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Abstract

Recently, deep learning-based single image reflection

separation methods have been exploited widely. To benefit

the learning approach, a large number of training image-

pairs (i.e., with and without reflections) were synthesized in

various ways, yet they are away from a physically-based di-

rection. In this paper, physically based rendering is used

for faithfully synthesizing the required training images, and

a corresponding network structure and loss term are pro-

posed. We utilize existing RGBD/RGB images to estimate

meshes, then physically simulate the light transportation

between meshes, glass, and lens with path tracing to syn-

thesize training data, which successfully reproduce the spa-

tially variant anisotropic visual effect of glass reflection.

For guiding the separation better, we additionally consider

a module, backtrack network (BT -net) for backtracking the

reflections, which removes complicated ghosting, attenua-

tion, blurred and defocused effect of glass/lens. This en-

ables obtaining a priori information before having the dis-

tortion. The proposed method considering additional a pri-

ori information with physically simulated training data is

validated with various real reflection images and shows vi-

sually pleasant and numerical advantages compared with

state-of-the-art techniques.

1. Introduction

When taking a photo through a glass or a window, the

front scene that is transmitted through the glass can be seen,

but sometimes the reflection from the back scene is captured

as well. These inevitable reflections and dim transmission

can be annoying for some cases, for example, a case of

taking a photo of a skyscraper from an indoor room. As

a result, removing the reflections from the input images can

help us to generate better images and various computer vi-

sion techniques to work robustly.

Physically, an image I with those reflections is a sum of

the glass reflected back scene, R̃, and the glass transmitted

front scene, T̃ , as I(x, y) = T̃ (x, y) + R̃(x, y). Single im-

age reflection removal problem is ill-posed, without using

additional assumptions or priors.

Real reflection Our rendered
PSNR: 25.732, SSIM: 0.856 

CEIL synthesized
PSNR:16.154, SSIM: 0.739 

Front scene Zhang synthesized
PSNR:19.532, SSIM: 0.786 

Wen synthesized
PSNR:22.085, SSIM: 0.827 

Figure 1: Comparison between existing reflection synthesizing

methods and our physically-based rendering method. The real re-

flection image is captured by a camera behind a glass. Our method

can produce spatially variant visual effects that are most similar

to the real-world reflection image. For example, the near bottle

is blurred and the far bottle is focused in the transmission scene.

Also, the reflection level of some back scene objects is properly

considered. In contrast, previous methods assume the glass trans-

mitted front scene is all clear, and the reflected back scene is spa-

tially invariantly blurred, introducing biased information to the

dataset. Sec. 6.1 has more details.

Previous methods utilize multiple images of reflection

with different conditions for obtaining some priors [1, 23,

14, 20]. Especially, motion cue prior is widely used for

separating the reflections from multi-images [8, 33, 9]. Al-

though multiple-image reflection separation methods show

reasonable results, it is not easy for users to capture con-

strained images as suggested in the prior approaches.

For single image reflection removal, natural image pri-

ors [16, 17, 18] or smoothness priors [19, 30] are used

for formulating objective functions. Recent approaches

started to utilize deep neural networks for removing the

reflections on a single image. While training deep neu-

ral networks relies on a faithful dataset, most up-to-date

methods synthesize datasets in an image space through a

weighted addition between the front scene and the back

scene [7, 36, 29, 34, 31], due to the difficulty of the phys-
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ical simulation of the reflection and the transmission phe-

nomena. Recently, Wen et al.[32] propose a method that

generates reflection training images using deep learning ar-

chitecture. However, these image-space methods ignore the

physical fact that the visual effects of reflections are spa-

tially variant, depending on the 3D positions of the visi-

ble points. Figure 1 shows the visual and numerical com-

parison of generated reflection images against the ground

truth (Sec. 6.1).

In this paper, we present a data generation method to

synthesize physically faithful training data. The method

is based on modeling and rendering techniques, such as

depth estimation, geometry synthesizing, and physically-

based rendering. We utilize such physically-based training

images, including the transmission and the reflection with

or without glass/lens-effects, i.e., the attenuation, defocus-

ing, blurring, and ghosting effects related to passing through

a glass/camera lens (Sec. 4), for training our deep learn-

ing architectures. Especially, we train a backtrack network

(BT -net) to fetch a priori information to improve separation

quality.

In summary, our contributions are as follows:

• Propose a synthesizing method to physically render a

faithful reflection image dataset for training.

• Use BT -net to transform the reflection image back to

its prior-distortion status as a priori information of the

separation problem.

2. Related Work

Single image-based methods with conventional priors.

Since the single image methods lack information compared

to the multi-image methods, they assume predefined pri-

ors. One of the widely used priors is the natural image

gradient sparsity priors [17, 18]. These approaches decom-

pose the layers with minimal gradients and local features.

Levin et al. [16] proposed gradient sparsity priors with user

labeling and showed reasonable results. Another widely

used assumption is that reflection layers are more likely

to be blurred because of the different distance to the cam-

era [19, 30]. In addition to that, Arvanitopoulos et al. [2]

proposed the Laplacian fidelity term and l0-gradient spar-

sity term to suppress reflections. Shih et al. [24] suggested

to examine ghosting effects on the reflection and model

them by Gaussian Mixture Models (GMM) patch prior.

Single image based methods with deep learning. Re-

cent studies start to adopt deep learning for the reflection

removal problem. Fan et al. [7] proposed a two-step deep

architecture utilizing edges of the image. Zhang et al. [36]

adopt conditional GAN [11] with a combination of percep-

tual loss, adversarial loss, and exclusion loss for separat-

ing reflection. Wan et al. [29] suggested a concurrent deep

learning-based framework for gradient inference and image

inference. Yang et al. [34] proposed a cascaded deep net-

work for estimating both the transmission and the reflection.

Wei et al. [31] suggest to use misaligned real images for

training and its corresponding loss term, and Wen et al. [32]

proposes a learning architecture to produce reflection train-

ing images with a corresponding removal network.

Our method is also based on learning-based single image

reflection removal, but with two main differentiations. First,

we render a physically faithful dataset to reproduce lens

focus and glass-effect realistically. These spatially variant

anisotropic visual effects vary depending on the depth and

viewing angle across the image space and were not sup-

ported faithfully by previous image-space data generation

methods. Second, our method utilizes information not only

after the images were distorted by the glass/lens (a posteri-

ori information), but also before the glass/lens distortion (a

priori information), to get better separation results.

Synthesizing training datasets with rendering. Monte

Carlo (MC) rendering is widely used in various applications

for high-quality image synthesis. Its theoretical foundation

includes the physical simulation of light transportation and

the unbiased integration of incident radiances [35]. In order

to simulate the shading effect of complex geometry details,

displacement mapping is proposed to reconstruct geometry

from a depth map [6]. Because physically-based rendering

can faithfully simulate the physical process of light trans-

portation, it has been proven to be a promising way to syn-

thesize deep learning datasets for various computer vision

problems [37, 26, 21].

In this paper, we propose to use displacement mapping

and path tracing to synthesize a physically plausible dataset

for the reflection removal problem.

3. Overview

In this section, we present an overview of our method.

There are two main components of our reflection removal

technique. The first part is synthetically generating train-

ing images with physically-based rendering, and the second

part is network training using the rendered training images

as additional priori information.

To train the reflection removal network, a large amount

of reflection and reflection-free image pairs are necessary.

It is, however, quite troublesome to obtain such kinds of

many image pairs. Most of the prior deep learning-based

reflection removal methods [7, 36, 29, 34, 31] synthesize

a reflection image by mixing two ordinary images, one as a

reflection and another as a transmission, with different coef-

ficients followed by applying Gaussian blurring and scaling

down the brightness of the reflection. The technical details

vary from one to the other, but they synthesize the reflection

images in image space. Lately, Wen et al. [32] suggested to
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Figure 2: Overview of our method structure. From a given image with reflection (I), our SP -net first separates I to predicted front scene

transmission, T ∗, and back scene reflection with glass-effects, R̃∗. A posteriori loss (Lpst) is calculated with each of the predicted values

and its ground truth. Our trained backtrack network, BT -net, removes the glass and lens effects of the predicted R̃
∗ into R

∗. Since R
∗ is

released from complicated glass/lens-effects, we can better capture various image information, resulting in clearer error matching between

the predicted image and its ground truth. To utilize this information, we use a new loss, a priori loss (Lpr), between R
∗ and its ground

truth (GT). The entire separation network is trained with a loss combination of Lpst and Lpr .

use a network for generating reflection training image pairs,

but still, they do not consider the spatially variant visual ef-

fects.

We find that instead of synthesizing the reflection images

in the image space, rendering the reflection images in a 3D

space would produce more realistic images for training, re-

sulting in a higher removal accuracy. In order to achieve

a physically faithful dataset, we adopt a series of model-

ing and rendering techniques, i.e., depth estimation, geom-

etry synthesizing, and physically-based rendering technique

(path tracing [13]).

From existing DIODE RGBD dataset [27] and

PLACES365 RGB dataset [38], we randomly choose

one image as a front scene transmission layer (the side in

front of the camera) and another image as a back scene

reflection layer (the side behind the camera). With one

front scene and one back scene as a scene setup, we extract

the 3D model of the scene with depth and then render it

with path tracing to synthesize a group of images with or

without reflection for training; for the RGB dataset, we

apply depth estimation [4] to extract the 3D model of the

scene.

Figure 2 shows the overall pipeline of our network train-

ing algorithm using 4-image tuples as the training ground

truth (GT). The algorithm contains a separation network

(SP -net), which separates the input image into two layers

with the help of the backtrack network (BT -net), which at-

tempts to remove the glass/lens-effects (e.g., blurring, atten-

uation, and ghosting) of R̃ for better separation.

As shown in Figure 3, we can render 4-image tuples (I ,

T ,R̃, R), and with those image tuples, we first train the BT -

net, so that the R̃ can be backtracked into R and can be used

for additional a priori information for separation. The ta-

ble of Figure 3 summarizes these notations. We then train

the main SP -net with rendered 4 tuples along with the pre-

trained BT -net.

Intuitively, the algorithm makes use of additional a pri-

ori information (without glass/lens-effects) of separated

R̃ along with widely used a posteriori information with

glass/lens-effects. Specifically, those existing techniques

try to calculate the error of separated reflection distorted

by the glass-effect. However, the complicated glass-effects

can hinder clear matching between predicted images and

their GTs (e.g., feature loss), resulting in a low-quality loss

generation. Interestingly, we find that the a priori informa-

tion can provide additional clues for the separation problem.

With the help of our BT -net, we can physically backtrack

the physical process and remove the glass/lens-effects on an

image.

4. Physically Faithful Dataset Generation

Compared with the classic image-space synthesized

data, our physically faithful data is featured with anisotropic

spatial variations that rely on physical simulation of light

transportation within 3D space. In theory, the glass-effect

and its physical light transmission effect are much more

complex compared to the existing Gaussian blurring as-

sumption adopted in prior techniques [7, 36, 34]. For a light

path connecting a visible point xk and the camera viewpoint
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RGB image Syn. Depth Syn. Mesh

(1) I (2) T (3) R̃ (4) R

Figure 3: In this example, we set up a scene consisting of the front scene containing the house and back scene with indoor decorations.

Suppose that we look at the front scene with a camera behind a glass. (1) I is the input image with reflection. (2) T is front scene

transmission. (3) R̃ is the reflected back scene (reflection) image with lens/glass-effects, and it is computed by physically simulating the

real-world attenuation and glass-effect, i.e., multiple bounces within the glass. (4) R is the back scene (reflection) image without any

glass-effects.

x0 (Figure 3) bouncing through k − 1 points, the contribu-

tion is computed as:

L(x0 ← xk) =
Le(xk,xk−1)V̂ (xk−1,xk)

prob(x0,x1, ...xk)
k−1∏

i=1

G(xi,xi+1)f(xi−1,xi,xi+1)V̂ (xi−1,xi),

(1)

where Le(xk,xk−1) is the outgoing radiance of point xk,

prob(x0,x1, ...xk) is the probability of sampling the path

x0,x1, ...xk from a given sampler, V̂ (xi−1,xi) is the gen-

eralized visibility term between two points considering the

medium attenuation factor, G(xi,xi+1) is the geometry

term between two points, and f(xi−1,xi,xi+1) is the bidi-

rectional scattering function of point xi from xi−1 to xi+1.

Detailed explanations of these terms can be found in [5].

Simply speaking, a light path starting from a visible

point is reflected/refracted multiple times by the glass and

lens before contributing its brightness to the image, result-

ing in ghosting, blurring, defocusing, and attenuation. We

call the visual effects resulting from passing through the

lens or glass as lens/glass-effects. Lens-effect includes de-

focusing and attenuation. Glass-effect includes ghosting,

blurring, and attenuation. When a path segment between

xi and xi+1 passes through glass/lens, it will introduce

glass/lens-effects. To remove those effects, we can render a

scene without a glass or lens (Figure 4).

All these visual effects are spatially variant because the

contribution function (Equation 1) is defined in 3D space

rather 2D image space. In order to prepare such a dataset,

we adopt a series of modeling and rendering techniques.

Our physically-synthesized dataset not only improves the

network performance but also provides a new perspec-

tive for understanding and exploring the reflection removal

problem based on a physical ground.

4.1. Mesh Generation

Generating a variety of geometry meshes is the first

block enabling physical simulation. Because modeling

thousands of geometry scenes is economically prohibitive,

we adapt the existing DIODE RGBD dataset [27]. In order

to expand the diversity of the dataset, e.g., to add scenes

with humans, we additionally use the labeled RGB dataset

for scene recognition [38] and adopt a depth estimation

technique [4] to synthesize the depth channel.

We choose 3000 image pairs (6 k in total) from the

DIODE dataset, and 2000 image pairs (4 k in total) from the

PLACES dataset. Specifically, we selected 34 categories of

the scenes from the PLACES dataset. Because the depth es-

timation method predicts only normalized relative depth in

a single image, we manually scaled each category of the

scene with an appropriated depth range; e.g., 4 m depth

on average for the bedroom scene. We mix 3000 scanned

RGBD image pairs and 2000 synthesized RGBD pairs. Fi-

nally, the depth channel is fed into Blender [3] as a dis-

placement map to export a geometry mesh from the input

image. The figures in the top right corner of Figure 3 show

an example.

4.2. Rendering Process

Given an RGB image and its corresponding mesh geom-

etry, we attach the RGB channels of the image to the ge-

ometry surface to simulate the physical light transportation
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(a) (b) (c) (d) (e) (f) (g)

Figure 4: Images w/ and w/o lens- and glass-effects. (a) is a front scene w/o lens- and glass-effects; thus the whole image is sharp and

clear. (b) is front scene w/ lens-effect, but w/o a glass-effect, where the corners are blurred since they are outside the focus range; the

focus point is set to the center of the front scene and thus its effect is subtle. (c) is front scene w/ lens- and glass-effect, where the color is

attenuated and image are even more blurred due to the glass. (d) is a back scene w/o lens- and glass-effects, so it is clean. (e) is back scene

w/ lens-effect, but w/o glass-effect, where the whole image is blurred. (f) is a front scene w/ lens- and glass-effects, where the glass further

introduces attenuation, blurring and ghosting effect. (g) is the sum of (c) and (f).

with path tracing [12]. For each scene setup, we randomly

choose two images out of our image dataset, one for the

front scene and the other for the back scene and render the

entire scene with a glass model in the middle.

We study and decompose the physical process of light

transportation and to fetch a posteriori and a priori informa-

tion by rendering up to four different images for each scene.

Figure 3 shows the illustrations of these four different im-

ages for a scene. These four different rendered images in-

clude:

• I: An input image containing transmission plus reflec-

tion, where both front scene and back scene are ren-

dered with the glass-effect and lens-effect.

• T : The front scene image without any glass-effect.

We simulate it with a virtual glass, instead of the real

glass, that warps the light path as real glass, but does

not cause any ghosting, blurring, and attenuation ef-

fect.

• R̃: The back scene image reflected by a glass with

glass- and lens-effects.

• R: The back scene reflection image without any glass-

effect and lens-effects. We simulate it also with the

virtual glass to calculate the reflective direction.

Note that exact T and R are actually impossible to be

captured by the real camera because taking away a real-

world glass will certainly make image points shifted and

thus misaligned with I anymore.

All images are rendered with a low-discrepancy sam-

pler [12] with 256 samples per pixel, which is large enough

to restrain visible noises. The glass is 10 millimeters of

thickness with a common refractive index of 1.6, placed 30
centimeters in front of the camera. We use 55 millimeter

thin lens model with a focus radius of 0.00893. In order to

simulate the real application scenario, we set the focus dis-

tance to the center of the front scene. Overall, our synthet-

ically generated dataset has 5000 image tuples for training

and 200 image tuples for testing.

5. Proposed Network Architectures

Our model consists of two sub-networks. As illustrated

in Figure 2, there is a backtrack network for the back scene

reflection (BT -net) and a main separation network (SP -

net). Initially, the input image I is separated into T ∗ and

R̃∗(with glass-effect) using the SP -net, and then R̃∗ is fed

into BT -net for removing the glass/lens-effect such as dis-

tortion, ghosting, attenuation, and defocusing. The output

of BT -net is R∗, which is supposed to be devoid of the

glass/lens-effect, and is used for providing additional er-

ror calculation for SP -net (a priori loss). Each of our net-

work input is concatenated with extracted hypercolumn fea-

tures [10] from the VGG-19 network [25] as an augmented

input for better utilizing semantic information [36].

5.1. Loss function

Each sub-network has three loss terms: l1-loss, feature

loss, and adversarial loss. l1-loss is used for penalizing

pixel-wise difference in the predicted one, say, X∗, and its

GT, X , via l1 = ‖X∗−X‖ for low-level information com-

parison for the results. Our feature loss and adversarial loss

are based on [36]. The feature loss Lft (Eq. 2) is used for

considering semantic information, based on the activation

difference of a pre-trained VGG-19 network Φ, which is a

trained with the ImageNet dataset [22]. For obtaining re-

alistic images, the adversarial loss is adopted too, as the

many other recent studies [36, 34, 15, 39]. A conditional

GAN [11] is utilized for this. For explanation, suppose that

one of our sub-network’s generator is f , its input is X , and

its GT is Y . The feature loss Lft is calculated as follows:

Lft(f(X), Y ) =
∑

l

γ‖Φl(Y )− Φl(f(X))‖, (2)

where Φl indicates the l-th layer of the VGG-19 network

with the same layer selection of [36], which is ‘conv1 2’,
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‘conv2 2’, ‘conv3 2’, ‘conv4 2’, and ‘conv5 2’. γ is the

weighting parameter, which is empirically set to 0.2.

For the adversarial loss, the discriminator D of one sub-

network is trained by:

∑

X,Y ∈D

logD(X, f(X))− logD(X,Y ), (3)

where the discriminator tries to differentiate between the

GT patches of Y and patches given by f(X) conditioned

on the input X . Adversarial loss is then defined as follows:

Ladv(X, f(X)) =
∑

X∈D

− logD(X, f(X)). (4)

Loss for SP -net. The purpose of the SP -net is separating

T ∗ and R̃∗ from the input I . The first loss we calculate for

training SP -net on its output (T ∗, R̃∗) is a posteriori loss

(Lpst) with the lens/glass-effect. It is the combination of l1-

loss, feature loss between predicted value and ground-truth,

and adversarial loss for T ∗. After using BT -nets removing

glass/lens-effect of R̃∗ (so that it becomes R∗), we also cal-

culate the second loss term called a priori loss (Lpr) without

the glass/lens-effect between predicted R∗ and ground-truth

R.

Lpst = Ll1(T
∗, T ) + Lft(T

∗, T ) + Ladv(I, T
∗)

+ Ll1(R̃
∗, R̃) + Lft(R̃

∗, R̃), (5a)

Lpr = Ll1(R
∗, R) + Lft(R

∗, R). (5b)

Combining the above loss terms, our complete loss for

SP -net is LSP = Lpst + Lpr.

Loss for BT -net. The goal of BT -net is removing the

glass/lens effects from R̃, so that it can be recovered from

darkening and blurring. To train the network, we formulate

a combined loss function of l1-loss, feature loss, and adver-

sarial loss as follows:

LBT = Ll1(R
∗, R) + Lft(R

∗, R) + Ladv(R̃, R∗). (6)

With glass With mirror Front scene Back scene

Figure 5: Experiment setup and taken images.

Implementation. Each of our two sub-nets shares the

same structure based on the one proposed in [36], and they

are fully convolutional networks for considering global in-

formation. For the training, we first train BT -net with ren-

dered image pairs independently, and then pre-trained BT -

net is connected to SP -net for SP -net training (BT -net is

fine-tuned in this stage). SP -net is trained by minimizing

the aforementioned loss terms between GTs and their pre-

dictions with a learning rate of 10−4. The rendered training

images have the 256 × 256 resolution.

6. Experiments with Real and Synthetic Data

We compare our approach with the state-of-the-art deep

learning-based reflection removal methods, CEILNet [7],

Zhang et al. [36], BDN [34], Wen et al. [32] across different

test sets that work for a given single image.

For quantitative evaluation with real-world images, we

utilize the well-known reflection removal benchmark, the

SIR Wild dataset [28]. It consists of three images (I, T, R̃)

under various capturing settings from controlled indoor

scenes to wild scenes. Since the indoor dataset is designed

for exploring the impact of various parameters, we test our

results on their wild scenes. Also, we additionally cap-

ture 100 real reflection pair images for testing (denoted as

real100). Also, we generate 200 rendered images for test-

ing.

6.1. Dataset Evaluation

In order to validate our rendered dataset and its similar-

ity to real-world reflection captured by a camera, we capture

real image pairs with devices of Figure 5. We first capture

the GT I with a glass (so that it contains reflection), then

use a mirror to capture GT R and remove the glass to cap-

ture GT T as inputs of data synthesis. In order to match

common RGB and RGBD datasets, the GT T and R are

captured with F22 to minimize the defocusing effect. In

addition, we capture and calibrate the depth map using a

Kinect on each side of the slider across the glass. With the

captured GT T and R, we generate reflection images with

three different methods [7, 36, 32], and compare them with

our rendered images. Figure 1 shows an example of the gen-

erated reflections. As shown, with depth information and a

physically based rendering model, ours can generate lens-

and glass-effects much similar to the real images.

Table 1 shows the numerical comparison of generated

reflection images, and we use average PSNR and SSIM for

Method PSNR SSIM

CEIL [7] 14.466 0.737

Zhang [36] 20.379 0.842

Wen [32] 20.266 0.856

Ours 29.307 0.943

Table 1: The average similarity of synthesized reflections with 10

real camera-captured reflection images
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Input 𝐼 CEILNet 17 Zhang 18 BDN 18 Ground truthOursWen 19

Figure 6: Examples of reflection removal results on the wild dataset (Rows 1-3) and our real 100 testset (Rows 4-6) visually.

Dataset Index
Methods

Input
CEILNet

[7]

CEILNet

FW

CEILNet

FR

Zhang

[36]

Zhang

FW

Zhang

FR

BDN

[34]

Wen

[32]
Ours

SIR Wild [28]
PSNR 25.89 20.89 19.23 22.51 21.15 21.34 23.18 22.02 21.26 25.55

SSIM 0.903 0.826 0.819 0.880 0.851 0.865 0.890 0.835 0.835 0.905

Real 100
PSNR 21.53 19.24 17.82 20.35 18.66 18.88 20.44 19.46 19.07 21.59

SSIM 0.797 0.733 0.706 0.764 0.750 0.753 0.773 0.753 0.728 0.789

Rendered

Testset

PSNR 23.27 19.31 20.23 23.46 22.21 21.83 24.43 21.66 21.79 27.90

SSIM 0.846 0.745 0.777 0.829 0.829 0.828 0.854 0.819 0.804 0.894

Table 2: Quantitative results of different methods on SIR wild, our real 100, and rendered test set. Some result images of the SIR dataset

can be found in Figure 6. CEILNet, Zhang, and BDN are the pre-trained networks. CEILNet-FR and Zhang-FR are fine-tuned with our

rendered training images, and CEILNet-FW and Zhang-FW are fine-tuned with Wen’s data generation method with the same source images

with ours. Red numbers are the best, and blue numbers are the second best results.

measuring the similarity. We take two different scenes with

5 focus points, in total 10 real reflection images for compar-

ison. Note that 10 real reflection images are different from

the real 100 test set we captured because the real 100 test set

does not have depth. For a fair comparison, we randomly

synthesize 100 images using both CEIL [7] method and

Zhang et al. [36] method for every 10 scenes and pick the

best PSNR and SSIM synthesized image for each scenes.

For the Wen [32] method, since their method utilizes pre-

trained reflection synthesis network to produce 3 types of

reflection, we generate 3 different images for each scene.

Among them, we pick the best PSNR and SSIM synthesized

result for each scenes. The report of their average values is

listed in Table 1.

6.2. Ablation Study

In order to validate the effectiveness of a priori loss from

the BT -net, we evaluate each model (w/ and w/o a priori
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Dataset Index
Model

w/o a priori loss
w/ a priori loss

(Ours)

SIR wild [28]
PSNR 24.31 25.54

SSIM 0.874 0.905

Real 100
PSNR 20.86 21.58

SSIM 0.772 0.789

Rendered

Testset

PSNR 27.34 27.90

SSIM 0.889 0.894

Table 3: Quantitative comparison of our ablated models

loss) on SIR wild, real 100 images, and 200 rendered im-

ages. Each model is trained from scratch with a denoted

loss combination. Since we followed the other loss terms of

Zhang et al. [36], we conduct an ablation study on the new

a priori loss only.

The numerical results show that using the additional a

priori loss can improve the separation quality both in the

real and rendered test sets. Since BT -net backtracks the

darken and distorted predicted R̃∗ into R∗ to calculate a pri-

ori loss, this loss can provide a more robust signal of separa-

tion quality. Moreover, Figure 7 shows some visual results

of our complete model and ablated model on the rendered

test set. Since BT -net can backtrack the predicted R̃∗ into

R∗, our complete model could figure out the reflection and

transmission area better when separating.

Input 𝐼 Ground-truth 𝑇 ෨𝑅∗ (w/o a priori)

෨𝑅∗ (w/ a priori)

𝑇∗ (w/o a priori)

𝑇∗ (w/ a priori)Ground-truth ෨𝑅

Ground-truth 𝑅

𝑅∗ (w/ a priori)

Figure 7: Comparison between the rendered results of our com-

plete model and an ablated model.

6.3. Comparision on Benchmarks

For comparison, we utilize pre-trained network weights

provided by authors. Additionally, we also fine-tune the

author’s pre-trained network with our rendered dataset and

a dataset generated by Wen’s reflection synthesis network.

Two generated datasets share the same source image pairs,

and we use Wen’s pre-trained weight and default setting for

generating reflection training images. Both fine-tuned net-

works are tuned with the same epoch and learning rate. We

name the models that are fine-tuned with our rendered data

with a suffix ‘−FR’, and the models finetuned with Wen’s

reflection synthesized images with a suffix ‘−FW ’. Since

BDN does not provide training code, and Wen’s network

needs additional alpha blending mask for training their sep-

aration network, we cannot fine-tune them.

Figure 6 shows some visual examples of reflection re-

moval results on the SIR wild test set and our real 100 test

set. All the compared methods do not work well in terms

of removing strong regional reflection (row 3), but still, our

method removes some of the reflection without significantly

damaging the transmission area. In the last row, ours and

BDN [34] could remove the reflection of banner in the be-

low, while other methods do not remove, but darken the

overall intensity.

Table 2 shows quantitative results on the real-world test

sets (SIR wild and real 100) and our rendered test set. We

utilize SSIM and PSNR as error metrics, which are widely

used in prior reflection removal methods. Our method

achieves the best or second-best numerical results in all the

datasets. We also validate that our dataset can improve pre-

vious methods (pre-trained networks) by supplying more

physically-based reflection training images (Table 2). How-

ever, for both real reflection testset, none of the existing

methods, no matter how they are trained by classic synthe-

sized dataset or our rendered dataset, outperforms the un-

separated input in both error metrics. This suggests there is

still room for further improvement.

7. Conclusion

We have proposed a novel learning-based single image

reflection removal method, which utilizes reflection training

images generated by physically-based rendering. The train-

ing images consist of different types, including transmission

and reflection w/ and w/o the glass/lens-effects, and provide

both classical a posteriori and novel a priori information.

With the new dataset, we proposed SP -net to separate the

input into two layers with the help of BT -net to remove the

glass/lens-effect in the separated layers for error calculation

(a priori loss). With a priori loss, the separation loss calcu-

lation is improved. Also, we validated that our physically-

based training data can improve existing learning-based re-

flection removal methods as well with various real reflection

test images.

Limitation. In this paper, we did not consider viewpoints

that are not perpendicular to the glass. That is one possible

extension for future research. Also, we did not consider the

curved glass or glass with a special shape, while our render-

ing approach can accommodate these cases by replacing the

plane glass model with a curved one in the future.
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