5
k=1

where hk ∈ R
nhk

×768 and nhk
represents the

number of words in kth hypothesis. For each hypothesis,

MSAN learns to predict its correctness score and to maxi-

mize the score of the correct answer. For simplicity, we drop

subscript k for the hypothesis in the following sections.

3.2. Moment Proposal Network

Moment Proposal Network (MPN) localizes the required

temporal moment of interest (MoI) for answering the ques-

tion. The MoI candidates are generated for temporally-

aligned video and subtitle. For each MoI candidate, MPN

produces two moment scores, one for each modality. The

Modality Importance Modulation (MIM) adjusts the mo-

ment score of each modality to weight on the important

modality for temporal moment localization. MPN is trained

to maximize the scores of the positive MoIs using ranking

loss.
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3.2.1 Moment of Interest Candidate Generation

We generate N moments of interest (MoI) candidates for

temporally-aligned video and subtitle using pre-defined

sliding windows. Each MoI candidate consists of a set of

video shots and subtitle sentences which is flattened and

represented as v ∈ R
nv×768, s ∈ R

ns×768, respectively.

Here, nv is the number of visual objects in video, and ns

is the number of words in the subtitle. We defined various

lengths of sliding windows for each modality so that the

MoI candidates are distributed evenly along the temporal

axis and cover the entire video. We label the MoI candi-

date as positive if it has IoU ≥ 0.5 with the provided GT

moment, and the other MoI candidates are labeled as neg-

atives. We obtain the final features V, S,H by passing the

BERT embeddings v, s, h through one-layer bi-directional

LSTM network.

3.2.2 MoI Candidate Moment Score

Among N MoI candidates, MPN localizes the relevant

MoI for answering the question. MPN first produces

video/subtitle moment scores for each MoI candidate. We

first utilize context-to-query (C2Q) attention to jointly

model each context (i.e., video, subtitle) and the hypoth-

esis and obtain V H and SH . Details of C2Q attention

can be found in following Sec. 3.3.1. Then, we feed

the concatenated features [V ;V H ] and [S;SH ] into one-

layer bi-directional LSTM followed by max-pooling along

the temporal axis. The final video and subtitle features

fv, fs ∈ R
d are passed through shared score regressor

(FC(d)-ReLU-FC(1)-σ) that outputs the video/subtitle mo-

ment scores mv,ms for video and subtitle, respectively.

3.2.3 Modality Importance Modulation

To place more weight on important modality for tempo-

ral moment localization, the moment scores are adjusted

by Modality Importance Modulation (MIM). The moment

scores of the important modality are boosted while those

of the counterpart are suppressed. The coefficient α used

for the modulation is obtained by passing average pooled

question into an MLP (FC(d)-ReLU-FC(1)) with sigmoid

activation to constrain the range of α. MIM is formulated

as:

α = σ(MLP (q)), (1)

mv ← FM (mv, α), (2)

ms ← FM (ms, 1− α), (3)

where FM is the modulation function. We consider three

types of modulation functions: additive F a
M , multiplicative

Fm
M , and residual F r

M :

F a
M (mi, α) = mi + α, (4)

Fm
M (mi, α) = mi · α, (5)

F r
M (mi, α) = mi +mi · α. (6)

During inference, MPN selects the MoI candidate with the

largest moment score for answer prediction.

cross-modal ranking loss is proposed to train MPN,

which encourages the moment scores of the positives MoI

candidate to be greater than the negatives by a certain mar-

gin. Rather than applying the ranking loss on each modal-

ity, we propose to aggregate the moment scores from both

modalities and apply the ranking loss. We call this cross-

modal ranking loss Lcmr which is represented as follows:

Lcmr =
∑

p+,p−∈p

LR(p+, p−),
(7)

where p+, p− denotes the scores of positive and neg-

ative candidate moments respectively, and LR(x, y) =
max(0, x − y + b) is the ranking loss with margin b. Dur-

ing training, we sampled the same number of positives and

negatives for stable learning.

Relationship between MPN and Other Methods The

main philosophy behind MPN is similar to the region pro-

posal network (RPN) [27], which is widely used for ob-

ject detection. While RPN defines a set of anchors along

the spatial dimension, MPN defines a set of MoI candi-

dates along the temporal dimension. In both cases, the end-

classifier is trained that takes the detected feature as input

and outputs an object class or the index of the correct an-

swer. However, MPN is a conditional method in that the

behavior changes conditioned on the input question. As

MPN localizes a specific temporal region, it can be seen

as a type of hard attention mechanism. In contrast to soft

temporal attention mechanism, which has been the domi-

nant mechanism in previous works, we believe that MPN is

more intuitive, measurable by fair metrics, and less noisy.

3.3. Heterogeneous Reasoning Network

Heterogeneous Reasoning Network (HRN) takes the lo-

calized MoI by MPN and learns to infer the correct answer.

HRN involves parameter-efficient heterogeneous attention

mechanism (HAM) to consider inter- and intra-modality in-

teractions of heterogeneous modalities. HAM enables rich

feature interactions by transforming the video and subtitle

features by representing each element in video or subtitle

in all three heterogeneous modality feature spaces. The

Modality Importance Modulation (MIM) again modulates

the output of HRN to weight on the important modality for

answer prediction.
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Figure 3. Illustraction of Heterogeneous Attention Mechanism

with three attention units; self-attention (SA), context-to-query

(C2Q) attention, and context-to-context (C2C) attention.

3.3.1 Heterogeneous Attention Mechanism

Heterogeneous attention mechanism (HAM) is introduced

to consider the inter- and intra- modality interactions by rep-

resenting a feature in one modality by the linear combina-

tion of the features of the other modalities. HAM is com-

posed of three basic attentional units: self-attention (SA),

context-to-query (C2Q) attention, and context-to-context

(C2C) attention, all of which are based on the dot product

attention.

For two sets of input features X ∈ R
m×d and Y ∈

R
n×d, dot-product attention first evaluates the dot-product

of every element of X and Y in obtaining a similarity ma-

trix. Then softmax function is applied on each row of the

similarity matrix in obtaining an attention matrix of size

m×n. The attended feature XY is obtained by multiplying

attention matrix and Y :

XY = A(X,Y ) = softmax(XY )Y. (8)

We can interpret the dot-product attention as describing

each element xi of X in the feature space of Y by repre-

senting xi with a linear combination of elements in Y with

respect to cross-modal similarity.

The self-attention (SA) unit is the dot-product attention

of feature with itself for defining the intra-modality rela-

tions. SA unit is represented as A(X,X) where X is an

input feature. The C2Q and C2C attention units consider

the inter-modality relationships and defined as: A(C,Q)
and A(C,C), respectively. The three attentional units are

combined in a modular way in defining the Heterogeneous

Attention Mechanism, as illustrated in Figure 3. In HRN,

HAM takes the localized video V , subtitle S, hypothesis

H as inputs, and outputs two transformed context features

Ṽ , S̃. First, each feature is updated by SA units. Then, the

context is transformed into the hypothesis space by C2Q

unit and the other context space by C2C unit as described

mathematically below:

V ← A(V, V ), S ← A(S, S), H ← A(H,H), (9)

V H = A(V,H), SH = A(S,H), (10)

V S = A(V, S), SV = A(S, V ). (11)

Finally, we concatenate the output of three units along fea-

ture dimension to construct the rich context descriptor as

described below:

Ṽ = [V ;V H ;V S ] ∈ R
nv×3d, (12)

S̃ = [S;SH ; SV ] ∈ R
ns×3d. (13)

As a consequence, Ṽ is represented as a concatenation of it-

self in the video feature space, hypothesis feature space, and

subtitle feature space while S̃ is the representation of the

subtitle as a concatenation of itself in three feature spaces:

subtitle, hypothesis, and video.

Relationships of HAM to Other Methods Recent stud-

ies in VQA [11, 34] have shown that simultaneously learn-

ing self-attention and co-attention for visual and textual

modalities leads to a more accurate prediction. Inspired by

the previous works on self-attention and co-attention, HAM

combines three attentional units to achieve temporal multi-

modal reasoning by rich feature interactions between the

video, subtitle, and hypothesis. Also, while previous co-

attention [34] is more about highlighting the important fea-

tures, the attentional units of HAM perform feature trans-

form from one space to another space. While multi-head

attention [29] is widely adopted in VQA, the number of pa-

rameters is prohibitively large for MVQA, where there are

more than a few hundred of objects and words in video and

subtitle.

3.3.2 Modality Importance Modulation and Answer

Reasoning

With the heterogeneous attention learning, the output video

feature Ṽ ∈ R
nv×3d and subtitle feature S̃ ∈ R

ns×3d

contain information rich with regards to various modalities.

The heterogeneous representations of the video Ṽ and subti-

tle S̃ are fed into a one-layer bi-directional LSTM and max-

pooling along temporal axis to form final feature vectors.

We utilize two-layer MLP (FC(d)-ReLU-FC(5)) to obtain

the prediction scores ℓv, ℓs ∈ R
5 for each video and subti-

tle.

Again, the prediction scores ℓv and ℓs are adjusted by

Modality Importance Modulation (MIM):

β = σ(MLP (q)), (14)

ℓ = βℓv + (1− β)ℓs, (15)

where ℓ represents the final prediction score. We use stan-

dard cross-entropy (CE) as the loss function to train 5-way

classifier on top of the final prediction score ℓ.
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4. Experiments

4.1. Datasets

TVQA [19] dataset is the largest MVQA benchmark

dataset. TVQA dataset contains human annotated multiple-

choice question-answer pairs for short video clips seg-

mented from 6 long running TV shows: The Big Bang

Theory, How I Met Your Mother, Friends, Grey’s Anatomy,

House, Castle. The questions in TVQA are format-

ted as follows: “[What/How/Where/Why/...]

[when/before/after] ?”. The second part of the ques-

tion localizes the relevant moment in the video clip, and the

first part asks question about localized moment. Each ques-

tion contains 5 answer candidates and only one of them is

correct. There are total 152.5K QA pairs and 21,793 video

clips in TVQA which splits into 122,039 QAs from 17,435

clips for train set, 15,252 QAs from 2.179 clips for valida-

tion set and 7,623 QAs from 1,089 clips for test set, respec-

tively.

4.2. Experimental Details

The entire framework is implemented with PyTorch [24]

framework. We set the batch size to 16. Adam optimizer

[17] is used to optimize the network with the initial learning

rate of 0.0003. All of the experiments were conducted using

NVIDIA TITAN Xp (12GB of memory) GPU with CUDA

acceleration. We trained the network up to 10 epochs with

early stopping in the case of validation accuracy doesn’t in-

crease for 2 epochs. In all the experiments, recommended

train / validation / test split was strictly followed.

4.3. Ablation Studies

4.3.1 Ablation Study on Moment Proposal Network

This sections describes the quantitative ablation study on

Moment Proposal Network (MPN). Given two tempo-

ral moments (s1, e1), (s2, e2), the Intersection over Union

(IoU) is defined by:

IoU = 1.0 ∗
min(e1, e2)−max(s1, s2)

max(e1, e2)−min(s1, s2)
. (16)

The gist of MPN is to prune out irrelevant temporal regions.

Therefore, it is preferable that the localized MoI overlaps

with the ground truth. To reflect such preference, the Cov-

erage metric is proposed which is represented as:

Cov = 1.0 ∗
min(e1, e2)−max(s1, s2)

e2 − s2
. (17)

Table 1 summarizes the quantitative ablation study on MPN.

Without Modality Importance Modulation, MPN still can

rank the MoI candidates to some extent due to the cross-

modal ranking loss. Three modulation functions enhanced

Table 1. Ablation study on Moment Proposal Network (MPN).

Method IoU Cov

additive w/o MIM 0.25 0.32

additive 0.29 0.52

multiplicative 0.31 0.54

residual 0.30 0.54

ideal 0.76 1

Table 2. Ablation study on model variants of MSAN on the vali-

dation set of TVQA. The last column shows the performance drop

compared to the full model of MSAN.

Methods valid Acc. ∆

MSAN w/o MPN 69.89 -0.9%

MSAN w/ GT moment 71.62 +0.83%

MSAN w/o SA 70.21 -0.58%

MSAN w/o C2C 70.47 -0.32%

MSAN w/o MIM on MPN 70.56 -0.23%

MSAN w/o MIM on HRN 70.35 -0.44%

MSAN 70.79 0

the quality of MPN by ~6.0% of IoU. Even the best can-

didate moment may not perfectly overlap with the ground

truth. Therefore, we also introduced some safety margin by

expanding the temporal boundaries of the predict moment

during inference. This lowers the IoU, but increases the

coverage which helps to include the ground truth moment.

4.3.2 Ablation study on Model Variants

Table 2 summarizes the ablation analysis on model variants

of MSAN on the validation set of TVQA in order to mea-

sure the effectiveness of the proposed key components. The

first block of Table 2 provides the ablation results of MPN

to the overall performance. Without MPN (i.e. using the

full video and subtitle), the accuracy is 69.89%. When the

ground truth MoI is given, the accuracy is 71.62%. With

MPN, the overall accuracy is 70.79% which is 0.90% higher

than the MSAN w/o MPN. The second block of Table 2 pro-

vides the ablation results on HRN. Without SA, there is a

0.58% of performance drop. Without C2C attention, there

is a 0.32% of performance drop.

The third block of Table 2 provides the ablation results

on MIM. Without the MIM on MPN (i.e. the moment score

by MPN is not modulated), there is a 0.23% of performance

drop. Without the MIM of HRN (i.e. the video/subtitle

logits from HRN are summed instead of weighting), there is

a 0.44% of performance drop. Therefore MIM increases the

overall performance. MIM also contributes to interpreting

the inference of the model by suggesting what modality was

more important to retrieve the moment.
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Table 3. Comparison with the state-of-the-art method on TVQA

dataset. “img” is imagenet feature, “reg” is regional feature and

“vcpt” is visual concept feature and “acpt”is action concept fea-

ture.

Methods Text Feat. Video Feat. test Acc.

two-stream [19] GloVe

img 63.44

reg 63.06

vcpt 66.46

PAMN [14] GloVe
img 64.61

vcpt 66.77

MTL [13] GloVe
img 64.53

vcpt 67.05

ZGF - - 68.90

STAGE [20] BERT reg 70.23

MSAN GloVe vcpt 68.18

MSAN BERT

vcpt 70.92

acpt 68.57

vcpt+acpt 71.13

4.3.3 Comparison with the state-of-the-art methods

Table 3 summarizes the experimental results on TVQA

dataset. We compare with the state-of-the-art methods two-

stream [19], PAMN [14] and MTL [13] and performances

reported to online evaluation server (i.e. ZGF and STAGE).

The ground-truth answers for TVQA test set are not avail-

able and test set evaluation can only be performed through

an online evaluation server. MSAN achieves the test ac-

curacy of 71.13% which outperforms the previously best

method by 4.08%, establishing the new state-of-the-art.

For fair comparison with the previous methods with re-

spect to feature representation, we also provide the results

of MSAN using ImageNet feature and GloVe [26] text rep-

resentation. The provided results consistently indicate that

our MSAN outperforms current state-of-the-art methods by

achieving the performance of 68.18%. While none of the

currnet MVQA methods make use of motion cues, we ex-

tracted action concept representation from video clip and

provide the results using it. Compared to MSAN with vcpt

(70.92%), incorporating motion cues provides 0.21% per-

formance gain.

4.4. Qualitative Analysis

4.4.1 Performance by question type

We further investigate the performance of MSAN by com-

paring the accuracy with respect to question type. Figure 4

shows performance comparison by question type on TVQA

validation set. We divided the question types based on

5W1H (i.e. Who, What, Where, When, Why, How). For fair

comparison with existing methods, we first tried to repro-

duce the results on two-stream, PAMN, MTL and obtained

the following validation performances; 66.39%, 66.38%,

Figure 4. Performance of two-stream, PAMN, MTL, and MSAN

by question type on TVQA validation set.

66.22%, respectively. For the majority of question types,

MSAN shows significantly better performance than the oth-

ers. Especially, MSAN achieves 89% on “when” question.

4.4.2 Analysis by question type and required modality

This sections describes the analysis of MSAN by the ques-

tion type and the required modality by each question. For

this, we labeled ~5000 samples in the validation set of

TVQA according to which modality is required for tempo-

ral moment localization and which modality is required for

answer prediction. For example, the label for the question

“What did Phoebe say after the group hug?” is (S, V ) as it

asks ‘say’ (i.e. subtitle) and indicates the moment of ‘group

hug’ (i.e. video). In this way, there are four types of labels:

(S, S), (S, V ), (V, S), (V, V ).

Figure 5. Analysis by question type and required modality of

MSAN

One observation made from Figure 5 is that the accuracy

on questions that require subtitle for answer prediction, i.e.

(S, V ) and (S, S) combined, is high with 86% while accu-

racy based on video, i.e. (V, V ) and (V, S) combined, is

lower with 60%. This result indicates that our model does
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Figure 6. Visualization on the inference path of MSAN (the last example is a failure case). Each example provides MIM weights, the

localized temporal moment p̂ and ground-truth (GT) temporal moment. Video and subtitle modality are represented with orange and

yellow color, respectively. The proposed MSAN dynamically modulates both modalities according to the input question.

well when the answer is in the subtitle while it can do better

when answer is in the video clip.

4.4.3 Visualization of inference mechanism

Figure 6 visualizes the inference mechanism of MSAN with

selected samples from TVQA validation set. Each ex-

ample is provided with MIM weights α, β, localized MoI

p̂, ground-truth (GT) temporal moment and the final an-

swer choice. Each sample requires different combination

of modalities (e.g. in the first example: video to localize

and subtitle to answer, in the third example: subtitle to lo-

calize and video to answer, ...) to correctly localize and

answer. We visualize the use of video and subtitle modal-

ity using orange and yellow color, and represent it on the

localized moment and key sentence or video shot. In the

first example, the model utilizes video modality to localize

the moment (α > 0.5), and then uses subtitle modality to

predict the answer (β < 0.5). As such, MSAN successfully

modulates the output of the temporal moment localizer and

the answer predictor with two sets of modulation weights

α and β. The last example shows one failure case. MSAN

succeeded in localizing the key moment by using the subti-

tle modality (α < 0.5). However, the model fails to predict

the correct answer (i.e. 60) as the visual concept and action

concept features are insufficient in capturing textual cues in

the video.

5. Conclusion

In this paper, we first propose to decompose MVQA into

two sub-tasks: (1) localization of temporal moment rele-

vant to the question, and (2) prediction of the correct answer

based on the localized moment. Our fundamental motiva-

tion is that the modality required for temporal localization

may be different from that for the answer prediction. To

this end, the proposed Modality Shifting Attention Network

(MSAN) includes two main components for each sub-task:

(1) moment proposal network (MPN) that finds a specific

temporal moment, and (2) heterogeneous reasoning net-

work (HRN) that predicts the answer using multi-modal at-

tention mechanism. We also propose Modality Importance

Modulation (MIM) to enable the modality shifting for MPN

and HRN. MSAN showed state-of-the-art performance on

TVQA dataset by achieving 71.13% test set accuracy.
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