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Abstract

Although Deep neural networks (DNNs) are being per-

vasively used in vision-based autonomous driving systems,

they are found vulnerable to adversarial attacks where

small-magnitude perturbations into the inputs during test

time cause dramatic changes to the outputs. While most

of the recent attack methods target at digital-world ad-

versarial scenarios, it is unclear how they perform in the

physical world, and more importantly, the generated per-

turbations under such methods would cover a whole driv-

ing scene including those fixed background imagery such

as the sky, making them inapplicable to physical world

implementation. We present PhysGAN, which generates

physical-world-resilient adversarial examples for mislead-

ing autonomous driving systems in a continuous manner.

We show the effectiveness and robustness of PhysGAN via

extensive digital- and real-world evaluations. We compare

PhysGAN with a set of state-of-the-art baseline methods,

which further demonstrate the robustness and efficacy of

our approach. We also show that PhysGAN outperforms

state-of-the-art baseline methods. To the best of our knowl-

edge, PhysGAN is probably the first technique of generating

realistic and physical-world-resilient adversarial examples

for attacking common autonomous driving scenarios.

1. Introduction

While deep neural networks (DNNs) have established

the fundamentals of vision-based autonomous driving sys-

tems, they are still vulnerable to adversarial attacks and ex-

hibit erroneous fatal behaviors. Recent works on adversarial

machine learning research have shown that DNNs are rather

vulnerable to intentional adversarial inputs with perturba-

tions focusing on classification problems [4, 12, 19, 22, 25].

To address the safety issues in autonomous driving sys-

tems, techniques were proposed to automatically generate

adversarial examples, which add small-magnitude pertur-
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Figure 1: Illustration of an adversarial roadside advertising sign

(top-right) visually indistinguishable from the original sign (top-

left) and its deployment in the physical world (bottom).

bations to inputs to evaluate the robustness of DNN-based

autonomous driving systems [12, 8, 27].

However, these techniques mostly focus on generating

digital adversarial examples, e.g., changing image pixels,

which can never happen in real world [12]. They may not be

applicable to realistic driving scenarios, as the perturbations

generated under such techniques would cover the whole

scene including fixed background imagery such as the sky.

Very recently, a few works took the first step in study-

ing physical-world attacking/testing of static physical ob-

jects [2, 17], human objects [24, 7], traffic signs [23, 18, 8].

Although they are shown effective under the targeted sce-

narios and certain assumptions, they focus on studying a

static physical-world scene (e.g., a single snapshot of a stop

sign [8, 23]), which prevent themselves to be applied in

practice as real-world driving is a continuous process where

dynamically changes are encountered (e.g., viewing angles

and distances). Moreover, their generated adversarial ex-

amples are visually unrealistic (e.g., driver-noticeable black

and white stickers pasted onto a stop sign which is easily

noticeable for attack purposes [8]). Most of these methods

also have a focus on classification models different from

our studied steering model which is a regression model.

Also note that directly extending the existing digital per-
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turbation generation techniques (e.g., FGSM) to physical

world settings, i.e., inputting just the targeted roadside sign

into such techniques would output a corresponding adver-

sarial example, may be ineffective. The resulting attack ef-

ficacy may dramatically decrease (proved in our evaluation

as well) as the process of generating perturbations has not

considered any potential background imagery in the phys-

ical world (e.g., the sky) which would be captured by any

camera during driving.

We aim at generating a realistic single adversarial exam-

ple which can be physically printed out to replace the cor-

responding original roadside object, as illustrated in Fig. 1.

Since the target vehicle observes this adversarial printout

continuously, a major challenge herein is how to generate a

single adversarial example which can continuously mislead

the steering model at every frame during the driving pro-

cess. Additionally, for a practical physical-world deploy-

ment, any generated adversarial example shall be visually

indistinguishable from its original sign (the one already de-

ployed in the physical world).

To address these challenges, we propose a novel GAN-

based framework called PhysGAN 1 which generates a sin-

gle adversarial example by observing multiple frames cap-

tured during driving while preserving resilience to certain

physical-world conditions. Our architecture contains an en-

coder (i.e., the CNN part of the target autonomous driving

model) that extracts features from frames during driving

and transforms them into a vector serving as the input to

the generator. By considering all factors extracted from the

frames, this design ensures that the generator could gener-

ate adeversarial examples that have attack effect. Without

this encoder, the efficacy would dramatically decrease.To

generate an adversarial example that can continuously mis-

lead the steering model, PhysGAN takes a 3D tensor as in-

put. This enhances the resilience of the generated exam-

ple against certain physical world dynamics, as using video

slices makes it more likely to capture such dynamics.

We demonstrate the effectiveness and robustness of

PhysGAN through conducting extensive digital- and real-

world experiments using a set of state-of-the-art steering

models and datasets. Digital experimental results show that

PhysGAN is effective for various steering models and sce-

narios, being able to mislead the average steering angle by

up to 21.85 degrees. Physical case studies further demon-

strate that PhysGAN is sufficiently resilient in generating

physical-world adversarial examples, which is able to mis-

lead the average steering angle by up to 19.17 degrees. Such

efficacy is also demonstrated through comparisons against

a comprehensive set of baseline methods.

To the best of our knowledge, PhysGAN is the first tech-

nique of generating realistic and physical-world-resilient

adversarial examples for attacking common autonomous

1https://github.com/kongzelun/physgan.git

steering systems. Our contributions can be summarized in

three folds as follows.

• We propose a novel GAN-based framework Phys-

GAN which can generate physical-world-resilient ad-

versarial examples corresponding to any roadside traf-

fic/advertising sign and mislead autonomous driving

steering model with the generated visually indistin-

guishable adversarial examples.

• We propose a GAN architecture using 3D tensor as

input in optimizing the generator, which resolves a

key technical challenge in physical-world deployment

of using a single adversarial example to continuously

mislead steering during the entire driving process.

• We conduct extensive digital and physical-world eval-

uations with several metrics, which shows the superior

attack performance of PhysGAN over state-of-the-art

methods. We believe PhysGAN could contribute to fu-

ture safety research in autonomous driving.

2. Related Works

Adversarial Attacks. Many works have recently been

proposed to generate adversarial examples for attacking

in the white-box setting [21], where the adversary knows

the network’s parameters. The fast gradient sign method

(FGSM) [11] represents the pioneer among such methods,

which performs a one-step gradient update along the direc-

tion of the sign of gradient at each pixel. FGSM is fur-

ther extended in [13] to a targeted attack strategy through

maximizing the probability of the target class, which is

referred as the OTCM attack. Optimization-based ap-

proaches [26, 14, 4, 5, 29] have also been proposed. GAN

was recently introduced in [10], implemented by a system

of two neural networks competing with each other in a zero-

sum game framework. GAN achieves visually appealing

results in both face generation [16] and manipulation [30].

[29] presents AdvGAN, which leverages GAN to produce

adversarial examples with high attack success rate on clas-

sification problems. These methods focus on applying per-

turbations to the entire input and consider only digital-world

attacking scenarios. It is hard to apply them to the real world

because it is impossible to use some of the generated pertur-

bations to replace the real-world background (e.g., the sky).

Generating Physical Adversarial Examples. To the

best of our knowledge, only a very recent set of works [15,

8] started working on generating physical attacks. [15] fo-

cuses on the understanding of static physical adversarial

examples. [8] explicitly designs perturbations to be effec-

tive in the presence of diverse real-world conditions. Their

method mainly focuses on the classification of physical road

sign under dynamic distance and angle of the viewing cam-

era. Unfortunately, these works focus on static attacking

scenarios (e.g., maximizing the adversarial effectiveness

14255



�

���





���





���

Mapping

�

���

�

���

�

����

�

���



Target
Model

�

����

�

����

Mapping

3D Tensor

�

Figure 2: Overview of the PhysGAN framework.

w.r.t. to a single snapshot of the physical example) and thus

do not require to resolve the one-to-many challenge.

Different from these works, PhysGAN is able to gener-

ate physical-world-resilient adversarial examples only cor-

responding to the roadside traffic/advertising sign; no per-

turbations will be generated on areas other than the street

sign. PhysGAN addresses the one-to-many challenge which

continuously attack the steering model, and generates real-

istic adversarial examples that are resilient to various physi-

cal world conditions and visually indistinguishable from the

original roadside sign.

3. Our Approach: PhysGAN

The goal of PhysGAN is to generate an adversarial ex-

ample that is visually indistinguishable from any common

roadside object (e.g., roadside traffic or advertising signs)

to continuously mislead the steering angle model (target

model) of a drive-by autonomous driving vehicle by phys-

ically replacing the roadside board with the adversarial ex-

ample. When an autonomous driving vehicle drives by the

roadside sign, the steering angle model would be fooled and

make incorrect decision.

3.1. Problem Definition

We define our problem and notations in this section. Let

X = {Xi} be the video slice set such that X ⊆ R
n×w×h,

where n is the number of frames in the video slice, w and

h is the width and height of a frame, respectively. Let

Y = {Yi} be the ground truth steering angle set, Y ⊆ R
n.

Suppose (Xi, Yi) is the ith sample in the dataset, which

is composed of video slice Xi ∈ X and Yi ∈ Y , each

element of which denotes the ground truth steering angle

corresponding to its frame. The pre-trained target steer-

ing model (e.g., Nvidia Dave-2, Udacity Cg23 and Rambo)

learns a mapping f : X → Y from the video slice set X to

the ground truth steering angle set Y during training phase.

Given an instance (Xi, Yi), the goal of PhysGAN is to

produce an adversarial roadside sign Sadv , which aims to

mislead the target autonomous driving model f as f(Xi) 6=
Yi and maximize

∑

i |f(Xi) − Yi|. To achieve the goal,

PhysGAN needs to generate an adversarial roadside sign

Sadv to replace original roadside sign Sorig in digital- or

physical-world. The adversarial roadside sign Sadv is sup-

posed to be close to the original roadside sign Sorig in terms

of ℓ2-norm distance metrics, which implies that adversarial

roadside sign Sadv and original roadside sign Sorig are al-

most visually indistinguishable.

3.2. Physical World Challenges

Physical attacks on an object must be able to survive

changing conditions and remain effective at fooling the

steering angle model. We structure our decision of these

conditions around the common drive-by scenarios (i.e., the

vehicle drives towards the roadside sign).

The “One-to-Many” challenge. A key technical chal-

lenge is to resolve the “one-to-many” challenge, i.e., gen-

erating a single adversarial sample to continuously mislead

the steering angle decision of a vehicle throughout the entire

driving process. Considering multiple frames in generating

an adversarial sample is challenging because the vehicle-

to-board distance, view angle, and even subtle pixels on

each frame could be different. An effective adversarial sam-

ple must be able to exhibit maximum overall attack effect

among all the frames. To achieve this goal, the adversarial

sample needs to be resilient to the changing conditions ex-

hibited on each frame. To resolve this problem, PhysGAN

applies a novel GAN-based framework and consider the en-

tire drive-by video slice, rather than a single frame, as the

input in the generation process (see Sec. 3.5).

Limited manipulated area. Unlike most digital-world

adversarial methods which add perturbations to the entire

input image, techniques focused on physical-world scenar-

ios are constrained to add perturbations only to a fragment

of an image, i.e., the fragmented area corresponding to the

original physical object. Moreover, the underlying assump-

tion of a static image background does not hold in physical

attacks since the background can consistently change over

the driving process.

3.3. PhysGAN Overview

Fig. 2 illustrates the overall architecture of PhysGAN,

which mainly consists of four components: an encoder E ,

a generator G, a discriminator D and the target autonomous

driving model f . The encoder E represents the convolu-

tional layers of target autonomous driving model f , which

takes 3D tensors as inputs and is used to extract features of a

video (of both original and perturbed ones). To resolve the

challenge of generating only a single example which con-

tinuously impacts the driving process, we introduce a novel

idea of considering 3D tensors as inputs in the GAN-based

framework. 2D tensors often represent images while 3D
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tensors are used to represent a small slice of video, which

typically contains hundreds of frames.

As seen in Fig. 2, the extracted features of original video

slice Xorig are used as the input fed to the generator to gen-

erate an adversarial roadside sign Sadv . Doing so allows

us to take into account the fact that different original video

slice Xorig may have different influence on the generated

adversarial roadside sign Sadv , thus ensuring the generator

G to generate the best adversarial roadside sign Sadv corre-

sponding to a certain original video slice Xorig . The adver-

sarial roadside sign Sadv and original roadside sign Sorig

are sent to the discriminator D, which is used to distinguish

the adversarial roadside sign Sadv and the original roadside

sign Sorig . The discriminator D represents a loss function,

which measures the visual distinction between adversarial

roadside sign Sadv and original roadside sign Sorig , and

also encourages the generator to generate an example vi-

sually indistinguishable to the original sign.

3.4. Training GAN Along With the Target Model

In order to ensure the adversarial roadside sign Sadv to

have adversarial effect on the target autonomous driving

model f , we introduce the following loss function:

Lf
ADV = β exp

(

−
1

β
· lf (f(Xorig), f(Xadv))

)

(1)

where β is a sharpness parameter, lf denotes the loss func-

tion used to train the target autonomous driving model f ,

such as MSE-loss or ℓ1-loss, Xorig denotes the original

video slice Xorig , and Xadv represents the adversarial video

slice Xadv , which is generated by mapping the adversarial

roadside sign Sadv into every frame of the original video

slice Xorig . By minimizing Lf
ADV , the distance between

the prediction and the ground truth will be maximized,

which ensures the adversarial effectiveness.

To compute Lf
ADV , we obtain the adversarial video slice

Xadv by substituting the original roadside sign Sorig with

the generated adversarial roadside sign Sadv . Note that the

generated adversarial roadside sign Sadv is a rectangular

image and the original roadside sign Sorig in the video slice

may exhibit an arbitrary quadrilateral shape which could

vary among different frames. We leverage a classical per-

spective mapping method [1] to resolve this mismatch. We

first get the four coordinates of the original roadside sign

Sorig within each frame, and then map the generated adver-

sarial roadside sign Sadv onto the corresponding quadrilat-

eral area inside each frame (details can be found in supple-

mentary material).

The final objective of PhysGAN is expressed as:

L = LGAN + λLf
ADV , (2)

where λ denotes a co-efficient to balance the tradeoff be-

tween the two terms and LGAN is the classic GAN loss,

Algorithm 1 Optimization for PhysGAN

Require: I - Iteration numbers;

Require: f - Target model with fixed parameters;

1: while i < I: do

2: Sadv = G(E(Xorig));
3: LGAN = logD(Sorig) + log(1−D(Sadv));
4: // fix the parameters of G
5: do back-propagation to optimize argmaxD LGAN ;

6: Sadv = G(E(Xorig))
7: LGAN = logD(Sorig) + log(1−D(Sadv));
8: // fix the parameters of D
9: for each frame in the input video slice, perform per-

spective mapping to substitute the original roadside

sign Sorig using the adversarial roadside sign Sadv .

10: do back-propagation to optimize argminG LGAN ;

11: LADV = β exp(− 1

β
· lf (f(Xorig)));

12: do back-propagation to optimize argminG LADV ;

13: end while

which can be represented as

LGAN = ESorig∼pSorig
[logD(Sorig)]

+ ESadv∼pSadv
[log(1−D(Sadv))] .

(3)

To interpret this objective function, LGAN encourages the

adversarial roadside sign Sadv to be visually similar to the

original roadside sign Sorig , while Lf
ADV is leveraged to

generate adversarial video slice Xadv which maximizes at-

tack effectiveness. We obtain the encoder E , the generator

G, and the discriminator D by solving:

argmin
G

max
D

L. (4)

3.5. Attacks with PhysGAN

We assume that the target autonomous driving model f

was pre-trained and the parameters of target autonomous

driving model f are fixed, and the generator G of PhysGAN

can only access the parameters of the target autonomous

driving model f during training. Our algorithm to train

PhysGAN is illustrated in Algorithm 1, which consists of

two phases. As seen in Algorithm 1, the first phase is to

train the discriminator D, which is used later to form a part

of the LGAN (Line 2 – 5); the second phase is to train gen-

erator G with two loss functions, Lf
ADV and LGAN , which

encourages the generator G to generate a visually indistin-

guishable adversarial sample and make the generated sam-

ple be adversarial for the target autonomous driving model

f , respectively (Line 6 – 11). The encoder E , which is the

CNN part of the target autonomous driving model f , aims

at extracting features from all the observed frames during

driving and transforms them into a vector input to the gen-

erator. This design ensures that the generator could gener-
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ate visually indistinguishable examples with an attack ef-

fect through considering all useful features extracted from

the video slice. For physical world deployment, the attacker

shall print the adversarial example of the same size as the

target roadside sign to ensure visual indistinguishability.

4. Experiments

We evaluate PhysGAN via both digital and physical-

world evaluations using widely-studied CNN-based steer-

ing models and popular datasets.

4.1. Experiment Setup

Steering models. We evaluate PhysGAN on several

popular and widely-studied [6, 28, 3] CNN-based steering

models, like NVIDIA Dave-2 2, Udacity Cg23 3 and Udac-

ity Rambo 4. Notably, since the original models applies 2D

CNNs which is trained with individual images, we adapt the

2D CNN into a 3D CNN, and train the 3D-CNNs with a set

of 20-frame video slices.

Datasets. The datasets used in our digital experi-

ments include (1) Udacity automatic driving car challenge

dataset 5, which contains 101396 training images captured

by a dashboard mounted camera of a driving car and the si-

multaneous steering wheel angle applied by a human driver

for each image; (2) DAVE-2 testing dataset [20] 6, which

contains 45,568 images to test the NVIDIA DAVE-2 model;

(3) Kitti [9] dataset which contains 14,999 images from six

different scenes captured by a VW Passat station wagon

equipped with four video cameras; and (4) custom datasets

for physical-world evaluation, which contain more than

20000 frames used to train PhysGAN in physical cases.

For physical-world experiments, we first perform color

augmentation to improve the image contrast, making the

adversarial example be more robust against varying light il-

lumination conditions. Then, we print out the generated ex-

ample under each evaluated approach, and paste it on the se-

lected roadside object. We drive a vehicle by this object and

perform offline analysis using the captured driving videos.

To understand how PhysGAN would perform on actual au-

tonomous vehicles, we have also done online driving testing

which mimics a realistic driving process when facing with

such an adversarial roadside object.

Video slice selection criteria. Our driving scene selec-

tion criteria is that the roadside traffic or advertising signs

should appear entirely in the first frame of a driving video

2https://devblogs.nvidia.com/deep-learning-self-driving-cars/
3https://github.com/udacity/self-driving-car/tree/master/steering-

models/community-models/cg23
4https://github.com/udacity/self-driving-car/tree/master/steering-

models/community-models/rambo
5https://medium.com/udacity/challenge-2-using-deep-learning-to-

predict-steering-angles-f42004a36ff3
6https://github.com/SullyChen/driving-datasets

Scenes Images Size min max

Dave-straight1 20 455× 256 21× 22 41× 49
Dave-curve1 20 455× 256 29× 32 51× 49
Udacity-straight1 20 640× 480 48× 29 66× 35
Udacity-curve1 20 640× 480 51× 51 155× 156
Kitti-straight1 20 455× 1392 56× 74 121× 162
Kitti-straight2 20 455× 1392 80× 46 247× 100
Kitti-curve1 20 455× 1392 64× 74 173× 223

Table 1: Scenes evaluated in the experiment.

with more than 400 pixels and partially disappear in the

last frame. We select 7 scenes from the aforementioned

datasets, and evaluate on all selected scenes. The selected

scenes in each dataset cover both straight and curved lane

scenarios. Since all these datasets do not contain coordi-

nates of roadside signs, we have to label the four corners

of the signs in every frame of the selected scenes. We use

the motion tracker functionality of Adobe After Effects 7 to

automatically track the movement of the signs four corners

among consecutive frames. Table 1 show the attributes of

the scenes we selected.

Baseline methods. We compare PhysGAN with several

baseline approaches:

• Original sign. The first baseline is to simply test the

original roadside sign. This comparison is important

as it verifies whether steering angle errors are due to

PhysGAN but not the original sign. We include this

baseline in both digital and physical evaluations.

• FGSM. FGSM [11] is remarkably powerful and it is

designed to attack neural networks by leveraging the

gradients. In our problem context, we directly apply

FGSM to generate perturbations given a captured in-

put frame. We only include FGSM in our digital eval-

uation, as it is impossible to apply the generated per-

turbations which covers the entire image frame (e.g.,

the sky) in physical world.

• PhysFGSM. In order to apply FGSM in a physical-

world setting, we develop a new method called Phys-

FGSM as an additional baseline, which is based on

FGSM and only generate perturbations for the targeted

roadside sign in an input image. Doing so allows us to

print the perturbed image and paste it onto the corre-

sponding sign. We include PhysFGSM in both digital

and physical evaluations. Since the video slice con-

tains multiple frames, PhysFGSM generate perturba-

tions based upon the middle frame.

• RP2. We also compare PhysGAN to a physical-world

baseline, RP2 [8], which is an optimization approach

that generated perturbations for a single input scene.

The original RP2 method focuses on classification

7https://www.adobe.com/products/aftereffects.html
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Figure 3: The illustration of Steering angle error variations along the timeline on steering model Nvidia Dave-2.

problems, so we extend it to be applicable to the steer-

ing module by substituting the classification loss with

the regression loss.

• Random Noise. We also print an image perturbed with

random noise and paste it on top of the roadside sign.

Evaluation metrics. In our experiments, we use two

metrics to evaluate the efficacy of PhysGAN: steering angle

mean square error (denoted steering angle MSE), and max

steering angle error (MSAE). Steering angle MSE mea-

sures the average of the squares of the error between the

predicted steering angle and the ground truth, and MSAE

denotes the maximum steering angle error observed among

all frames belonging to a video slice. A large steering angle

MSE and MSAE implies better attack efficacy.

In addition, we perform online driving testing case stud-

ies where we manually control the steering angle in each

frame (approximately) according to the real-time calcula-

tion of the resulting steering angle error under each eval-

uated approach. We use the metric time-to-curb herein to

measure the attack efficacy, which measures the amount of

time an actual autonomous driving vehicle would take to

drive onto the roadside curb. Please be advised that all the

results are relative to the ground truth steering angle.

4.2. Results

We first report the overall efficacy under PhysGAN in

both digital and physical-world scenarios. A complete set

of results is given in the supplementary document.

Results on digital scenarios. Table 2 shows a represen-

tative frame of each scene where the signs are replaced with

adversarial examples generated from PhysGAN (using the

targeted steering model NVIDIA Dave-2). Each column of

Table 2 represents a specific scene. It is observed that Phys-

GAN can generate rather realistic adversarial samples, vi-

sually indistinguishable from the original objects. The tar-

geted roadside signs in the original video slices are replaced

by our selected McDonald and Apple Watch signs, and the

modified video slices are used in all experiments. This is

because the roadside signs in the original video slices have

a low resolution, which makes it hard to verify whether our

generated roadside signs are visually distinguishable.

Fig. 3 shows the results on steering angle error along the

timeline in each frame scene, where the size of the adversar-

ial image increases nearly monotonically over time. Each

sub-figure in Fig. 3 indicates a specific scene, where the
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Table 3: Illustration of physical-world adversarial scenarios under different approaches.

Frame # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Original Apple Sign 0.36 -0.51 0.82 0.45 0.10 -0.16 0.84 -1.38 -2.16 -0.86 0.60 -1.11 0.21 -0.49 -0.55 -0.56 0.10 -0.51 0.49 -1.00

PhysGAN (Apple) 0.17 0.89 1.68 7.94 1.93 4.79 2.87 6.34 2.08 3.54 9.06 8.37 5.93 12.51 13.43 11.37 12.75 11.74 13.63 13.44

Original McDonald’s Sign -0.17 -0.42 -1.49 -1.34 -0.51 -0.08 0.60 -0.35 0.70 -0.75 -0.43 -0.35 0.59 -0.89 1.49 0.61 0.94 -0.99 1.13 -0.00

PhysGAN (McDonald’s) -1.24 -1.37 -0.02 -0.30 -2.48 -0.17 -1.06 -0.80 -0.01 -5.37 -1.60 -2.62 -2.45 -4.68 -11.71 -10.85 -9.83 -8.74 -11.35 -19.17

Table 4: Per-frame steering angle error under physical-world experiments. Rows 2 and 4 (rows 3 and 5) show the steering

angle error when the original signs (corresponding adversarial signs generated by PhysGAN) are deployed.

x-axis represents the frame index along the timeline, and

the y-axis represents the steering angle error. We clearly

observe that PhysGAN leads to noticeable angle error for

almost all frames, even for earlier frames in which the ad-

versarial sample is relatively small compared to the back-

ground.

Results on physical-world scenarios. We perform

physical-world experiments as follows. We first record

training videos of driving a vehicle towards the original

roadside sign and use these videos to train the Dave-2

model. We then train PhysGAN following the same con-

figuration as the digital-world evaluation to generate adver-

sarial samples. The generated adversarial samples was then

printed and pasted on the original roadside sign. We then

recorded testing videos of the same drive-by process but

with the adversarial sample. The steering angle error are

then obtained by analyzing these testing videos. Specif-

ically, for both training and testing video slices, we start

recording at 70 ft away and stop recording when the ve-

hicle physically passes the advertising sign. For training

videos, the driving speed is set to be 10mph to capture suf-

ficient images. The speed for the testing video is set to be

20mph to reflect ordinary on-campus driving speed limit.

The physical case studies are performed on a straight lane

due to safety reasons. The size of the roadside advertising

board used in our experiment is 48′ × 72′.

Table 3 shows the original sign and the corresponding

adversarial examples generated under different methods as

well as a camera-captured scenes for each example. To

clearly interpret the results, we list the per-frame steering

angle error due to PhysGAN and using the original sign

in Table 4 (additional comparison results are detailed in

Sec. 4.3). As seen in Table 4, PhysGAN is able to gen-

erate a single printable physical-world-resilient adversarial

example which could mislead the driving model for contin-

uous frames during the entire driving process. An interest-

ing observation herein is that the steering angle error tends

to increase along with the increased frame index. This is be-

cause, with a larger frame index, the size of the adversarial

sample occupies a relatively large space in the entire frame,

so being able to more negatively impact the steering model.

Also, we observe that with the original roadside sign, the

steering angle error is almost negligible under all frames.

4.3. Comparison against Baseline Approaches

Digital Baselines. For each steering model, we compare

our approach with four other baselines including FGSM,

PhysFGSM, random noise, and original sign. Table 5 shows

the results on seven different scenes. These results suggest

the following observations: (1) although FGSM achieves

the highest attacking effect, it needs to apply perturbations

to the entire scene, which is not applicable to the physi-

cal world; (2) the attacking effectiveness of our approach is

much better than PhysFGSM, implying that once consider-

ing physical world implementation constraints, PhysGAN

would outperform direct extensions of existing approaches.

(3) each steering model is reasonably robust as the angle

errors under random noise and original sign are trivial.

Physical Baselines. For physical-world scenarios, we

compare PhysGAN against PhysFGSM, random noise, and

original sign. The results are shown in Table 6. We observe

that both random noise and original sign have negligible im-
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Steering Model Approach
Dave Udacity Kitti

Straight1 Curve1 Straight1 Curve1 Straight1 Straight2 Curve1

Nvidia Dave-2

PhysGAN 106.69 / 15.61 66.79 / 11.63 81.76 / 17.04 114.13 / 14.64 108.76 / 17.72 150.00 / 17.34 95.87 / 15.83

FGSM 115.91 / 17.41 199.27 / 19.47 141.23 / 16.17 192.19 / 21.23 156.16 / 17.84 217.52 / 19.50 103.38 / 14.54

PhysFGSM 15.88 / 6.42 4.73 / 4.87 13.91 / 5.74 3.08 / 2.89 15.17 / 8.04 8.67 / 4.54 13.12 / 7.24

Random Noise 3.00 / 2.01 2.25 / 2.37 2.36 / 2.60 1.77 / 3.10 3.15 / 3.16 1.60 / 0.96 5.92 / 4.41

Original Sign 4.17 / 3.15 4.35 / 2.40 3.84 / 1.79 1.09 / 0.72 4.20 / 2.98 3.06 / 1.23 2.86 / 1.30

Udacity Cg23

PhysGAN 91.85 / 13.80 113.41 / 14.78 50.61 / 10.43 78.56 / 15.46 46.53 / 11.72 62.64 / 11.64 71.09 / 18.14

FGSM 203.34 / 19.70 157.98 / 14.67 171.92 / 19.89 96.74 / 17.75 136.08 / 14.00 162.35 / 18.53 89.75 / 16.71

PhysFGSM 58.53 / 11.86 36.44 / 10.68 30.72 / 9.41 46.74 / 8.88 28.89 / 11.37 22.63 / 7.61 61.23 / 10.95

Random Noise 5.32 / 3.67 3.75 / 2.72 4.05 / 2.52 4.20 / 2.26 5.31 / 4.49 6.54 / 1.98 6.10 / 3.68

Original Sign 4.17 / 3.15 4.35 / 2.40 3.84 / 1.79 4.09 / 2.72 4.20 / 2.98 3.06 / 1.23 2.30 / 1.86

Udacity Rambo

PhysGAN 61.87 / 11.28 113.78 / 15.29 87.68 / 13.90 42.71 / 12.55 56.41 / 12.42 58.67 / 10.42 145.66 / 21.85

FGSM 209.81 / 21.78 147.28 / 16.43 151.14 / 15.28 166.50 / 16.27 169.17 / 18.57 126.14 / 14.19 175.28 / 19.36

PhysFGSM 16.43 / 8.95 14.24 / 8.34 5.32 / 3.73 14.82 / 6.11 16.58 / 7.78 13.89 / 7.93 29.58 / 19.18

Random Noise 1.90 / 2.55 3.49 / 5.79 6.06 / 5.00 1.92 / 3.98 3.82 / 5.42 2.09 / 3.05 1.52 / 1.91

Original Sign 3.93 / 2.01 6.30 / 4.46 1.80 / 1.28 6.54 / 2.52 5.06 / 3.52 5.75 / 4.03 4.95 / 2.07

Table 5: Steering angle MSE (left) and MSAE (right) under all evaluated approaches. Although FGSM produces the maximal

attacks, it modifies the whole image observation and is not applicable to the real world. Among all physical-world attack

approaches, our approach PhysGAN produces the best performance.

PhysGAN RP2 Random Noise Original Sign

Nvidia Dave-2 73.94 / 13.63 23.48 / 6.52 2.48 / 1.02 2.12 / 1.56

Udacity Cg23 99.23 / 14.56 25.15 / 7.86 2.56 / 2.11 2.15 / 1.73

Udacity Rambo 87.56 / 17.60 32.54 / 7.51 1.51 / 1.15 3.12 / 2.48

Table 6: Steering angle MSE (left) and MSAE (right) under PhysGAN, RP2, random noise, and original sign.

pact on the steering models, which indicate the pre-trained

steering models (without being attacked) are sufficiently ro-

bust in physical world settings. As seen in Table 6, Phys-

GAN significantly outperforms RP2 and can achieve very

high attack efficacy under all steering models, which may

lead to dangerous driving actions in the real world.

PhysGAN RP2 Random Noise Original

Time-to-curb 10s - - -

Distance-to-center 1.5m 1.09m 0.29m 0.47m

Table 7: Online driving testing results. The second row

shows the time-to-curb result and the third row shows the

maximum distance that the vehicle deviates from the correct

path (i.e., driving straight).

4.4. Online Driving Case Studies

The above evaluations are off-policy where the driving

trajectory was not affected by the adversarial signs. In this

section, we further conduct on-policy evaluation, i.e., online

driving case studies mimicking the actual driving scenario

to learn how would PhysGAN impact the steering decision

by an actual autonomous vehicle. In these case studies, we

manually control steering in a real-time fashion within each

frame according to the calculated steering angle error under

each approach with the steering model Nvidia Dave-2. We

ask a human driver to drive the vehicle at 5mph for 1 second

to reflect one frame and a corresponding manual steering ac-

tion. We note that this online evaluation setup is a proxy of

real autonomous vehicle and provides proper evaluation of

an attack system. We do not use virtual simulators for eval-

uation because they normally causes sim-to-real transfer is-

sues. So the evaluation results on a simulator would not

reflect the models capability in the physical world. As seen

in Table 7, PhysGAN outperforms the other baselines under

the two metrics. Also, only the adversarial sign generated

under PhysGAN leads the vehicle to drive onto the roadside

curb, which takes 10s (given the very low driving speed due

to safety concerns). This online driving case study further

demonstrates the dangerous steering action an autonomous

vehicle would take due to PhysGAN, indicating its effec-

tiveness when applied to actual autonomous vehicles.

5. Conclusion

We present PhysGAN, which generates physical-world-

resilient adversarial examples for misleading autonomous

steering systems. We proposed a novel GAN-based frame-

work for generating a single adversarial example that con-

tinuously misleads the driving model during the entire tra-

jectory. The generated adversarial example is visually in-

distinguishable from the original roadside object. Exten-

sive digital and physical-world experiments show the effi-

cacy and robustness of PhysGAN. We hope our work could

inspire future research on safe and robust machine learning

for autonomous driving.
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