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Figure 1: Given challenging in-the-wild videos, a recent state-of-the-art video-pose-estimation approach [30] (top), fails

to produce accurate 3D body poses. To address this, we exploit a large-scale motion-capture dataset to train a motion

discriminator using an adversarial approach. Our model (VIBE) (bottom) is able to produce realistic and accurate pose and

shape, outperforming previous work on standard benchmarks.

Abstract

Human motion is fundamental to understanding behav-

ior. Despite progress on single-image 3D pose and shape

estimation, existing video-based state-of-the-art methods

fail to produce accurate and natural motion sequences due

to a lack of ground-truth 3D motion data for training. To ad-

dress this problem, we propose “Video Inference for Body

Pose and Shape Estimation” (VIBE), which makes use of

an existing large-scale motion capture dataset (AMASS)

together with unpaired, in-the-wild, 2D keypoint annota-

tions. Our key novelty is an adversarial learning frame-

work that leverages AMASS to discriminate between real

human motions and those produced by our temporal pose

and shape regression networks. We define a novel tempo-

ral network architecture with a self-attention mechanism

and show that adversarial training, at the sequence level,

produces kinematically plausible motion sequences with-

out in-the-wild ground-truth 3D labels. We perform exten-

sive experimentation to analyze the importance of motion

and demonstrate the effectiveness of VIBE on challenging

3D pose estimation datasets, achieving state-of-the-art per-

formance. Code and pretrained models are available at

https://github.com/mkocabas/VIBE

1. Introduction

Tremendous progress has been made on estimating 3D

human pose and shape from a single image [11, 21, 25, 29,

35, 36, 38, 45, 48]. While this is useful for many applica-

tions, it is the motion of the body in the world that tells us

about human behavior. As noted by Johansson [28] even a
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few moving point lights on a human body in motion informs

us about behavior. Here we address how to exploit tempo-

ral information to more accurately estimate the 3D motion

of the body from monocular video. While this problem has

received over 30 years of study, we may ask why reliable

methods are still not readily available. Our insight is that

the previous temporal models of human motion have not

captured the complexity and variability of real human mo-

tions due to insufficient training data. We address this prob-

lem here with a new temporal neural network and training

approach, and show that it significantly improves 3D human

pose estimation from monocular video.

Existing methods for video pose and shape estimation

[30, 53] often fail to produce accurate predictions as illus-

trated in Fig. 1 (top). A major reason behind this is the

lack of in-the-wild ground-truth 3D annotations, which are

non-trivial to obtain even for single images. Previous work

[30, 53] combines indoor 3D datasets with videos having

2D ground-truth or pseudo-ground-truth keypoint annota-

tions. However, this has several limitations: (1) indoor 3D

datasets are limited in the number of subjects, range of mo-

tions, and image complexity; (2) the amount of video la-

beled with ground-truth 2D pose is still insufficient to train

deep networks; and (3) pseudo-ground-truth 2D labels are

not reliable for modeling 3D human motion.

To address this, we take inspiration from Kanazawa et

al. [29] who train a single-image pose estimator using only

2D keypoints and an unpaired dataset of static 3D human

shapes and poses using an adversarial training approach.

For video sequences, there already exist in-the-wild videos

with 2D keypoint annotations. The question is then how to

obtain realistic 3D human motions in sufficient quality for

adversarial training. For that, we leverage the large-scale

3D motion-capture dataset called AMASS [41], which is

sufficiently rich to learn a model of how people move. Our

approach learns to estimate sequences of 3D body shapes

poses from in-the-wild videos such that a discriminator can-

not tell the difference between the estimated motions and

motions in the AMASS dataset. As in [29], we also use 3D

keypoints when available.

The output of our method is a sequence of pose and

shape parameters in the SMPL body model format [40],

which is consistent with AMASS and the recent literature.

Our method learns about the richness of how people appear

in images and is grounded by AMASS to produce valid hu-

man motions. Specifically, we leverage two sources of un-

paired information by training a sequence-based generative

adversarial network (GAN) [18]. Here, given the video of

a person, we train a temporal model to predict the parame-

ters of the SMPL body model for each frame while a mo-

tion discriminator tries to distinguish between real and re-

gressed sequences. By doing so, the regressor is encouraged

to output poses that represent plausible motions through

minimizing an adversarial training loss while the discrim-

inator acts as weak supervision. The motion discriminator

implicitly learns to account for the statics, physics and kine-

matics of the human body in motion using the ground-truth

motion-capture (mocap) data. We call our method VIBE,

which stands for “Video Inference for Body Pose and Shape

Estimation.”

During training, VIBE takes in-the-wild images as input

and predicts SMPL body model parameters using a convo-

lutional neural network (CNN) pretrained for single-image

body pose and shape estimation [36] followed by a tem-

poral encoder and body parameter regressor used in [29].

Then, a motion discriminator takes predicted poses along

with the poses sampled from the AMASS dataset and out-

puts a real/fake label for each sequence. We implement both

the temporal encoder and motion discriminator using Gated

Recurrent Units (GRUs) [14] to capture the sequential na-

ture of human motion. The motion discriminator employs a

learned attention mechanism to amplify the contribution of

distinctive frames. The whole model is supervised by an ad-

versarial loss along with regression losses to minimize the

error between predicted and ground-truth keypoints, pose,

and shape parameters.

At test time, given a video, we use the pretrained CNN

[36] and our temporal module to predict pose and shape pa-

rameters for each frame. The method works for video se-

quences of arbitrary length. We perform extensive experi-

ments on multiple datasets and outperform all state-of-the-

art methods; see Fig. 1 (bottom) for an example of VIBE’s

output. Importantly, we show that our video-based method

always outperforms single-frame methods by a significant

margin on the challenging 3D pose estimation benchmarks

3DPW [61] and MPI-INF-3DHP [42]. This clearly demon-

strates the benefit of using video in 3D pose estimation.

In summary, the key contributions in this paper are:

First, we leverage the AMASS dataset of motions for ad-

versarial training of VIBE. This encourages the regressor

to produce realistic and accurate motions. Second, we em-

ploy an attention mechanism in the motion discriminator to

weight the contribution of different frames and show that

this improves our results over baselines. Third, we quan-

titatively compare different temporal architectures for 3D

human motion estimation. Fourth, we achieve state-of-the-

art results on major 3D pose estimation benchmarks. Code

and pretrained models are available for research purposes at

https://github.com/mkocabas/VIBE.

2. Related Work

3D pose and shape from a single image. Parametric

3D human body models [4, 40, 47] are widely used as the

output target for human pose estimation because they cap-

ture the statistics of human shape and provide a 3D mesh

that can be used for many tasks. Early work explores “bot-
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Figure 2: VIBE architecture. VIBE estimates SMPL body model parameters for each frame in a video sequence using a

temporal generation network, which is trained together with a motion discriminator. The discriminator has access to a large

corpus of human motions in SMPL format.

tom up” regression approaches, “top down” optimization

approaches, and multi-camera settings using keypoints and

silhouettes as input [1, 8, 19, 52]. These approaches are

brittle, require manual intervention, or do not generalize

well to images in the wild. Bogo et al. [11] propose SM-

PLify, one of the first end-to-end approaches, which fits

the SMPL model to the output of a CNN keypoint detec-

tor [50]. Lassner et al. [38] use silhouettes along with key-

points during fitting. Recently, deep neural networks are

trained to directly regress the parameters of the SMPL body

model from pixels [21, 29, 45, 48, 55, 57]. Due to the lack

of in-the-wild 3D ground-truth labels, these methods use

weak supervision signals obtained from a 2D keypoint re-

projection loss [29, 55, 57], use body/part segmentation as

an intermediate representation [45, 48], or employ a human

in the loop [38]. Kolotouros et al. [36] combine regression-

based and optimization-based methods in a collaborative

fashion by using SMPLify in the training loop. At each step

of the training, the deep network [29] initializes the SM-

PLify optimization method that fits the body model to 2D

joints, producing an improved fit that is used to supervise

the network. Alternatively, several non-parametric body

mesh reconstruction methods [37, 51, 59] has been pro-

posed. Varol et al. [59] use voxels as the output body repre-

sentation. Kolotouros et al. [37] directly regress vertex lo-

cations of a template body mesh using graph convolutional

networks [33]. Saito et al. [51] predict body shapes using

pixel-aligned implicit functions followed by a mesh recon-

struction step. Despite capturing the human body from sin-

gle images, when applied to video, these methods yield jit-

tery, unstable results.

3D pose and shape from video. The capture of human

motion from video has a long history. In early work, Hogg

et al. [23] fit a simplified human body model to images fea-

tures of a walking person. Early approaches also exploit

methods like PCA and GPLVMs to learn motion priors from

mocap data [46, 58] but these approaches were limited to

simple motions. Many of the recent deep learning methods

that estimate human pose from video [15, 24, 43, 49, 44] fo-

cus on joint locations only. Several methods [15, 24, 49] use

a two-stage approach to “lift” off-the-shelf 2D keypoints

into 3D joint locations. In contrast, Mehta et al. [43, 44]

employ end-to-end methods to directly regress 3D joint lo-

cations. Despite impressive performance on indoor datasets

like Human3.6M [26], they do not perform well on in-the-

wild datasets like 3DPW [61] and MPI-INF-3DHP [42].

Several recent methods recover SMPL pose and shape

parameters from video by extending SMPLify over time

to compute a consistent body shape and smooth motions

[6, 25]. Particularly, Arnab et al. [6] show that Internet

videos annotated with their version of SMPLify help to im-

prove HMR when used for fine tuning. Kanazawa et al. [30]

learn human motion kinematics by predicting past and fu-

ture frames1. They also show that Internet videos annotated

using a 2D keypoint detector can mitigate the need for the

in-the-wild 3D pose labels. Sun et al. [53] propose to use a

transformer-based temporal model [60] to improve the per-

formance further. They propose an unsupervised adversar-

ial training strategy that learns to order shuffled frames.

GANs for sequence modeling. Generative adversar-

ial networks GANs [5, 18, 27, 39] have had a signifi-

cant impact on image modeling and synthesis. Recent

works have incorporated GANs into recurrent architectures

to model sequence-to-sequence tasks like machine trans-

lation [54, 62, 63]. Research in motion modelling has

shown that combining sequential architectures and adver-

sarial training can be used to predict future motion se-

quences based on previous ones [9, 20] or to generate hu-

man motion sequences [2]. In contrast, we focus on adver-

sarially refining predicted poses conditioned on the sequen-

tial input data. Following that direction, we employ a mo-

tion discriminator that encodes pose and shape parameters

in a latent space using a recurrent architecture and an adver-

sarial objective taking advantage of 3D mocap data [41].

3. Approach

The overall framework of VIBE is summarized in Fig. 2.

Given an input video V = {It}
T
t=1 of length T , of a sin-

1Note that they refer to kinematics over time as dynamics.
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gle person, we extract the features of each frame It using

a pretrained CNN. We train a temporal encoder composed

of bidirectional Gated Recurrent Units (GRU) that outputs

latent variables containing information incorporated from

past and future frames. Then, these features are used to

regress the parameters of the SMPL body model at each

time instance.

SMPL represents the body pose and shape by Θ, which

consists of the pose and shape parameters θ ∈ R
72 and

β ∈ R
10 respectively. The pose parameters include the

global body rotation and the relative rotation of 23 joints

in axis-angle format. The shape parameters are the first 10

coefficients of a PCA shape space; here we use the gender-

neutral shape model as in previous work [29, 36] Given

these parameters, the SMPL model is a differentiable func-

tion, M(θ, β) ∈ R
6890×3, that outputs a posed 3D mesh.

Given a video sequence, VIBE computes Θ̂ =
[(θ̂1, · · · , θ̂T ), β̂] where θ̂t are the pose parameters at time

step t and β̂ is the single body shape prediction for the se-

quence. Specifically, for each frame we predict the body

shape parameters. Then, we apply average pooling to get a

single shape (β̂) across the whole input sequence. We re-

fer to the model described so far as the temporal generator

G. Then, output, Θ̂, from G and samples from AMASS,

Θreal, are given to a motion discriminator, DM , in order to

differentiate fake and real examples.

3.1. Temporal Encoder

The intuition behind using a recurrent architecture is that

future frames can benefit from past video pose information.

This is useful when the pose of a person is ambiguous or

the body is partially occluded in a given frame. Here, past

information can help resolve and constrain the pose esti-

mate. The temporal encoder acts as a generator that, given

a sequence of frames I1, . . . , IT , outputs the corresponding

pose and shape parameters in each frame. A sequence of

T frames is fed to a convolutional network, f , which func-

tions as a feature extractor and outputs a vector fi ∈ R
2048

for each frame f(I1), . . . , f(IT ). These are sent to a Gated

Recurrent Unit (GRU) layer [14] that yields a latent feature

vector gi for each frame, g(f1), . . . , g(fT ), based on the

previous frames. Then, we use gi as input to T regressors

with iterative feedback as in [29]. The regressor is initial-

ized with the mean pose Θ̄ and takes as input the current

parameters Θk along with the features gi in each iteration

k. Following Kolotouros et al. [36], we use a 6D continuous

rotation representation [65] instead of axis angles.

Overall, the loss of the proposed temporal encoder is

composed of 2D (x), 3D (X), pose (θ) and shape (β) losses

when they are available. This is combined with an adver-

sarial DM loss. Specifically the total loss of the G is:

LG = L3D + L2D + LSMPL + Ladv (1)

where each term is calculated as:

L3D =
T∑

t=1

‖Xt − X̂t‖2,

L2D =

T∑

t=1

‖xt − x̂t‖2,

LSMPL = ‖β − β̂‖2 +

T∑

t=1

‖θt − θ̂t‖2 ,

where Ladv is the adversarial loss explained below.

To compute the 2D keypoint loss, we need the SMPL

3D joint locations X̂(Θ) = WM(θ, β), which are com-

puted from the body vertices with a pretrained linear re-

gressor, W . We use a weak-perspective camera model

with scale and translation parameters [s, t], t ∈ R
2. With

this we compute the 2D projection of the 3D joints X̂ , as

x̂ ∈ R
j×2 = sΠ(RX̂(Θ)) + t, where R ∈ R

3 is the global

rotation matrix and Π represents orthographic projection.

3.2. Motion Discriminator

The body discriminator and the reprojection loss used

in [29] enforce the generator to produce feasible real world

poses that are aligned with 2D joint locations. However,

single-image constraints are not sufficient to account for se-

quences of poses. Multiple inaccurate poses may be recog-

nized as valid when the temporal continuity of movement

is ignored. To mitigate this, we employ a motion discrimi-

nator, DM , to tell whether the generated sequence of poses

corresponds to a realistic sequence or not. The output, Θ̂, of

the generator is given as input to a multi-layer GRU model

fM depicted in Fig. 3, which estimates a latent code hi at

each time step i where hi = fm(Θ̂i). In order to aggregate

hidden states [hi, · · · , hT ] we use self attention [7] elabo-

rated below. Finally, a linear layer predicts a value ∈ [0, 1]

representing the probability that Θ̂ belongs to the manifold

of plausible human motions. The adversarial loss term that

is backpropagated to G is:

Ladv = EΘ∼pG
[(DM (Θ̂)− 1)2] (2)

and the objective for DM is:

LDM
= EΘ∼pR

[(DM (Θ)− 1)2] +EΘ∼pG
[DM (Θ̂)2] (3)

where pR is a real motion sequence from the AMASS

dataset, while pG is a generated motion sequence. Since

DM is trained on ground-truth poses, it also learns plausi-

ble body pose configurations, hence alleviating the need for

a separate single-frame discriminator [29].

Motion Prior (MPoser). In addition to the DM , we ex-

periment with a motion prior model, which we call MPoser.
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Figure 3: Motion discriminator architecture DM consists

of GRU layers followed by a self attention layer. DM out-

puts a real/fake probability for each input sequence.

It is an extension of the variational body pose prior model

VPoser [47] to temporal sequences. We train MPoser as a

sequential VAE [32] on the AMASS dataset to learn a latent

representation of plausible human motions. Then, we use

MPoser as a regularizer to penalize implausible sequences.

The MPoser encoder and decoder consist of GRU layers

that output a latent vector zi ∈ R
32 for each time step i.

When we employ MPoser, we disable DM and add a prior

loss LMPoser = ‖z‖2 to LG .

Self-Attention Mechanism. Recurrent networks update

their hidden states as they process input sequentially. As

a result, the final hidden state holds a summary of the in-

formation in the sequence. We use a self-attention mech-

anism [7, 10] to amplify the contribution of the most im-

portant frames in the final representation instead of using

either the final hidden state ht or a hard-choice pooling of

the hidden state feature space of the whole sequence. By

employing an attention mechanism, the representation r of

the input sequence Θ̂ is a learned convex combination of the

hidden states. The weights ai are learned by a linear MLP

layer φ, and are then normalized using softmax to form a

probability distribution. Formally:

φi = φ(hi), ai =
eφi

∑N

t=1
eφt

, r =
N∑

i=1

aihi. (4)

We compare our dynamic feature weighting with a static

pooling schema. Specifically, the features hi, represent-

ing the hidden state at each frame, are averaged and max

pooled. Then, those two representations ravg and rmax are

concatenated to constitute the final static vector, r, used for

the Dm fake/real decision.

3.3. Training Procedure

We use a ResNet-50 network [22] as an image en-

coder pretrained on single frame pose and shape estimation

task [29, 36] that outputs fi ∈ R
2048. Similar to [30] we

precompute each frame’s fi and do not update the ResNet-

50. We use T = 16 as the sequence length with a mini-

batch size of 32, which makes it possible to train our model

on a single Nvidia RTX2080ti GPU. Although, we exper-

imented with T = [8, 16, 32, 64, 128], we chose T = 16,

as it yields the best results. For the temporal encoder, we

use a 2-layer GRU with a hidden size of 1024. The SMPL

regressor has 2 fully-connected layers with 1024 neurons

each, followed by a final layer that outputs Θ̂ ∈ R
85, con-

taining pose, shape, and camera parameters. The outputs

of the generator are given as input to the DM as fake sam-

ples along with the ground truth motion sequences as real

samples. The motion discriminator architecture is identical

to the temporal encoder. For self attention, we use 2 MLP

layers with 1024 neurons each and tanh activation to learn

the attention weights. The final linear layer predicts a sin-

gle fake/real probability for each sample. We also use the

Adam optimizer [31] with a learning rate of 5 × 10−5 and

1×10−4 for the G and DM , respectively. Finally, each term

in the loss function has different weighting coefficients. We

refer the reader to Sup. Mat. for further details.

4. Experiments

We first describe the datasets used for training and eval-

uation. Next, we compare our results with previous frame-

based and video-based state-of-the-art approaches. We also

conduct ablation experiments to show the effect of our con-

tributions. Finally, we present qualitative results in Fig. 4.

Training. Following previous work [29, 30, 36], we use

batches of mixed 2D and 3D datasets. PennAction [64] and

PoseTrack [3] are the only ground-truth 2D video datasets

we use, while InstaVariety [30] and Kinetics-400 [13] are

pseudo ground-truth datasets annotated using a 2D keypoint

detector [12, 34]. For 3D annotations, we employ 3D joint

labels from MPI-INF-3DHP [42] and Human3.6M [26].

When used, 3DPW and Human3.6M provide SMPL param-

eters that we use to calculate LSMPL. AMASS [41] is used

for adversarial training to obtain real samples of 3D human

motion. We also use the 3DPW [61] training set to perform

ablation experiments; this demonstrate the strength of our

model on in-the-wild data.
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3DPW MPI-INF-3DHP H36M

Models PA-MPJPE ↓ MPJPE ↓ PVE ↓ Accel ↓ PA-MPJPE ↓ MPJPE ↓ PCK ↑ PA-MPJPE ↓ MPJPE ↓

F
ra

m
e-

b
as

ed

Kanazawa et al. [29] 76.7 130.0 - 37.4 89.8 124.2 72.9 56.8 88

Omran et al. [45] - - - - - - - 59.9 -

Pavlakos et al. [48] - - - - - - - 75.9 -

Kolotouros et al. [37] 70.2 - - - - - - 50.1 -

Arnab et al. [6] 72.2 - - - - - - 54.3 77.8

Kolotouros et al. [36] 59.2 96.9 116.4 29.8 67.5 105.2 76.4 41.1 -

T
em

p
o

ra
l

Kanazawa et al. [30] 72.6 116.5 139.3 15.2 - - - 56.9 -

Doersch et al. [16] 74.7 - - - - - - - -

Sun et al. [53] 69.5 - - - - - - 42.4 59.1

VIBE (direct comp.) 56.5 93.5 113.4 27.1 63.4 97.7 89.0 41.5 65.9

VIBE 51.9 82.9 99.1 23.4 64.6 96.6 89.3 41.4 65.6

Table 1: Evaluation of state-of-the-art models on 3DPW, MPI-INF-3DHP, and Human3.6M datasets. VIBE (direct

comp.) is our proposed model trained on video datasets similar to [30, 53], while VIBE is trained with extra data from the

3DPW training set. VIBE outperforms all state-of-the-art models including SPIN [36] on the challenging in-the-wild datasets

(3DPW and MPI-INF-3DHP) and obtains comparable result on Human3.6M. “−” shows the results that are not available.

Evaluation. For evaluation, we use 3DPW [61], MPI-

INF-3DHP [42], and Human3.6M [26]. We report re-

sults with and without the 3DPW training to enable direct

comparison with previous work that does not use 3DPW

for training. We report Procrustes-aligned mean per joint

position error (PA-MPJPE), mean per joint position error

(MPJPE), Percentage of Correct Keypoints (PCK) and Per

Vertex Error (PVE). We compare VIBE with state-of-the-

art single-image and temporal methods. For 3DPW, we re-

port acceleration error (mm/s2), calculated as the differ-

ence in acceleration between the ground-truth and predicted

3D joints.

4.1. Comparison to state­of­the­art results

Table 1 compares VIBE with previous state-of-the-art

frame-based and temporal methods. VIBE (direct comp.)

corresponds to our model trained using the same datasets

as Temporal-HMR [30], while VIBE also uses the 3DPW

training set. As standard practice, previous methods do

not use 3DPW, however we want to demonstrate that us-

ing 3DPW for training improves in-the-wild performance

of our model. Our models in Table 1 use pretrained HMR

from SPIN [36] as a feature extractor. We observe that our

method improves the results of SPIN, which is the previous

state-of-the-art. Furthermore, VIBE outperforms all previ-

ous frame-based and temporal methods on the challenging

in-the-wild 3DPW and MPI-INF-3DHP datasets by a sig-

nificant amount, while achieving results on-par with SPIN

on Human3.6M. Note that, Human3.6M is an indoor dataset

with a limited number of subjects and minimal background

variation, while 3DPW and MPI-INF-3DHP contain chal-

lenging in-the-wild videos.

We observe significant improvements in the MPJPE and

PVE metrics since our model encourages temporal pose

and shape consistency. These results validate our hypoth-

esis that the exploitation of human motion is important for

improving pose and shape estimation from video. In addi-

tion to the reconstruction metrics, e.g. MPJPE, PA-MPJPE,

we also report acceleration error (Table 1). While we

achieve smoother results compared with the baseline frame-

based methods [29, 36], Temporal-HMR [30] yields even

smoother predictions. However, we note that Temporal-

HMR applies aggressive smoothing that results in poor

accuracy on videos with fast motion or extreme poses.

There is a trade-off between accuracy and smoothness. We

demonstrate this finding in a qualitative comparison be-

tween VIBE and Temporal-HMR in Fig. 5. This figure

depicts how Temporal-HMR over-smooths the pose predic-

tions while sacrificing accuracy. Visualizations from alter-

native viewpoints in Fig. 4 show that our model is able to

recover the correct global body rotation, which is a signif-

icant problem for previous methods. This is further quan-

titatively demonstrated by the improvements in the MPJPE

and PVE errors. For video results see the GitHub page.

4.2. Ablation Experiments

Table 2 shows the performance of models with and with-

out the motion discriminator, DM . First, we use the orig-

inal HMR model proposed by [29] as a feature extractor.

Once we add our generator, G, we obtain slightly worse

but smoother results than the frame-based model due to

lack of sufficient video training data. This effect has also

been observed in the Temporal-HMR method [30]. Using

DM helps to improve the performance of G while yielding

smoother predictions.

When we use the pretrained HMR from [36], we observe

a similar boost when using DM over using only G. We

also experimented with MPoser as a strong baseline against
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3DPW

PA-MPJPE ↓ MPJPE ↓ PVE ↓ Accel ↓

Kanazawa et al. [29] 73.6 120.1 142.7 34.3

Baseline (only G) 75.8 126.1 147.5 28.3

G + DM 72.4 116.7 132.4 27.8

Kolotouros et al. [36] 60.1 102.4 129.2 29.2

Baseline (only G) 56.9 90.2 109.5 28.0

G + MPoser Prior 54.1 87.0 103.9 28.2

G + DM (VIBE) 51.9 82.9 99.1 23.4

Table 2: Ablation experiments with motion discrimi-

nator DM . We experiment with several models using

HMR [29] and SPIN [36] as pretrained feature extractors

and add our temporal generator G along with DM . DM

provides consistent improvements over all baselines.

DM . MPoser acts as a regularizer in the loss function to en-

sure valid pose sequence predictions. Even though, MPoser

performs better than using only G, it is worse than using

DM . One intuitive explanation for this is that, even though

AMASS is the largest mocap dataset available, it fails to

cover all possible human motions occurring in in-the-wild

videos. VAEs, due to over-regularization attributed to the

KL divergence term [56], fail to capture real motions that

are poorly represented in AMASS. In contrast, GANs do

not suffer from this problem [17]. Note that, when trained

on AMASS, MPoser gives 4.5mm PVE on a held out test

set, while the frame-based VPoser gives 6.0mm PVE error;

thus modeling motion matters. Overall, results shown in

Table 1 demonstrate that introducing DM improves perfor-

mance in all cases. Although one may think that the mo-

tion discriminator might emphasize on motion smoothness

over single pose correctness, our experiments with a pose

only, motion only, and both modules revealed that the mo-

tion discriminator is capable of refining single poses while

producing smooth motion.

Dynamic feature aggregation in DM significantly im-

proves the final results compared to static pooling (DM

- concat), as demonstrated in Table 3. The self-attention

mechanism enables DM to learn how the frames correlate

temporally instead of hard-pooling their features. In most

of the cases, the use of self attention yields better results.

Even with an MLP hidden size of 512, adding one more

layer outperforms static aggregation. The attention mecha-

nism is able to produce better results because it can learn a

better representation of the motion sequence by weighting

features from each individual frame. In contrast, average

and max pooling the features produces a rough representa-

tion of the sequence without considering each frame in de-

tail. Self-attention involves learning a coefficient for each

frame to re-weight its contribution in the final vector (r)

producing a more fine-grained output. That validates our

intuition that attention is helpful for modeling temporal de-

Model PA-MPJPE ↓ MPJPE ↓

DM - concat 53.7 85. 9

DM - attention [2 layers,512 nodes] 54.2 86.6

DM - attention [2 layers,1024 nodes] 51.9 82.9

DM - attention [3 layers,512 nodes] 53.6 85.3

DM - attention [3 layers,1024 nodes] 52.4 82.7

Table 3: Ablation experiments on self-attention. We

experiment with several self-attention configurations and

compare our method to a static pooling approach. We report

results on the 3DPW dataset with different hidden sizes and

numbers of layers of the MLP network.

pendencies in human motion sequences.

5. Conclusion

While current 3D human pose methods work well, most

are not trained to estimate human motion in video. Such

motion is critical for understanding human behavior. Here

we explore several novel methods to extend static meth-

ods to video: (1) we introduce a recurrent architecture that

propagates information over time; (2) we introduce dis-

criminative training of motion sequences using the AMASS

dataset; (3) we introduce self-attention in the discriminator

so that it learns to focus on the important temporal struc-

ture of human motion; (4) we also learn a new motion prior

(MPoser) from AMASS and show it also helps training but

is less powerful than the discriminator. We carefully eval-

uate our contributions in ablation studies and show how

each choice contributes to our state-of-the-art performance

on video benchmark datasets. This provides definitive evi-

dence for the value of training from video.

Future work should explore using video for supervising

single-frame methods by fine tuning the HMR features, ex-

amine whether dense motion cues (optical flow) could help,

use motion to disambiguate the multi-person case, and ex-

ploit motion to track through occlusion. In addition, we aim

to experiment with other attentional encoding techniques

such as transformers to better estimate body kinematics.
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Figure 4: Qualitative results of VIBE on challenging in-the-wild sequences. For each video, the top row shows some

cropped images, the middle rows show the predicted body mesh from the camera view, and the bottom row shows the

predicted mesh from an alternate view point.

Figure 5: Qualitative comparison between VIBE (top) and Temporal-HMR [30] (bottom). This challenging video con-

tains fast motion, extreme poses, and self occlusion. VIBE produces more accurate poses than Temporal HMR.
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