
Proxy Anchor Loss for Deep Metric Learning

Sungyeon Kim Dongwon Kim Minsu Cho Suha Kwak

POSTECH, Pohang, Korea

{tjddus9597, kdwon, mscho, suha.kwak}@postech.ac.kr

Abstract

Existing metric learning losses can be categorized into

two classes: pair-based and proxy-based losses. The former

class can leverage fine-grained semantic relations between

data points, but slows convergence in general due to its high

training complexity. In contrast, the latter class enables fast

and reliable convergence, but cannot consider the rich data-

to-data relations. This paper presents a new proxy-based

loss that takes advantages of both pair- and proxy-based

methods and overcomes their limitations. Thanks to the use

of proxies, our loss boosts the speed of convergence and is

robust against noisy labels and outliers. At the same time,

it allows embedding vectors of data to interact with each

other through its gradients to exploit data-to-data relations.

Our method is evaluated on four public benchmarks, where

a standard network trained with our loss achieves state-of-

the-art performance and most quickly converges.

1. Introduction

Learning a semantic distance metric has been a crucial

step for many applications such as content-based image

retrieval [14, 21, 27, 29], face verification [18, 25], per-

son re-identification [3, 38], few-shot learning [24, 26, 30],

and representation learning [14, 33, 41]. Following their

great success in visual recognition, deep neural networks

have been employed recently for metric learning. The net-

works are trained to project data onto an embedding space

in which semantically similar data (e.g., images of the same

class) are closely grouped together. Such a quality of the

embedding space is given mainly by loss functions used for

training the networks, and most of the losses are categorized

into two classes: pair-based and proxy-based.

The pair-based losses are built upon pairwise distances

between data in the embedding space. A seminal example

is Contrastive loss [4, 9], which aims to minimize the dis-

tance between a pair of data if their class labels are identical

and to separate them otherwise. Recent pair-based losses

consider a group of pairwise distances to handle relations

between more than two data [14, 25, 27, 29, 32, 34, 35, 39].

Method
Proxy-Anchor (Ours)
MS [34]
Proxy-NCA [21]
Semi-Hard Triplet [25]
N-Pair [27]

Time Per Epoch
27.10s
28.43s
27.41s
29.97s
28.41s

Training Time (Min)

R
@

1

0.3

0.5

0.4

0.6

0.7

0.8

0.9

20 40 60 80 100

Figure 1. Accuracy in Recall@1 versus training time on the Cars-

196 [17] dataset. Note that all methods were trained with batch

size of 150 on a single Titan Xp GPU. Our loss enables to achieve

the highest accuracy, and converge faster than the baselines in

terms of both the number of epochs and the actual training time.

These losses provide rich supervisory signals for training

embedding networks by comparing data to data and exam-

ining fine-grained relations between them, i.e., data-to-data

relations. However, since they take a tuple of data as a unit

input, the losses cause prohibitively high training complex-

ity1, O(M2) or O(M3) where M is the number of training

data, thus slow convergence. Furthermore, some tuples do

not contribute to training or even degrade the quality of the

learned embedding space. To resolve these issues, learning

with the pair-based losses often entails tuple sampling tech-

niques [10, 25, 37, 40], which however have to be tuned by

hand and may increase the risk of overfitting.

The proxy-based losses resolve the above complexity is-

sue by introducing proxies [1, 21, 23]. A proxy is a repre-

sentative of a subset of training data and learned as a part

of the network parameters. Existing losses in this category

consider each data point as an anchor, associate it with prox-

ies instead of other images, and encourage the anchor to be

close to proxies of the same class and far apart from those

of different classes. Proxy-based losses reduce the training

1The training complexity indicates the amount of computation required

to address the entire training dataset [1, 6, 10, 23, 35].

3238

(b) N-pair (d) Proxy-NCA

E

(e) Ours(c) Lifted Structure(a) Triplet

Figure 2. Comparison between popular metric learning losses and ours. Small nodes are embedding vectors of data in a batch, and black

ones indicate proxies; their different shapes represent distinct classes. The associations defined by the losses are expressed by edges, and

thicker edges get larger gradients. Also, embedding vectors associated with the anchor are colored in red if they are of the same class of the

anchor (i.e., positive) and in blue otherwise (i.e., negative). (a) Triplet loss [25, 32] associates each anchor with a positive and a negative

data point without considering their hardness. (b) N -pair loss [27] and (c) Lifted Structure loss [29] reflect hardness of data, but do not

utilize all data in the batch. (d) Proxy-NCA loss [21] cannot exploit data-to-data relations since it associates each data point only with

proxies. (e) Our loss handles entire data in the batch, and associates them with each proxy with consideration of their relative hardness

determined by data-to-data relations. See the text for more details.

complexity and enable faster convergence since the num-

ber of proxies is substantially smaller than that of training

data in general. Further, these losses tend to be more robust

against label noises and outliers. However, since they asso-

ciate each data point only with proxies, proxy-based losses

can leverage only data-to-proxy relations, which are impov-

erished compared to the rich data-to-data relations available

for pair-based losses.

In this paper, we propose a novel proxy-based loss called

Proxy-Anchor loss, which takes good points of both proxy-

based and pair-based losses while correcting their defects.

Unlike the existing proxy-based losses, the proposed loss

utilizes each proxy as an anchor and associates it with all

data in a batch. Specifically, for each proxy, the loss aims

to pull data of the same class close to the proxy and to push

others away in the embedding space. Due to the use of prox-

ies, our loss boosts the speed of convergence with no hyper-

parameter for tuple sampling, and is robust against noisy la-

bels and outliers. At the same time, it can take data-to-data

relations into account like pair-based losses; this property is

given by associating all data in a batch with each proxy so

that the gradients with respect to a data point are weighted

by its relative proximity to the proxy (i.e., relative hard-

ness) affected by the other data in the batch. Thanks to the

above advantages, a standard embedding network trained

with our loss achieves state-of-the-art accuracy and most

quickly converges as shown in Figure 1. The contribution

of this paper is three-fold:

• We propose a novel metric learning loss that takes ad-

vantages of both pair-based and proxy-based methods; it

leverages rich data-to-data relations and enables fast and

reliable convergence.

• A standard embedding network trained with our loss

achieves state-of-the-art performance on the four public

benchmarks for metric learning [17, 19, 29, 36].

• Our loss speeds up convergence greatly without careful

data sampling; its convergence is even faster than those

of Proxy-NCA [21] and Multi-Similarity loss [34].

2. Related Work

In this section, we categorize metric learning losses into

two classes, pair-based and proxy-based losses, then review

relevant methods for each category.

2.1. Pairbased Losses

Contrastive loss [2, 4, 9] and Triplet loss [25, 32] are

seminal examples of loss functions for deep metric learning.

Contrastive loss takes a pair of embedding vectors as input,

and aims to pull them together if they are of the same class

and push them apart otherwise. Triplet loss considers a data

point as an anchor, associates it with a positive and a neg-

ative data point, and constrains the distance of the anchor-

positive pair to be smaller than that of the anchor-negative

pair in the embedding space as illustrated in Figure 2(a).

Recent pair-based losses aim to leverage higher order re-

lations between data and reflect their hardness for further

enhancement. As generalizations of Triplet loss, N -pair

loss [27] and Lifted Structure loss [29] associate an anchor

with a single positive and multiple negative data points, and

pull the positive to the anchor and push the negatives away

from the anchor while considering their hardness. As shown

in Figure 2(b) and 2(c), however, these losses do not utilize

entire data in a batch since they sample the same number

of data per negative class, thus may drop informative ex-

amples during training. In contrast, Ranked List loss [35]

takes into account all positive and negative data in a batch

and aims to separate the positive and negative sets. Multi-

Similarity loss [34] also considers every pair of data in a

batch, and assigns a weight to each pair according to three

complementary types of similarity to focus more on useful

pairs for improving performance and convergence speed.

3239

Pair-based losses enjoy rich and fine-grained data-to-

data relations as they examine tuples (i.e., data pairs or their

combinations) during training. However, since the number

of tuples increases polynomially with the number of train-

ing data, their training complexity is prohibitively high and

convergence is slow. In addition, a large amount of tuples

are not effective and sometimes even degrade the quality

of the learned embedding space [25, 37]. To address this

issue, most pair-based losses entail tuple sampling tech-

niques [10, 25, 37, 40] to select and utilize tuples that will

contribute to training. However, these techniques involve

hyperparameters that have to be tuned carefully, and may

increase the risk of overfitting since they rely mostly on lo-

cal pairwise relations within a batch. Another way to alle-

viating the complexity issue is to assign larger weights to

more useful pairs during training as in [34], which however

also incorporates a sampling technique.

Our loss resolves this complexity issue by adopting prox-

ies, which enables faster and more reliable convergence

compared to pair-based losses. Furthermore, it demands no

additional hyperparameter for tuple sampling.

2.2. Proxybased Losses

Proxy-based metric learning is a relatively new approach

that can address the complexity issue of the pair-based

losses. A proxy means a representative of a subset of train-

ing data and is estimated as a part of the embedding net-

work parameters. The common idea of the methods in this

category is to infer a small set of proxies that capture the

global structure of an embedding space and relate each data

point with the proxies instead of the other data points dur-

ing training. Since the number of proxies is significantly

smaller than that of training data, the training complexity

can be reduced substantially.

The first proxy-based loss is Proxy-NCA [21], which

is an approximation of Neighborhood Component Analy-

sis (NCA) [8] using proxies. In its standard setting, Proxy-

NCA loss assigns a single proxy for each class, associates a

data point with proxies, and encourages the positive pair to

be close and negative pairs to be far apart, as illustrated in

Figure 2(d). SoftTriple loss [23], an extension of SoftMax

loss for classification, is similar to Proxy-NCA yet assigns

multiple proxies to each class to reflect intra-class variance.

Manifold Proxy loss [1] is an extension of N -pair loss us-

ing proxies, and improves the performance by adopting a

manifold-aware distance instead of Euclidean distance to

measure the semantic distance in the embedding space.

Using proxies in these losses helps improve training con-

vergence greatly, but has an inherent limitation as a side

effect: Since each data point is associated only with prox-

ies, the rich data-to-data relations that are available for the

pair-based methods are not accessible anymore. Our loss

can overcome this limitation since its gradients reflect rela-

tive hardness of data and allow their embedding vectors to

interact with each other during training.

3. Our Method

We propose a new metric learning loss called Proxy-

Anchor loss to overcome the inherent limitations of the pre-

vious methods. The loss employs proxies that enable fast

and reliable convergence as in proxy-based losses. Also,

although it is built upon data-proxy relations, our loss can

utilize data-to-data relations during training like pair-based

losses since it enables embedding vectors of data points to

be affected by each other through its gradients. This prop-

erty of our loss improves the quality of the learned embed-

ding space substantially.

In this section, we first review Proxy-NCA loss [21],

a representative proxy-based loss, for comparison to our

Proxy-Anchor loss. We then describe our Proxy-Anchor

loss in detail and analyze its training complexity.

3.1. Review of ProxyNCA Loss

In the standard setting, Proxy-NCA loss [21] assigns a

proxy to each class so that the number of proxies is the same

with that of class labels. Given an input data point as an

anchor, the proxy of the same class of the input is regarded

as positive and the other proxies are negative. Let x denote

the embedding vector of the input, p+ be the positive proxy,

and p− be a negative proxy. The loss is then given by

ℓ(X) =
∑

x∈X

− log
es(x,p

+)

∑

p−∈P−

es(x,p
−)

(1)

=
∑

x∈X

{

− s(x, p+) + LSE
p−∈P−

s(x, p−)
}

, (2)

where X is a batch of embedding vectors, P− is the set

of negative proxies, and s(·, ·) denotes the cosine similarity

between two vectors. In addition, LSE in Eq. (2) means the

Log-Sum-Exp function, a smooth approximation to the max

function. The gradient of Proxy-NCA loss with respect to

s(x, p) is given by

∂ℓ(X)

∂s(x, p)
=

−1, if p = p+,

es(x,p)
∑

p−∈P−

es(x,p
−)

, otherwise. (3)

Eq. (3) shows that minimizing the loss encourages x and

p+ to be close to each other, and x and p− to be far away.

In particular, x and p+ are pulled together by the constant

power, while x and p− closer to each other (i.e., harder neg-

ative) are more strongly pushed away.

Proxy-NCA loss enables fast convergence thanks to its

low training complexity, O(MC) where M is the number

3240

of training data and C is that of classes, which is substan-

tially lower than O(M2) or O(M3) of pair-based losses

since C ≪ M ; refer to Section 3.3 for details. Also, prox-

ies are robust against outliers and noisy labels since they are

trained to represent groups of data. However, since the loss

associates each embedding vector only with proxies, it can-

not exploit fine-grained data-to-data relations. This draw-

back limits the capability of embedding networks trained

with Proxy-NCA loss.

3.2. ProxyAnchor Loss

Our Proxy-Anchor loss is designed to overcome the lim-

itation of Proxy-NCA while keeping the low training com-

plexity. The main idea is to take each proxy as an anchor

and associate it with entire data in a batch, as illustrated in

Figure 2(e), so that the data interact with each other through

the proxy anchor during training. Our loss assigns a proxy

for each class following the standard proxy assignment set-

ting of Proxy-NCA, and is formulated as

ℓ(X) =
1

|P+|

∑

p∈P+

log

(

1 +
∑

x∈X
+
p

e−α(s(x,p)−δ)

)

+
1

|P |

∑

p∈P

log

(

1 +
∑

x∈X
−

p

eα(s(x,p)+δ)

)

,

(4)

where δ > 0 is a margin, α > 0 is a scaling factor, P
indicates the set of all proxies, and P+ denotes the set of

positive proxies of data in the batch. Also, for each proxy

p, a batch of embedding vectors X is divided into two sets:

X+
p , the set of positive embedding vectors of p, and X−

p =
X −X+

p . The proposed loss can be rewritten in an easier-

to-interpret form as

ℓ(X) =
1

|P+|

∑

p∈P+

[

Softplus
(

LSE
x∈X

+
p

−α(s(x, p)− δ)
)

]

+
1

|P |

∑

p∈P

[

Softplus
(

LSE
x∈X

−

p

α(s(x, p) + δ)
)

]

,

(5)

where Softplus(z) = log (1 + ez), ∀z ∈ R, and is a smooth

approximation of ReLU.

How it works: Regarding Log-Sum-Exp as the max func-

tion, it is easy to notice that the loss aims to pull p and its

most dissimilar positive example (i.e., hardest positive ex-

ample) together, and to push p and its most similar nega-

tive example (i.e., hardest negative example) apart. Due to

the nature of Log-Sum-Exp, the loss in practice pulls and

pushes all embedding vectors in the batch, but with differ-

ent degrees of strength that are determined by their relative

hardness. This characteristic is demonstrated by the gradi-

ent of our loss with respect to s(x, p), which is given by

∂ℓ(X)

∂s(x, p)
=

1

|P+|

−α h+
p (x)

1 +
∑

x′∈X
+
p

h+
p (x

′)
, ∀x ∈ X+

p ,

1

|P |

α h−
p (x)

1 +
∑

x′∈X
−

p

h−
p (x

′)
, ∀x ∈ X−

p ,

(6)

where h+
p (x) = e−α(s(x,p)−δ) and h−

p (x) = eα(s(x,p)+δ)

are positive and negative hardness metrics for embedding

vector x given proxy p, respectively; h+
p (x) is large when

the positive embedding vector x is far from p, and h−
p (x) is

large when the negative embedding vector x is close to p.

The scaling parameter α and margin δ control the relative

hardness of data points, and in consequence, determine how

strongly pull or push their embedding vectors.

As shown in the above equations, the gradient for s(x, p)
is affected by not only x but also other embedding vectors

in the batch; the gradient becomes larger when x is harder

than the others. In this way, our loss enables embedding

vectors in the batch to interact with each other and reflects

their relative hardness through the gradients, which helps

enhance the quality of the learned embedding space.

Comparison to Proxy-NCA: The key difference and ad-

vantage of Proxy-Anchor over Proxy-NCA is the active

consideration of relative hardness based on data-to-data re-

lations. This property enables Proxy-Anchor loss to pro-

vide richer supervisory signals to embedding networks dur-

ing training. The gradients of the two losses demonstrate

this clearly. In Proxy-NCA loss, the scale of the gradient

is constant for every positive example and that of a nega-

tive example is calculated by taking only few proxies into

account as shown in Eq. (3). In particular, the constant

gradient scale for positive examples damages the flexibility

and generalizability of embedding networks [37]. In con-

trast, Proxy-Anchor loss determines the scale of the gradi-

ent by taking relative hardness into consideration for both

positive and negative examples as shown in Eq. (6). This

feature of our loss allows the embedding network to con-

sider data-to-data relations that are ignored in Proxy-NCA

and observe much larger area of the embedding space dur-

ing training than Proxy-NCA. Figure 3 illustrates these dif-

ferences between the two losses in terms of handling the

relative hardness of embedding vectors. In addition, unlike

Proxy-Anchor loss, the margin imposed in our loss leads to

intra-class compactness and inter-class separability, result-

ing in a more discriminative embedding space.

3.3. Training Complexity Analysis

Let M , C, B, and U denote the numbers of training sam-

ples, classes, batches per epoch, and proxies held by each

3241

Case of Positive Examples

3 E

3

W

3 E

3

W

3 E

3

W

3

3

W

E

(a) Proxy-NCA (b) Proxy-Anchor

Case of Negative Examples

3 E

3

W

3 E

3

W

3

W

E

3

3

E3

W

(c) Proxy-NCA (d) Proxy-Anchor

Figure 3. Differences between Proxy-NCA and Proxy-Anchor in handling proxies and embedding vectors during training. Each proxy

is colored in black and three different colors indicate distinct classes. The associations defined by the losses are expressed by edges, and

thicker edges get larger gradients. (a) Gradients of Proxy-NCA loss with respect to positive examples have the same scale regardless of

their hardness. (b) Proxy-Anchor loss dynamically determines gradient scales regarding relative hardness of all positive examples so as

to pull harder positives more strongly. (c) In Proxy-NCA, each negative example is pushed only by a small number of proxies without

considering the distribution of embedding vectors in fine details. (d) Proxy-Anchor loss considers the distribution of embedding vectors in

more details as it has all negative examples affect each other in their gradients.

class, respectively. U is 1 thus ignored in most of proxy-

based losses including ours, but is nontrivial for those man-

aging multiple proxies per class such as SoftTriple loss [23].

Table 1 compares the training complexity of our loss

with those of popular pair- and proxy-based losses. The

complexity of our loss is O(MC) since it compares every

proxy with all positive or all negative examples in a batch.

More specifically, in Eq. (4), the complexity of the first sum-

mation is O(MC) and that of the second summation is also

O(MC), hence the total training complexity is O(MC).
The complexity of Proxy-NCA [21] is also O(MC) since

each data point is associated with one positive proxy and

C−1 negative proxies as can be seen in Eq. (2). On the

other hand, SoftTriple loss [23], a modification of SoftMax

using multiple proxies per class, associates each data point

with U positive proxies and U(C−1) negative proxies. The

total training complexity of this loss is thus O(MCU2). In

conclusion, the complexity of our loss is the same with or

even lower than that of other proxy-based losses.

The training complexity of pair-based losses is higher

than that of proxy-based ones. Since Contrastive loss [2,

4, 9] takes a pair of data as input, its training complexity

is O(M2). On the other hand, Triplet loss that examines

triplets of data has complexity O(M3), which can be re-

duced by triplet mining strategies. For example, semi-hard

mining [25] reduces the complexity to O(M3/B2) by se-

lecting negative pairs that are located within a neighbor-

hood of anchor but sufficiently far from it. Similarly, Smart

mining [10] lowers the complexity to O(M2) by sampling

Type Loss Training Complexity

Proxy

Proxy-Anchor (Ours) O(MC)
Proxy-NCA [21] O(MC)
SoftTriple [23] O(MCU2)

Pair

Contrastive [2, 4, 9] O(M2)
Triplet (Semi-Hard) [25] O(M3/B2)

Triplet (Smart) [10] O(M2)
N -pair [27] O(M3)

Lifted Structure [29] O(M3)

Table 1. Comparison of training complexities.

hard triplets using an approximated nearest neighbor index.

However, even with these techniques, the training complex-

ity of Triplet loss is still high. Like Triplet loss, N -pair

loss [27] and Lifted Structure loss [29] that compare each

positive pair of data to multiple negative pairs also have

complexity O(M3). The training complexity of these losses

becomes prohibitively high as the number of training data

M increases, which slows down the speed of convergence

as demonstrated in Figure 1.

4. Experiments

In this section, our method is evaluated and compared to

current state-of-the-art on the four benchmark datasets for

deep metric learning [17, 19, 29, 36]. We also investigate

the effect of hyperparameters and embedding dimensional-

ity of our loss to demonstrate its robustness.

3242

Recall@K
CUB-200-2011 Cars-196

1 2 4 8 1 2 4 8

Clustering64 [28] BN 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8

Proxy-NCA64 [21] BN 49.2 61.9 67.9 72.4 73.2 82.4 86.4 87.8

Smart Mining64 [10] G 49.8 62.3 74.1 83.3 64.7 76.2 84.2 90.2

MS64 [34] BN 57.4 69.8 80.0 87.8 77.3 85.3 90.5 94.2

SoftTriple64 [23] BN 60.1 71.9 81.2 88.5 78.6 86.6 91.8 95.4

Proxy-Anchor64 BN 61.7 73.0 81.8 88.8 78.8 87.0 92.2 95.5

Margin128 [37] R50 63.6 74.4 83.1 90.0 79.6 86.5 91.9 95.1

HDC384 [40] G 53.6 65.7 77.0 85.6 73.7 83.2 89.5 93.8

A-BIER512 [22] G 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1

ABE512 [15] G 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1

HTL512 [7] BN 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7

RLL-H512 [35] BN 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1

MS512 [34] BN 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5

SoftTriple512 [23] BN 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9

Proxy-Anchor512 BN 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3
†Contra+HORDE512 [13] BN 66.3 76.7 84.7 90.6 83.9 90.3 94.1 96.3
†Proxy-Anchor512 BN 71.1 80.4 87.4 92.5 88.3 93.1 95.7 97.5

Table 2. Recall@K (%) on the CUB-200-2011 and Cars-196 datasets. Superscripts denote embedding sizes and † indicates models

using larger input images. Backbone networks of the models are denoted by abbreviations: G–GoogleNet [31], BN–Inception with batch

normalization [12], R50–ResNet50 [11].

4.1. Datasets

We employ CUB-200-2011 [36], Cars-196 [17], Stan-

ford Online Product (SOP) [29] and In-shop Clothes Re-

trieval (In-Shop) [19] datasets for evaluation. For CUB-

200-2011, we use 5,864 images of its first 100 classes for

training and 5,924 images of the other classes for testing.

For Cars-196, 8,054 images of its first 98 classes are used

for training and 8,131 images of the other classes are kept

for testing. For SOP, we follow the standard dataset split

in [29] using 59,551 images of 11,318 classes for training

and 60,502 images of the rest classes for testing. Also for

In-Shop, we follow the setting in [19] using 25,882 images

of the first 3,997 classes for training and 28,760 images of

the other classes for testing; the test set is further partitioned

into a query set with 14,218 images of 3,985 classes and a

gallery set with 12,612 images of 3,985 classes.

4.2. Implementation Details

Embedding network: For a fair comparison to previous

work, the Inception network with batch normalization [12]

pre-trained for ImageNet classification [5] is adopted as our

embedding network. We change the size of its last fully

connected layer according to the dimensionality of embed-

ding vectors, and L2-normalize the final output.

Training: In every experiment, we employ AdamW opti-

mizer [20], which has the same update step of Adam [16]

yet decays the weight separately. Our model is trained for

40 epochs with initial learning rate 10−4 on the CUB-200-

2011 and Cars-196, and for 60 epochs with initial learning

rate 6 · 10−4 on the SOP and In-shop. The learning rate for

proxies is scaled up 100 times for faster convergence. Input

batches are randomly sampled during training.

Proxy setting: We assign a single proxy for each semantic

class following Proxy-NCA [21]. The proxies are initialized

using a normal distribution to ensure that they are uniformly

distributed on the unit hypersphere.

Image setting: Input images are augmented by random

cropping and horizontal flipping during training while they

are center-cropped in testing. The default size of cropped

images is 224×224 as in most of previous work, but for

comparison to HORDE [13], we also implement models

trained and tested with 256×256 cropped images.

Hyperparameter setting: α and δ in Eq. (4) is set to 32

and 10−1, respectively, for all experiments.

4.3. Comparison to Other Methods

We demonstrate the superiority of our Proxy-Anchor

loss quantitatively by evaluating its image retrieval perfor-

mance on the four benchmark datasets. For a fair compar-

ison to previous work, the accuracy of our model is mea-

sured in three different settings: 64/128 embedding dimen-

sion with the default image size (224×224), 512 embedding

dimension with the default image size, and 512 embedding

dimension with the larger image size (256×256).

Results on the CUB-200-2011 and Cars-196 datasets are

summarized in Table 2. Our model outperforms all the

previous arts including ensemble methods [15, 22] in all

the three settings. In particular, on the challenging CUB-

200-2011 dataset, it improves the previous best score by a

large margin, 2.7% in Recall@1. As reported in Table 3,

3243

Recall@K 1 10 100 1000

Clustering64 [28] 67.0 83.7 93.2 -

Proxy-NCA64 [21] 73.7 - - -

MS64 [34] 74.1 87.8 94.7 98.2

SoftTriple64 [23] 76.3 89.1 95.3 -

Proxy-Anchor64 76.5 89.0 95.1 98.2

Margin128 [37] 72.7 86.2 93.8 98.0

HDC384 [40] 69.5 84.4 92.8 97.7

A-BIER512 [22] 74.2 86.9 94.0 97.8

ABE512 [15] 76.3 88.4 94.8 98.2

HTL512 [7] 74.8 88.3 94.8 98.4

RLL-H512 [35] 76.1 89.1 95.4 -

MS512 [34] 78.2 90.5 96.0 98.7

SoftTriple512 [23] 78.3 90.3 95.9 -

Proxy-Anchor512 79.1 90.8 96.2 98.7
†Contra+HORDE512 [13] 80.1 91.3 96.2 98.7
†Proxy-Anchor512 80.3 91.4 96.4 98.7

Table 3. Recall@K (%) on the SOP. Superscripts denote embed-

ding sizes and † indicates models using larger input images.

Recall@K 1 10 20 40

HDC384 [40] 62.1 84.9 89.0 92.3

HTL128 [7] 80.9 94.3 95.8 97.4

MS128 [34] 88.0 97.2 98.1 98.7

Proxy-Anchor128 90.8 97.9 98.5 99.0

FashionNet4096 [19] 53.0 73.0 76.0 79.0

A-BIER512 [22] 83.1 95.1 96.9 97.8

ABE512 [15] 87.3 96.7 97.9 98.5

MS512 [34] 89.7 97.9 98.5 99.1

Proxy-Anchor512 91.5 98.1 98.8 99.1
†Contra+HORDE512 [13] 90.4 97.8 98.4 98.9
†Proxy-Anchor512 92.6 98.3 98.9 99.3

Table 4. Recall@K (%) on the In-Shop. Superscripts denote

embedding sizes and † indicates models using larger input images.

our model also achieves state-of-the-art performance on the

SOP dataset. It outperforms previous models in all the cases

except for Recall@10 and Recall@100 with 64 dimensional

embedding, but even in these cases it achieves the second

best. Finally, on the In-Shop dataset, it attains the best

scores in all the three settings as shown in Table 4.

For all the datasets, our model with the larger crop size

and 512 dimensional embedding achieves the state-of-the-

art performance. Also note that our model with the low em-

bedding dimension often outperforms existing models with

the high embedding dimension, which suggests that our loss

allows to learn a more compact yet effective embedding

space. Last, but not least, our loss boosts the convergence

speed greatly as summarized in Figure 1.

4.4. Qualitative Results

To further demonstrate the superiority of our loss, we

present qualitative retrieval results of our model on the four

Query Top-4 Retrievals

(a)

(b)

(d)

(c)

Figure 4. Qualitative results on the CUB-200-2011 (a), Cars-196

(b), SOP (c) and In-shop (d). For each query image (leftmost), top-

4 retrievals are presented. The results with red boundary are fail-

ure cases, which are however substantially similar to their query

images in terms of appearance.

datasets. As can be seen in Figure 4, intra-class appearance

variation is significantly large in these datasets in particular

by pose variation and background clutter in the CUB200-

2011, distinct object colors in the Cars-196, and view-point

changes in the SOP and In-Shop datasets. Even with these

challenges, the embedding network trained with our loss

performs retrieval robustly.

4.5. Impact of Hyperparameters

Batch size: To investigate the effect of batch size on the

performance of our loss, we examine Recall@1 of our loss

while varying batch size on the four benchmark datasets.

The result of the analysis is summarized in Table 5 and 6,

where one can observe that larger batch sizes improve per-

formance since our loss can consider a larger number of ex-

amples and their relations within each batch. On the other

hand, performance is slightly reduced when the batch size

is small since it is difficult to determine the relative hard-

ness in this setting. On the datasets with a large number of

images and classes, i.e., SOP and In-shop, our loss needs

to utilize more examples to fully leverage the relations be-

3244

Batch size
Recall@1

CUB-200-2011 Cars-196

30 65.9 84.6

60 67.0 86.2

90 68.4 86.2

120 68.5 86.3

150 68.6 86.4

180 69.0 86.2

Table 5. Accuracy of our model in Recall@1 versus batch size on

the CUB-200-2011 and Cars-196.

Batch size
Recall@1

SOP In-shop

30 76.0 91.3

60 78.0 91.3

90 78.5 91.5

120 78.9 91.7

150 79.1 91.9

300 79.3 92.0

600 79.3 91.7

Table 6. Accuracy of our model in Recall@1 versus batch size on

the SOP and In-shop.

32 64 128 256 512 1024
Embedding Dimension

72.5

75.0

77.5

80.0

82.5

85.0

R@
1

Proxy-Anchor
MS

Figure 5. Accuracy in Recall@1 versus embedding dimension on

the Cars-196.

tween data points. Our loss achieves the best performance

when the batch size is equal to or larger than 300.

Embedding dimension: The dimension of embedding vec-

tors is a crucial factor that controls the trade-off between

speed and accuracy in image retrieval systems. We thus

investigate the effect of embedding dimensions on the re-

trieval accuracy in our Proxy-Anchor loss. We test our loss

with embedding dimensions varying from 64 to 1,024 fol-

lowing the experiment in [34], and further examine that with

32 embedding dimension. The result of analysis is quan-

tified in Figure 5, in which the retrieval performance of

our loss is compared with that of MS loss [34]. The per-

formance of our loss is fairly stable when the dimension

is equal to or larger than 128. Moreover, our loss outper-

forms MS loss in all embedding dimensions, and more im-

portantly, its accuracy does not degrade even with the very

high dimensional embedding unlike MS loss.

4

8

16

32

64

60
70
80
90

0
0.1

0.2
0.3

0.4

64.48
65.56

66.68
68.24

69.09

76.4
77.94

77.73
79.15

79.14

84.11
83.66

83.51
83.58

84.52

86.29
86.1

85.66
85.71

85.13

83.6686.67
86.26

85.51
86.35

δ

R@1

α

64 87

Figure 6. Accuracy in Recall@1 versus δ and α on the Cars-196.

α and δ of our loss: We also investigate the effect of

the two hyperparameters α and δ of our loss on the Cars-

196 dataset. The results of our analysis are summarized

in Figure 6, in which we examine Recall@1 of Proxy-

Anchor by varying the values of the hyperparameters α ∈
{4, 8, 16, 32, 64} and δ ∈ {0, 0.1, 0.2, 0.3, 0.4}. The results

suggest that when α is greater than 16, the accuracy of our

model is high and stable, thus insensitive to the hyperpa-

rameter setting. Our loss outperforms current state-of-the-

art with any α greater than 16. In addition, increasing δ
improves performance although its effect is relatively small

when α is large. Note that our hyperparameter setting re-

ported in Section 4.2 is not the best, although it outperforms

all existing methods on the dataset, as we did not tune the

hyperparameters to optimize the test accuracy.

5. Conclusion

We have proposed a novel metric learning loss that takes

advantages of both proxy- and pair-based losses. Like

proxy-based losses, it enables fast and reliable convergence,

and like pair-based losses, it can leverage rich data-to-

data relations during training. As a result, our model has

achieved state-of-the-art performance on the four public

benchmark datasets, and at the same time, converged most

quickly with no careful data sampling technique. In the fu-

ture, we will explore extensions of our loss for deep hashing

networks to improve its computational efficiency in testing

as well as that in training.

Acknowledgement: This work was supported by IITP grant,

Basic Science Research Program, and R&D program for Ad-

vanced Integrated-intelligence for IDentification through the NRF

funded by the Ministry of Science, ICT (No.2019-0-01906

Artificial Intelligence Graduate School Program (POSTECH),

NRF-2018R1C1B6001223, NRF-2018R1A5A1060031, NRF-

2018M3E3A1057306, NRF-2017R1E1A1A01077999).

3245

References

[1] Nicolas Aziere and Sinisa Todorovic. Ensemble deep mani-

fold similarity learning using hard proxies. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 1, 3
[2] Jane Bromley, Isabelle Guyon, Yann Lecun, Eduard

Säckinger, and Roopak Shah. Signature verification using

a ”siamese” time delay neural network. In Proc. Neural In-

formation Processing Systems (NeurIPS), 1994. 2, 5
[3] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi

Huang. Beyond triplet loss: A deep quadruplet network for

person re-identification. In Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017. 1
[4] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2005. 1, 2, 5
[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: a large-scale hierarchical image

database. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2009. 6
[6] Thanh-Toan Do, Toan Tran, Ian Reid, Vijay Kumar, Tuan

Hoang, and Gustavo Carneiro. A theoretically sound upper

bound on the triplet loss for improving the efficiency of deep

distance metric learning. In Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019. 1
[7] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R.

Scott. Deep metric learning with hierarchical triplet loss.

In Proc. European Conference on Computer Vision (ECCV),

2018. 6, 7
[8] Jacob Goldberger, Geoffrey E Hinton, Sam T Roweis, and

Ruslan R Salakhutdinov. Neighbourhood components anal-

ysis. In Proc. Neural Information Processing Systems

(NeurIPS), 2005. 3
[9] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In Proc. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2006. 1, 2, 5
[10] Ben Harwood, Vijay Kumar B G, Gustavo Carneiro, Ian

Reid, and Tom Drummond. Smart mining for deep metric

learning. In Proc. IEEE International Conference on Com-

puter Vision (ICCV), 2017. 1, 3, 5, 6
[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016. 6
[12] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In Proc. International Conference on Machine

Learning (ICML), 2015. 6
[13] Pierre Jacob, David Picard, Aymeric Histace, and Edouard

Klein. Metric learning with horde: High-order regularizer

for deep embeddings. In Proc. IEEE International Confer-

ence on Computer Vision (ICCV), 2019. 6, 7
[14] Sungyeon Kim, Minkyo Seo, Ivan Laptev, Minsu Cho, and

Suha Kwak. Deep metric learning beyond binary supervi-

sion. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 1
[15] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee,

and Keunjoo Kwon. Attention-based ensemble for deep met-

ric learning. In Proc. European Conference on Computer

Vision (ECCV), 2018. 6, 7
[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Proc. International Conference

on Learning Representations (ICLR), 2015. 6
[17] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

Proceedings of the IEEE International Conference on Com-

puter Vision Workshops, pages 554–561, 2013. 1, 2, 5, 6
[18] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embedding

for face recognition. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 1
[19] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition and

retrieval with rich annotations. In Proc. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016. 2,

5, 6, 7
[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In Proc. International Conference on Learn-

ing Representations (ICLR), 2019. 6
[21] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Le-

ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-

ric learning using proxies. In Proc. IEEE International Con-

ference on Computer Vision (ICCV), 2017. 1, 2, 3, 5, 6, 7
[22] Michael Opitz, Georg Waltner, Horst Possegger, and Horst

Bischof. Deep metric learning with bier: Boosting inde-

pendent embeddings robustly. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 2018. 6, 7
[23] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong

Jin. Softtriple loss: Deep metric learning without triplet sam-

pling. In Proc. IEEE International Conference on Computer

Vision (ICCV), 2019. 1, 3, 5, 6, 7
[24] Limeng Qiao, Yemin Shi, Jia Li, Yaowei Wang, Tiejun

Huang, and Yonghong Tian. Transductive episodic-wise

adaptive metric for few-shot learning. In Proc. IEEE Inter-

national Conference on Computer Vision (ICCV), 2019. 1
[25] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

FaceNet: A unified embedding for face recognition and clus-

tering. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015. 1, 2, 3, 5
[26] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-

cal networks for few-shot learning. In Advances in Neural

Information Processing Systems, pages 4077–4087, 2017. 1
[27] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In Proc. Neural Information Pro-

cessing Systems (NeurIPS), 2016. 1, 2, 5
[28] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin

Murphy. Deep metric learning via facility location. In Proc.

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 6, 7
[29] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016. 1, 2, 5, 6
[30] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS

Torr, and Timothy M Hospedales. Learning to compare: Re-

lation network for few-shot learning. In Proc. IEEE Confer-

3246

ence on Computer Vision and Pattern Recognition (CVPR),

2018. 1
[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proc. IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2015. 6
[32] Jiang Wang, Yang Song, T. Leung, C. Rosenberg, Jingbin

Wang, J. Philbin, Bo Chen, and Ying Wu. Learning fine-

grained image similarity with deep ranking. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2014. 1, 2
[33] Xiaolong Wang and Abhinav Gupta. Unsupervised learning

of visual representations using videos. In Proc. IEEE Inter-

national Conference on Computer Vision (ICCV), 2015. 1
[34] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and

Matthew R Scott. Multi-similarity loss with general pair

weighting for deep metric learning. In Proc. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2019. 1, 2, 3, 6, 7, 8
[35] Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu,

Romain Garnier, and Neil M Robertson. Ranked list loss for

deep metric learning. In Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019. 1, 2, 6,

7
[36] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010. 2, 5, 6
[37] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and

Philipp Krahenbuhl. Sampling matters in deep embedding

learning. In Proc. IEEE International Conference on Com-

puter Vision (ICCV), 2017. 1, 3, 4, 6, 7
[38] Tong Xiao, Shuang Li, Bochao Wang, Liang Lin, and Xiao-

gang Wang. Joint detection and identification feature learn-

ing for person search. In Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017. 1
[39] Baosheng Yu and Dacheng Tao. Deep metric learning with

tuplet margin loss. In Proc. IEEE International Conference

on Computer Vision (ICCV), 2019. 1
[40] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware

deeply cascaded embedding. In Proc. IEEE International

Conference on Computer Vision (ICCV), 2017. 1, 3, 6, 7
[41] Sergey Zagoruyko and Nikos Komodakis. Learning to com-

pare image patches via convolutional neural networks. In

Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. 1

3247

