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Abstract

Real-noise denoising is a challenging task because the

statistics of real-noise do not follow the normal distribution,

and they are also spatially and temporally changing. In or-

der to cope with various and complex real-noise, we pro-

pose a well-generalized denoising architecture and a trans-

fer learning scheme. Specifically, we adopt an adaptive in-

stance normalization to build a denoiser, which can regular-

ize the feature map and prevent the network from overfitting

to the training set. We also introduce a transfer learning

scheme that transfers knowledge learned from synthetic-

noise data to the real-noise denoiser. From the proposed

transfer learning, the synthetic-noise denoiser can learn

general features from various synthetic-noise data, and the

real-noise denoiser can learn the real-noise characteristics

from real data. From the experiments, we find that the pro-

posed denoising method has great generalization ability,

such that our network trained with synthetic-noise achieves

the best performance for Darmstadt Noise Dataset (DND)

among the methods from published papers. We can also see

that the proposed transfer learning scheme robustly works

for real-noise images through the learning with a very small

number of labeled data.

1. Introduction

Image restoration tasks [18, 29, 31, 30, 57, 48, 27, 36]

have achieved noticeable improvement with the develop-

ment of convolutional neural network (CNN). Although

most of image restoration methods work well on syntheti-

cally degraded images [24, 58, 9, 25], they show insufficient

performance on the real degradations.

Regarding the denoising methods, the networks trained

with synthetic-noise (SN) do not work well for the real-

world images because of the discrepancy in the distribution

of SN and real-noise (RN). Specifically, CNNs [54, 55, 56]

trained with Gaussian noise do not work well for the real-

world images, because the CNNs are overfitted to the Gaus-

sian distribution. The problem of overfitting can also be

seen from a toy regression example in Fig. 1. As shown

in Fig. 1(a), the severely overfitted regression method (‘w/o

Regularizer’) shows worse performance than a regularized

method (‘w/ Regularizer’) on the synthetic test data. More-

over, it can be seen in Fig. 1(b) that the generalization abil-

ity is much worse when the training and test domains are

different.

To better address the problem due to the different data

distribution between training and test sets, two kinds of

approaches have been developed: (1) obtaining the pairs

of RN image and corresponding near-noise-free image

[38, 42, 5, 2, 49], and (2) finding more realistic noise model

[20, 7].

The RN datasets enable the quantitative comparison of

denoising performance on real-world images and also pro-

vide the training sets for learning-based methods. The

CNNs trained with RN datasets robustly work on the real-

world images, because domains of training and test set al-

most coincide. However, acquiring the pairs of RN im-

ages needs specialized knowledge, and the amount of pro-

vided datasets would not be enough for training a deeper

CNN [52, 50]. Furthermore, learning-based methods can be

easily overfitted to a specific camera device (dataset), which

cannot cover all the devices that have different characteris-

tics such as gamma correction, color correction, and other

in-camera pipelines.

For a finding more realistic noise model, CBDNet [20]

synthesized near-RN images by considering realistic noise

models and simulating the in-camera pipeline. It gener-

ates enough dataset that simulates more than 200 camera

response functions. The CBDNet shows excellent perfor-

mance on RN images even though the CNN is trained with

the SN. Furthermore, they showed that additional training

with RN dataset improves performance. Although realistic

noise modeling indeed reduces the domain discrepancy be-

tween SN and RN, there still remains a domain discrepancy

to be handled. Moreover, CNN can be overfitted to a certain
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Figure 1: A toy regression example presenting the effects of regularization and transfer learning. (a) We assume that training

and test data are sampled from a 5th order polynomial, with additive white Gaussian noise (AWGN). The original regression

model (without regularizer) is denoted as w/o Regularizer, which is a 10th order polynomial model. As well know, the

higher-order model overfits the data. Assuming that a regularization method successfully degenerates the model to a 6th

order one (w/ Regularizer), then overfitting is relieved. It can be seen from mean squared error (MSE) on synthetic test data

that the regularization can enhance the performance when training and test distributions are the same. (b) We assume another

5th-order polynomial that generates a real data that has some domain difference from the synthetic one. It can be seen from

the MSE on real test data that the regularization is essential for processing other distributions. (c) Transfer learning regression

method w/ Regularizer + TF is fine-tuned with few real data samples from w/ Regularizer. It can be seen from the MSE on

real test data that transfer learning can be trained efficiently with few real training samples.

noise model that is actually not a ‘real’ noise.

From these observations, we propose a novel denoiser

that is well generalized to the various RN from camera

devices by employing an adaptive instance normalization

(AIN) [46, 22, 32, 41]. In recent CNN based methods for

restoring the synthetic degradations [33, 58, 25], regular-

ization methods have not been exploited due to the small

performance gain (even degrading performance). This in-

dicates that a CNN is overfitted to the training data to get

the best performance when domains of training and test set

coincide [16].

On the other hand, the denoiser trained with SN needs

regularization, for applying it to the RN denoising. As

shown in the example of Fig. 1 (a) and (b) with ‘w/ Regular-

izer’, the network needs to be generalized through the reg-

ularization. In this respect, we propose a well-regularized

denoiser by adopting the AIN as a regularization method.

Specifically, the affine transform parameters for the normal-

ization of features are generated from the pixel-wise noise

level. Then, the transform parameters adaptively scale and

shift the feature maps according to the noise characteristics,

which results in the generalization of the CNN.

Furthermore, we propose a transfer learning scheme

from SN to RN denoising network to reduce the domain

discrepancy between the synthetic and the real. As men-

tioned above, the RN dataset would not be sufficient to train

a CNN, which can also be easily overfitted to a certain RN

dataset. Hence, we devise a transfer learning scheme that

learns the general and invariant information of denoising

from the SN domain and then transfer-learns the domain-

specific information from the information of RN. As can be

seen in Fig. 1(c), we believe that the SN denoiser can be

adapted to an RN denoiser by re-transforming normalized

features. Specifically, the parameters of AIN are updated

using the RN dataset. The proposed scheme based on trans-

fer learning can be applied to any dataset that has a small

number of labeled data. That is, a CNN trained with the SN

is easily transferred to work for the RN removal, without

the need for training the whole network with the RN.

The contribution of this work can be summarized as fol-

lows:

• We propose a novel well-generalized denoiser based

on the AIN, which enables the CNN to work for vari-

ous noise from many camera devices.

• We introduce a transfer learning for the denoising

scheme, which learns the domain-invariant informa-

tion from SN data and updates affine transform param-

eters of AIN for the different-domain data.

• The proposed method achieves state-of-the-art perfor-

mance on the SN and RN images.

2. Related Works

The statistics of RN in standard RGB (sRGB) images

depend on the properties of camera sensors and in-camera

pipelines. Specifically, shot noise and readout noise are

generated from the sensor, and the statistics of generated

noise are changed according to the in-camera pipeline such
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Figure 2: Illustration of the proposed denoiser. The noise level estimator and reconstruction network are U-Net based

architecture, so the feature maps are down/up-sampled by average-pool/transposed convolution. We denote each scale of

feature map as 1/s where s can be 1, 2, and 4. All the represented convolutions in reconstruction network are 3 × 3 kernel

having 64s feature maps excluding last convolution. Feature representation of noise level estimator is also composed of 3×3
convolutions with 32 channels and noise level maps are achieved from 3 × 3 convolutions having 3 channel outputs. The

amount of overall parameters is 13.7 M.

as demosaicing, gamma correction, in-camera denoiser,

white balancing, color correction, etc [39]. There have

been several works to approximate the RN model, including

Gaussian-Poisson [17, 34], heteroscedastic Gaussian [21],

Gaussian Mixture Model (GMM) [59], and deep leaning

based methods [11, 1]. Considering the camera pipeline,

CBDNet [20] and Unprocessing [7] also considered real-

istic noise models. Specifically, they obtained near-RN

images by adding the heteroscedastic Gaussian noise to

the pseudo-raw images and feeding them to the camera

pipeline. These methods can simulate more than 200 cam-

era response functions, and thus generate noisy images hav-

ing different characteristics. Moreover, CBDNet is alter-

nately trained with the RN and SN to overcome overfitting

to the noise model. We think the alternate training scheme

would incur training instability due to different data distri-

butions, and also cannot train quite different RN effectively.

Thus, we introduce a new transfer learning scheme that can

simply but effectively adapt SN denoiser to other RN ones

by re-transforming the normalized feature map.

3. Proposed

We aim to train a robust RN denoiser, which reduces the

discrepancy between the distributions of training and test

sets, by proposing a novel denoiser and transfer learning.

Precisely, we propose denoising architecture using the AIN,

which can be well generalized to RN images. Also, we in-

troduce a transfer learning scheme to reduce the remaining

data discrepancy, which consists of two stages: (1) training

a denoiser with SN dataset S = {Xs, Ys} and (2) trans-

fer learning with RN dataset T = {Xr, Yr}, where X and

Y are noise-free images and noisy images respectively, and

the subscript s is for SN and r for RN. We use the noise

model from CBDNet for generating Ys from Xs with the

noise level of σ(ys) where ys ∈ Ys denotes SN image. Af-

ter training SN denoiser with S , RN denoiser is trained with

T (pairs of RN image yr ∈ Yr and near noise-free image

xr ∈ Xr). In the transfer learning stage, domain-specific

parameters are only updated to effectively preserve learned

knowledge from SN data.

3.1. Adaptive Instance Normalization Denoising
Network

We present a novel AIN denoising network (AINDNet),

where the same architecture is employed both for SN and

RN denoiser. We compose AINDNet with a noise level es-

timator and a reconstruction network, which is presented in

Fig. 2. The noise level estimator takes a noisy image y as an

input and generates the estimated noise level map σ̂(y) =
Fest(y; θest) where θest denotes a training parameter of es-

timator. The reconstruction network takes σ̂(y) and y as in-

put and generates denoised image x̂ = Frec(y, σ̂(y); θrec)
where θrec denotes a training parameter of reconstruction

network. The reconstruction network is U-Net based archi-

tecture with AIN Residual blocks (AIN-ResBlocks).

Noise Level Estimator Estimating the noise level would

not be an easy task due to the complex noise model and

in-camera pipeline. In our experiment, we find that pre-

vious simple noise level estimator [20], which consist of

five convolutions, could not accurately estimate the noise

level. The main reason is that the previous estimator has a
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Figure 3: Illustration of the proposed AIN-ResBlock with

corresponding kernel size (k), feature scale (s), and number

of features (n). Note that n is linearly increasing according

to s. Leaky ReLU is employed for an activation function.

The Norm (red) block denotes channel-wise spatial normal-

ization block. Average-pool scales the size of σ̂(y) to be the

same as that of h.

small receptive field so that it could not fully capture com-

plex noise information. From this observation, we design

a new noise level estimator with a larger receptive field

by employing down/up-sampling and multi-scale estima-

tions. Specifically, estimator produces down-scaled estima-

tion map σ̂4(y) ∈RH/4×W/4×3 and original-sized estima-

tion map σ̂1(y) ∈ RH×W×3. Then, these two outputs are

weight averaged to feed reconstruction network:

σ̂(y) = λmsL(σ̂4(y)) + (1− λms)σ̂1(y) (1)

where H , W , L(·) denotes the height and width of the im-

age, and the linear interpolation respectively. λms is empir-

ically determined to 0.8. From the weight average of multi-

scale estimates, we can achieve region-wisely smoothed

σ̂(y), which follows general the characteristic of RN.

Adaptive Instance Normalization The proposed AIN-

ResBlock plays two crucial roles in the proposed denoising

scheme. One is regularizing the network not to be overfit-

ted to SN images, and the other is adapting SN denoiser to

RN denoiser. For this, we build AIN-ResBlcok with two

convolutions and two AIN modules, which is presented in

Fig. 3. The AIN module affine transforms normalized fea-

ture map h ∈RH′×W ′×C of convolution by taking a condi-

tional input σ̂(y) where H ′ ×W ′ denotes the spatial size of

feature map at each scale s, and C is the number of chan-

nels. Specifically, the AIN module produces affine trans-

form parameters such as scale (γ) and shift (β) for each

pixel. Thus, every feature map is channel-wisely normal-

ized and pixel-wisely affine transformed according to the

noise level. The update process of feature map in AIN mod-

ule at site (p ∈RH′

, q ∈RW ′

, c ∈RC) is formally repre-

Figure 4: Illustration of the proposed transfer learning

scheme. AIN module, noise level estimator, and last con-

volution are only updated when learning RN data. For the

better visualization, we omit the noise level estimator in this

figure.

sented as

hnew
p,q,c = γ∗

p,q,c

(

hp,q,c − µc

σc

)

+ β∗
p,q,c (2)

where the variables with superscript * are generated from

σ̂(y), and µc and σc denote the mean and standard deviation

of h respectively, in channel c. Precisely,

µc =
1

H ′W ′

H′

∑

p

W ′

∑

q

hp,q,c (3)

σ2
c =

1

H ′W ′

H′

∑

p

W ′

∑

q

(hp,q,c − µc)
2 + ǫ (4)

where ǫ denotes the stability parameter, which prevents

divide-by-zero in eq. (2), and we set ǫ = 10−5 in

our implementation. Note that γ∗
p,q,c and β∗

p,q,c can be

generated pixel-wisely and thus the proposed method can

process spatially variant noisy images adaptively. In an-

other point of view, AIN module acts as feature atten-

tion [12, 58, 47, 15, 26] with explicitly constrained infor-

mation (σ̂(y)).

3.2. Transfer Learning

We propose transfer learning scheme to leverage S to

accelerate the training of RN denoiser with T that has a

limited number of elements (RN pairs). We expect that

SN denoiser learns general and invariant feature representa-

tions and RN denoiser learns noise characteristics that can-

not be fully modeled from SN data. The proposed transfer

learning scheme can achieve these two merits by adapting

SN denoiser to RN denoiser. For this, we focus on nor-

malization parameter to handle different data distribution,

which is inspired from other style transfer and classifica-

tion tasks [46, 22, 41, 10]. In these methods, transform-

3485



ing normalization parameters can transfer different style do-

main, and different domain classifications can be handled

by switching the batch normalization parameters. From

these observations, we try to adapt different domain de-

noisers by transfer-learning the normalization parameters

assuming that data discrepancy between S and T can be

adapted by re-transforming the normalized feature maps.

Specifically, AIN parameters of SN denoiser can be

adapted pixel-wisely with conditional σ̂i(ys). Thus, AIN

modules and noise level estimator are transfer-learned with

RN data. Although the objective function of noise level can-

not be present in T , noise level estimator can be trained

with the reconstruction loss. We consider that last convolu-

tion plays a crucial role reconstructing feature maps to RGB

image, hence last convolution is also updated. The overall

proposed transfer learning scheme is presented in Fig. 4.

Since the proposed transfer learning scheme only up-

dates the parts of well generalized denoiser, it can be con-

verged with faster speed and get better performance with

very few number of elements from T than training from

scratch. Moreover, the proposed scheme effectively copes

with multiple models, which are inevitably required due to

severely different noise statics, saving lots of memory by

switching specific parameters.

Training For training SN denoiser, we exploit multi-scale

asymmetric loss as an estimation loss where asymmetric

loss is introduced from CBDNet [20] to prevent under es-

timation. Formally, multi-scale asymmetric loss is defined

as,

Lms-asymm =
∑

i∈{1,4}

wi|α− ✶(σ̂i(y
s
)−σi(y

s
)<0)| (5)

· (σ̂i(ys)− σi(ys)).
2

where ✶, ·, and .2 denote element-wise operations such as

indicator function, multiplication, and power respectively.

Hyperparameters {w1, w4, α} are empirically determined

as {0.2, 0.8, 0.25}. σ4(ys) is achieved from 4 × 4 average

pooling σ1(ys).
Then, the proposed SN denoiser is jointly trained with

estimation loss and L1 reconstruction loss as,

L = ‖F (ys; θs)− xs‖
1
1 + λms-asymmLms-asymm (6)

where θs denotes the SN denoiser training parameter in-

cluding noise level estimator and reconstruction network.

λms-asymm denotes the weight term of noise level estima-

tor and is empirically determined to 0.05.

For the RN denoiser, it is only trained with reconstruc-

tion loss:

L = ‖F (yr; θr)− xr‖
1
1 (7)

where θr denotes the RN denoiser training parameter that

is transferred from θs. Previously stated parameter such as

AIN modules, estimator, and last convolution are only up-

dated, and other parameters are fixed when training the RN

denoiser. We use Adam optimizer for both SN denoiser and

RN denoiser.

4. Experiments

We present the results of AWGN and RN images by

training a Gaussian denoiser and RN denoiser.

4.1. Experimental Setup

Training Settings For the Gaussian denoiser, the training

images are obtained from DIV2K [44] and BSD400 [37],

and noisy image is generated by AWGN model. For the

RN denoiser, we train a denoiser with two step: training an

SN denoiser and training the RN denoiser by transfer learn-

ing. We achieve pairs of SN images and noise-free images

from Waterloo dataset [35] with heteroscedastic Gaussian

noise model and simulating in-camera pipelines. The RN

denoiser, which is transferred from SN denoiser, is trained

with SIDD training set [2]. All the training images are

cropped into patches of size 256× 256.

Test Set In the AWGN experiments, we evaluate

Set12 [54] and BSD68 [43] that are widely used for vali-

dating the AWGN denoiser. Furthermore, we adopt three

datasets for real-world noisy images:

• RNI15 [28] is composed of 15 real-world noisy im-

ages. Unfortunately, the ground-truth clean images are

unavailable, therefore we only present qualitative re-

sults.

• DND [42] provides 50 noisy images that are cap-

tured by mirrorless cameras. Since we cannot ac-

cess near noise-free counterparts, the objective results

(PSNR/SSIM) can be achieved by submitting the de-

noised images to DND site.

• SIDD [2] is obtained from smartphone cameras. It

provides 320 pairs of noisy images and correspond-

ing near noise-free ones for the learning based methods

where the captured scenes are mostly static. Further-

more, it provides 1280 patches for validation that has

similar scenes with training set. The quantitative re-

sults (PSNR/SSIM) can be achieved by uploading the

denoised image to SIDD site.

4.2. Comparison with stateofthearts

Noise Level Estimation We evaluate an accuracy of noise

level estimator on exploited noise model images. We com-

pare the proposed noise level estimator with fully convo-

lutional network (FCN) that is widely used [20]. In order
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Table 1: Average MAE and error STD for the images from

Kodak24 where the inputs are corrupted by heteroscedastic

Gaussian including in-camera pipeline.

Method FCN Ours

(σs, σc) MAE STD MAE STD

(0.08, 0.02) 0.039 0.013 0.014 0.012

(0.08, 0.04) 0.059 0.014 0.012 0.011

(0.08, 0.06) 0.076 0.013 0.020 0.010

(0.12, 0.02) 0.052 0.021 0.015 0.014

(0.12, 0.04) 0.071 0.020 0.017 0.014

(0.12, 0.06) 0.087 0.020 0.030 0.014

Average 0.064 0.017 0.018 0.013

# params 29.5 K 29.7 K

Table 2: Average PSNR of the denoised images, where the

inputs are corrupted by AWGN with σ = 15, 25, and 50,

for the images from Set12 and BSD68 datasets. (red: the

best result, blue: the second best)

Test Set Set12 BSD68

Method 15 25 50 15 25 50

BM3D [14] 32.38 29.95 26.70 31.07 28.56 25.62

TNRD [13] 32.50 30.04 26.78 31.42 28.91 25.96

DnCNN [54] 32.68 30.36 27.21 31.61 29.16 26.23

UNLNet [30] 32.67 30.25 27.04 31.47 28.98 26.04

FFDNET [56] 32.75 30.43 27.32 31.63 29.19 26.29

RIDNet [6] 32.91 30.60 27.43 31.81 29.34 26.40

AINDNet 32.92 30.61 27.51 31.69 29.26 26.32

to evaluate the accuracy of estimator itself, each estimator

is trained with L1 regression. The employed quantitative

measurements are mean absolute error (MAE) and standard

deviation (STD) of the error. We report the accuracy of

each estimator in Table 1 where the input images are si-

multaneously corrupted with signal dependent noise level

σs and signal independent noise level σc. We can find that

proposed estimator gets more accurate results than previous

estimator with a similar number of parameters. The results

of more various noise levels will be presented in supple-

mentary file. Furthermore, we will present the denoising

performance when combined with reconstruction network.

AWGN Denoising We compare proposed denoiser on the

noisy grayscale images that are corrupted by AWGN. For

this, we train Gaussian denoiser in a single network that

learns noise level in [0,60]. The comparisons between the

proposed method and other methods are presented in Ta-

ble 2. We can see that the proposed denoiser achieves the

best performance on Set12 where composition of Set12 is

independent from training sets. On the other hand, the pro-

posed method gets second best performance on BSD68 that

consists of similar objects in BSD400 (training set). We

think these results present robust generalization ability of

the proposed denoising architecture for training set.

Real Noise Denoising We also investigate the proposed

denoiser and transfer learning scheme on RN datasets. Pro-

cessing RN image is considered very practical, but difficult,

because the noises are signal dependent, spatially variant,

and visualized diversely according to different in-camera

pipelines. Thus, we think RN denoising is an appropriate

task for showing the generalization ability of the proposed

denoiser and the effects of the proposed transfer learning.

For the precise comparison, we train four different de-

noisers according to training sets and learning methods:

• AINDNet(S): AINDNet is trained with S , which is

proposed SN denoiser.

• AINDNet(R): AINDNet is trained with T .

• AINDNet+RT: All the parameters from AINDNet(S)

are re-trained with T , which is common transfer learn-

ing scheme.

• AINDNet+TF: Specified parameters from AIND-

Net(S) are updated with T , which is proposed RN de-

noiser.

Moreover, we present the geometric self-ensemble [45] re-

sults denoting super script ∗ in order to maximize potential

performance of the proposed methods.

Meanwhile, there have been a challenge on real image

denoising [3] where the SIDD is used. Our method shows

lower performance than the top-ranked ones in the chal-

lenge, but it needs to be noted that the number of parameters

of our network is much smaller than those in the challenge.

For example, DHDN [40] and DIDN [53] that appeared in

the challenge require about 160 M and 190 M training pa-

rameters respectively which are about 12 - 15 times larger

than ours. Moreover, challenge methods have been slightly

overfitted to SIDD where the winning denoiser [23] gets

comparably lower performance (38.78 dB) on DND than

our method. Therefore, we would not directly compare the

proposed method with challenge methods.

The comparisons, including internal comparisons, are

presented in Table 3 and 4. We can find that proposed meth-

ods get the best performance on DND and SIDD bench-

marks. Specifically, the proposed AINDNet(S) achieves the

best performance on DND benchmark, which is impres-

sive performance that outperforms RN trained denoisers.

Moreover, AINDNet(S) gets 1.5 dB and 2.4 dB gains from

CBDNet on DND and SIDD respectively where employed

noise models are the same. These results indicate that the

proposed denoiser is not overfitted to noise model and can

be well generalized to RN images. However, AINDNet(S)

has inferior performance than AINDNet(R) on SIDD with

big margin. The main reason is that AINDNet(R) is solely

trained with SIDD training images where test set consists

of similar scenes and objects in training set. In other words,
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Table 3: Average PSNR of the denoised images on the

DND benchmark, we denote the environment of training,

i.e., training with SN data only, RN data only, and both. ∗

denotes geometric self-ensemble [45] result. (red: the best

result, blue: the second best)

Method Blind/Non-blind Training Env. PSNR SSIM

CDnCNN-B [54] Blind Synthetic 32.43 0.7900

TNRD [13] Non-blind Synthetic 33.65 0.8306

MLP [8] Non-blind Synthetic 34.23 0.8331

FFDNet [56] Non-blind Synthetic 34.40 0.8474

BM3D [14] Non-blind - 34.51 0.8507

WNNM [19] Non-blind - 34.67 0.8646

GCBD [11] Blind Synthetic 35.58 0.9217

KSVD [4] Non-blind - 36.49 0.8978

TWSC [51] Blind - 37.94 0.9403

CBDNet [20] Blind Synthetic 37.57 0.9360

CBDNet [20] Blind Real 37.72 0.9408

CBDNet [20] Blind All 38.06 0.9421

RIDNet [6] Blind Real 39.23 0.9526

AINDNet(S) Blind Synthetic 39.53 0.9561

AINDNet(R) Blind Real 39.16 0.9515

AIDNet + RT Blind All 39.21 0.9505

AINDNet + TF Blind All 39.37 0.9505

AINDNet(S)∗ Blind Synthetic 39.77 0.9590

AINDNet(R)∗ Blind Real 39.34 0.9524

AINDNet + RT∗ Blind All 39.34 0.9522

AINDNet + TF∗ Blind All 39.52 0.9522

AINDNet(R) can be slightly overfitted to SIDD benchmark

and this phenomenon can be seen from insufficient perfor-

mance on DND.

In contrast, AINDNet+RT and AINDNet+TF get satis-

fying performance on both DND and SIDD. Concretely,

AINDNet+RT and AINDNet+TF have better performance

than others, including AINDNet(R) on SIDD, which indi-

cates that pre-training the SN images results in better perfor-

mance. AINDNet+TF more likely preserves priorly learned

knowledges from SN data than AINDNet+RT, so AIND-

Net+TF achieves the best overall performance among com-

pared methods.

We present visualized comparisons on SIDD and RNI15

in Figs. 5 and 6, which show that proposed methods remove

noises robustly while preserving the edges. Thus, characters

in output images are more apparent than in other methods’

results. Furthermore, we also present visual enhancement

in Fig. 7 when the proposed transfer learning scheme is ap-

plied. Since RN denoiser transfer-learns characteristics of

RN, AINDNet+TF successfully removes unusual noise that

cannot be removed with AINDNet(S). Moreover, RN de-

noiser learns the properties of JPEG compression artifacts

that is not priorly learned in SN denoiser, so it can also

successfully reduces compression artifacts. We will also

present other visualized comparisons in supplementary file.

Table 4: Average PSNR of the denoised images on the

SIDD benchmark, we denote the environment of training,

i.e., training with SN data only, RN data only, and both. ∗

denotes geometric self-ensemble [45] result. (red: the best

result, blue: the second best)

Method Blind/Non-blind Training Env. PSNR SSIM

CDnCNN-B [54] Blind Synthetic 23.66 0.583

MLP [8] Non-blind Synthetic 24.71 0.641

TNRD [13] Non-blind Synthetic 24.73 0.643

BM3D [14] Non-blind - 25.65 0.685

WNNM [19] Non-blind - 25.78 0.809

KSVD [4] Non-blind - 26.88 0.842

CBDNet [20] Blind All 33.28 0.868

AINDNet(S) Blind Synthetic 35.66 0.903

AINDNet(R) Blind Real 38.73 0.950

AIDNet + RT Blind All 39.04 0.955

AINDNet + TF Blind All 38.95 0.952

AINDNet(S)∗ Blind Synthetic 35.87 0.905

AINDNet(R)∗ Blind Real 38.84 0.951

AINDNet + RT∗ Blind All 39.15 0.955

AINDNet + TF∗ Blind All 39.08 0.953

4.3. Discussions

Effect of Transfer Learning with Limited RN Pairs We

investigate the relation between denoising performance and

the amount of RN image pairs in T , because we consider

that preparation of T is quite difficult and the number of el-

ements can also be limited. For this, we train each network

with constrained image pairs from one to all (320) from

SIDD [2]. The average PSNR of each denoiser is presented

in Table 5. It can be seen that transfer learning schemes can

infer great performance with the small number of real train-

ing images. It is notable that AINDNet+TF trained with 32

pairs of real data achieves better performance than RIDNet

that exploits all. Thus, we can conclude that the transfer

learning with SN denoiser dramatically accelerate the per-

formance with a small number of labeled data from other

domain.

Architecture of Denoiser We demonstrate the effective-

ness of reconstruction network for training with S . For this,

AINDNet(S) is compared with a baseline (IN + Concat),

which replaces AIN module with IN and concatenated in-

put of noisy image and noise level map [55, 56]. Further-

more, we compare an adaptive Gaussian denoiser [25] that

can process spatially variant noise map by feeding gated-

residual block (Gated-ResBlock). Since it has not reported

the performance on RN dataset, we train SN denoiser by re-

placing AIN-ResBlock to Gated-ResBlock where other set-

tings are same as AINDNet. Table 6 shows that the pro-

posed AIN-ResBlock shows the best performance on RN

datasets. Thus, we believe that the AIN-ResBlock is an

appropriate architecture for the generalization. We will

present ablation study about update variable for transfer

learning in supplementary file.
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Table 5: Investigation of denoiser RN denoising performance according to the amount of RN dataset. The quantitative results

(in average PSNR (dB)) are reported on SIDD validation dataset.

Num of Real Images 0 1 2 4 8 16 32 64 320 (full)

RIDNet - - - - - - - - 38.71

AINDNet(R) - 30.36 32.19 36.94 37.70 38.14 38.66 38.70 38.81

AINDNet+RT 35.21 36.23 37.16 38.02 38.40 38.63 38.82 39.00 39.01

AINDNet+TF 35.21 36.19 37.14 37.93 38.27 38.52 38.75 38.83 38.90

(a) Noisy Image (b) DnCNN-C (c) CBDNet

(d) RIDNet (e) AINDNet(S) (f) AINDNet+TF

Figure 5: The real noisy image from SIDD, and the com-

parison of the results.

(a) Noisy Image (b) DnCNN-C (c) CBDNet

(d) RIDNet (e) AINDNet(S) (f) AINDNet+TF

Figure 6: The real noisy image from RNI15, and the com-

parison of the results.

5. Conclusion

In this paper, we have presented a novel denoiser and

transfer learning scheme of RN denoising. The proposed

denoiser employs an AIN to regularize the network and also

to prevent the network from overfitting to SN. The transfer

learning mainly updates the AIN module using RN data to

adjust data distribution. From the experimental results, we

could find that the proposed denoising scheme can be well

generalized to RN even if it is trained with SN. Moreover,

(a) Noisy Image (b) AINDNet(S) (c) AINDNet+TF

(d) Noisy Image (e) AINDNet(S) (f) AINDNet+TF

Figure 7: The real noisy image from RNI15, and the com-

parison of the results showing the effectiveness of the pro-

posed transfer learning scheme.

Table 6: Investigation of the proposed reconstruction net-

work when denoisers are trained with SN data. The quanti-

tative results (in average PSNR (dB)) are reported on DND

test dataset and SIDD validation dataset.

Method DND SIDD

IN + Concat 38.53 34.74

Gated-ResBlock [25] 39.19 34.93

Ours 39.53 35.19

the transfer learning scheme can effectively adapt an SN

denoiser to an RN denoiser, with very few additional train-

ing with real- noise pairs. We will make our codes publicly

available at https://github.com/terryoo/AINDNet for further

research and comparison.
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