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Abstract

Dense 3D facial motion capture from only monocular in-

the-wild pairs of RGB images is a highly challenging prob-

lem with numerous applications, ranging from facial ex-

pression recognition to facial reenactment. In this work, we

propose DeepFaceFlow, a robust, fast, and highly-accurate

framework for the dense estimation of 3D non-rigid facial

flow between pairs of monocular images. Our DeepFace-

Flow framework was trained and tested on two very large-

scale facial video datasets, one of them of our own collec-

tion and annotation, with the aid of occlusion-aware and

3D-based loss function. We conduct comprehensive experi-

ments probing different aspects of our approach and demon-

strating its improved performance against state-of-the-art

flow and 3D reconstruction methods. Furthermore, we in-

corporate our framework in a full-head state-of-the-art fa-

cial video synthesis method and demonstrate the ability of

our method in better representing and capturing the facial

dynamics, resulting in a highly-realistic facial video synthe-

sis. Given registered pairs of images, our framework gener-

ates 3D flow maps at ∼ 60 fps.

1. Introduction

Optical flow estimation is a challenging computer vision

task that has been targeted substantially since the seminal

work of Horn and Schunck [16]. The amount of effort ded-

icated for tackling such a problem is largely justified by the

potential applications in the field, e.g. 3D facial reconstruc-

tion [11, 23, 36], autonomous driving [19], action and ex-

pression recognition [30, 21], human motion and head pose

estimation [1, 41], and video-to-video translation [37, 22].

While optical flow tracks pixels between consecutive im-

ages in the 2D image plane, scene flow, its 3D counterpart,

aims at estimating the 3D motion field of scene points at

different time steps in the 3 dimensional space. Therefore,

scene flow combines two challenges: 1) 3D shape recon-

struction, and 2) dense motion estimation. Scene flow esti-

Figure 1. We propose a framework for the high-fidelity 3D flow

estimation between a pair of monocular facial images. Left-to-

right: 1 and 2) input pair of RGB images, 3) estimated 3D facial

shape of first image rendered with 3D motion vectors from first to

second image, 4) warped 3D shape of (1) based on estimated 3D

flow in (3), 5) color-coded 3D flow map of each pixel in (1). For

the color coding, see the Supplementary Material.

mation, which can be traced back to the work of of vedula

et al. [34], is a highly ill-posed problem due to the depth

ambiguity and the aperture problem, as well as occlusions

and variations of illumination and pose, etc. which are very

typical of in-the-wild images. To address all these chal-

lenges, the majority of methods in the literature use stereo

or RGB-D images and enforce priors on either the smooth-

ness of the reconstructed surfaces and estimated motion

fields [2, 27, 39, 33] or the rigidity of the motion [35].

In this work, we seek to estimate the 3D motion field

of human faces from in-the-wild pairs of monocular im-

ages, see Fig. 1. The output in our method is the same

as in scene flow methods, but the fundamental difference

is that we use simple RGB images instead of stereo pairs

or RGB-D images as input. Furthermore, our method is

tailored for human faces instead of arbitrary scenes. For

the problem that we are solving, we use the term “3D face

flow estimation”. Our designed framework delivers accu-

rate flow estimation in the 3D world rather than the 2D im-

age space. We focus on the human face and the modelling

of its dynamics due to its centrality in myriad of applica-

tions, e.g. facial expression recognition, head motion and

pose estimation, 3D dense facial reconstruction, full head

reenactment, etc. Human facial motion emerges from two

main sources: 1) rigid motion due to the head pose varia-

tion, and 2) non-rigid motion caused by elicited facial ex-

pressions and mouth motions during speech. The reliance
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on only monocular and in-the-wild images to capture the

3D motion of general objects makes the problem consider-

ably more challenging. Alleviating such obstacles can be

made by injecting our prior knowledge about this object,

as well as constructing and utilising a large-scale annotated

dataset. Our contributions in this work can be summarised

as follows:

• To the best of our knowledge, there does not exist any

method that estimates 3D scene flow of deformable scenes

using a pair of simple RGB images as input. The proposed

approach is the first to solve this problem and this is made

possible by focusing on scenes with human faces.

• Collection and annotation of a large-scale dataset of
human facial videos (more than 12000), which we call
Face3DVid. With the help of our proposed model-based
formulation, each video was annotated with the per-frame:
1) 68 facial landmarks, 2) dense 3D facial shape mesh, 3)
camera parameters, 4) dense 3D flow maps. This dataset
will be made publicly available (project’s page: https:

//github.com/mrkoujan/DeepFaceFlow).

• A robust, fast, deep learning-based and end-to-end framework

for the dense high-quality estimation of 3D face flow from only a

pair of monocular in-the-wild RGB images.

• We demonstrate both quantitatively and qualitatively the use-

fulness of our estimated 3D flow in a full-head reenactment ex-

periment, as well as 4D face reconstruction (see supplementary

materials).

The approach we follow starts from the collection and an-

notation of a large-scale dataset of facial videos, see section

3 for details. We employ such a rich dynamic dataset in the

training process of our entire framework and initialise the

learning procedure with this dataset of in-the-wild videos.

Different from other scene flow methods, our framework

requires only a pair of monocular RGB images and can be

decomposed into two main parts: 1) a shape-initialization

network (3DMeshReg) aiming at densely regressing the 3D

geometry of the face in the first frame, and 2) a fully convo-

lutional network, termed as DeepFaceFlowNet (DFFNet),

that accepts a pair of RGB frames along with the projected

3D facial shape initialization of the first (reference) frame,

provided by 3DMeshReg, and produces a dense 3D flow

map at the output.

2. Related Work

The most closely-related works in the literature solve the

problems of optical flow and scene flow estimation. Tradi-

tionally, one of the most popular approaches to tackle these

problems had been through variational frameworks. The

work of Horn and Schunck [16] pioneered the variational

work on optical flow, where they formulated an energy

equation with brightness constancy and spatial smoothness

terms. Later, a large number of variational approaches with

various improvements were put forward [7, 26, 38, 3, 31].

All of these methods involve dealing with a complex op-

timisation, rendering them computationally very intensive.

One of the very first attempts for an end-to-end and CNN-

based trainable framework capable of estimating the optical

flow was made by Dosovitskiy et al. [10]. Even though

their reported results still fall behind state-of-the-art classi-

cal methods, their work shows the bright promises of CNNs

in this task and that further investigation is worthwhile. An-

other attempt with similar results to [10] was made by the

authors of [28]. Their framework, called SpyNet, combine

a classical spatial-pyramid formulation with deep learning

for large motions estimation in a coarse-to-fine approach.

As a follow-up method, Ilg et al. [18] later used the two

structures proposed in [10] in a stacked pipeline, FlowNet2,

for estimating coarse and fine scale details of optical flow,

with very competitive performance on the Sintel bench-

mark. Recently, the authors of [32] put forward a com-

pact and fast CNN model, termed as PWC-Net, that capi-

talises on pyramidal processing, warping, and cost volumes.

They reported the top results on more than one benchmark,

namely: MPI Sintel final pass and KITTI 2015. Most of the

deep learning-based methods rely on synthetic datasets to

train their networks in a supervised fashion, leaving a chal-

lenging gap when tested on real in-the-wild images.

Quite different from optical flow, scene flow methods ba-

sically aim at estimating the three dimensional motion vec-

tors of scene points from stereo or RGB-D images. The first

attempt to extend optical flow to 3D was made by Vdedula

et al. [34]. Their work assumed both the structure and the

correspondences of the scene are known. Most of the early

attempts on scene flow estimation relied on a sequence of

stereo images to solve the problem. With the more popular-

ity of depth cameras, more pipelines were utilising RGB-D

data as an alternative to stereo images. All these methods

follow the classical way of scene flow estimation without

using any deep learning techniques or big datasets. The au-

thors of [24] led the first effort to use deep learning features

to estimate optical flow, disparity, and scene flow from a big

dataset. The method of Golyanik et al. [13] estimates the

3D flow from a sequence of monocular images, with suffi-

cient diversity in non-rigid deformation and 3D pose, as the

method relies heavily on NRSfM. The lack of such diver-

sity, which is common for the type of in-the-wild videos we

deal with, could result in degenerate solutions. On the con-

trary, our method requires only a pair of monocular images

as input. Using only monocular images, Brickwedde et al.

[6] target dynamic street scenes but impose a strong rigid-

ity assumption on scene objects, making it unsuitable for fa-

cial videos. As opposed to other state-of-the-art approaches,

we rely on minimal information to solve the highly ill-posed

3D facial scene flow problem. Given only a pair of monoc-
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ular RGB images, our novel framework is capable of ac-

curately estimating the 3D flow between them robustly and

quickly at a rate of ∼ 60fps.

3. Dataset Collection and Annotation

Given the highly ill-posed nature of the non-rigid 3D fa-

cial motion estimation from a pair of monocular images,

the size and variability of the training dataset is very cru-

cial [18, 10]. For this reason, we are based on a large-scale

training dataset (Face3DVid), which we construct by col-

lecting tens of thousands of facial videos, performing dense

3D face reconstruction on them and then estimating effec-

tive pseudo-ground truth of 3D flow maps.

3.1. 3D Face Reconstruction From Videos

First of all, we model the 3D face geometry using

3DMMs and an additive combination of identity and ex-

pression variation. This is similar to several recent meth-

ods, e.g. [40, 9, 23, 12]. In more detail, let x =
[x1, y1, z1, ..., xN , yN , zN ]T ∈ R

3N be the vectorized form

of any 3D facial shape consisting of N 3D vertices. We

consider that x can be represented as:

x(i, e) = x̄+Uidi+Uexpe (1)

where x̄ is the overall mean shape vector, Uid ∈ R
3N×ni

is the identity basis with ni = 157 principal components

(ni ≪ 3N ), Uexp ∈ R
3N×ne is the expression basis with

ne = 28 principal components (ne ≪ 3N ), and i ∈ R
ni ,

e ∈ R
ne are the identity and expression parameters respec-

tively. The identity part of the model originates from the

Large Scale Face Model (LSFM) [4] and the expression part

originates from the work of Zafeiriou et al. [40].

To create effective pseudo-ground truth on tens of thou-

sands of videos, we need to perform 3D face reconstruc-

tion that is both efficient and accurate. For this reason, we

choose to fit the adopted 3DMM model on the sequence of

facial landmarks over each video. Since this process is done

only during training, we are not constrained by the need of

online performance. Therefore, similarly to [9], we adopt a

batch approach that takes into account the information from

all video frames simultaneously and exploits the rich dy-

namic information usually contained in facial videos. It is

an energy minimization to fit the combined identity and ex-

pression 3DMM model on facial landmarks from all frames

of the input video simultaneously. More details are given in

the Supplementary Material.

3.2. Application on a Large­scale Videos Dataset

To create our large scale training dataset, we start from

a collection of 12,000 RGB videos with 19 million frames

in total and 2,500 unique identities. We apply the 3D face

reconstruction method outlined in Sec. 3.1, together with

some video pruning steps to omit cases where the auto-

matic estimations had failed. Our final training set consists

of videos of our collection that survived the steps of video

pruning: 9750 videos (81.25% of the initial dataset) with

1600 different identities and around 12.5M frames. For

more details and exemplar visualisations, please refer to the

Supplementary Material.

3.3. Creation of 3D Flow Annotations

Given a pair of images I1 and I2, coming from a video

in our dataset, and their corresponding 3D shapes S1,S2

and pose parameters R1, t3d1,R2, t3d2, the 3D flow map

of this pair is created as follows:

F (x, y)
(x,y)∈M

= fc2 · (R2[S2(t
j
1),S2(t

j
2),S2(t

j
3)]

tj∈{T |tj is visible from pixel (x,y) inI1}

b+t3d2)

−fc1 · (R1[S1(t
j
1),S1(t

j
2),S1(t

j
3)]

tj∈{T |tj is visible from pixel (x,y) inI1}

b+t3d1),
(2)

where M is the set of foreground pixels in I1, S ∈ R
3×N

is the matrix storing the column-wise x-y-z coordinates of

the N -vertices 3D shape of I1, R ∈ R
3×3 is the rotation

matrix, t3d ∈ R
3 is the 3D translation, fc1 and fc2 are the

scales of the orthographic camera for the first and second

image, respectively, tj = [tj1, t
j
2, t

j
3] (t

j
i ∈ {1, .., N}) is the

visible triangle from pixel (x, y) in image I1 detected by

our hardware-based renderer, T is the set of all triangles

composing the mesh of S, and b ∈ R
3 is the barycentric

coordinates of pixel (x, y) lying inside the projected trian-

gle tj on image I1. All background pixels in equation 2 are

set to zero and ignored during training with the help of a

masked loss. It is evident from equation 2 that we do not

care about the visible vertices in the second frame and only

track in 3D those were visible in image I1 to produce the

3D flow vectors. Additionally, with this flow representation,

the x-y coordinates alone of the 3D flow map (F (x, y)) des-

ignate the 2D optical flow components in the image space

directly.

4. Proposed Framework

Our overall designed framework is demonstrated in fig-

ure 2. We expect as input two RGB images I1, I2 ∈
R

W×H×3 and produce at the output an image F ∈
R

W×H×3 encoding the per-pixel 3D optical flow from I1 to

I2. The designed framework is marked by two main stages:

1) 3DMeshReg: 3D shape initialisation and encoding of

the reference frame I1, 2) DeepFaceFlowNet (DFFNet):

3D face flow prediction. The entire framework was trained

in a supervised manner, utilising the collected and anno-

tated dataset, see section 3.2, and fine-tuned on the 4DFAB

dataset [8], after registering the sequence of scans coming

from each video in this dataset to our 3D template. Input

frames were registered to a 2D template of size 224 × 224
with the help of the 68 mark-up extracted using [14] and fed

to our framework.
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Figure 2. Proposed DeepFaceFlow pipeline for the 3D facial flow estimation. First stage (left): 3DMeshReg works as an initialisation for

the 3D facial shape in the first frame. This estimation is rasterized in the next step and encoded in an RGB image, termed as Projected

Normalised Coordinates Code (PNCC) storing the x-y-z coordinates of each corresponding visible 3D point. Given the pair of images as

well as the PNCC, the second stage (right) estimates the 3D flow using a deep fully-convolutional network (DeepFaceFlowNet).

4.1. 3D Shape Initialisation and Encoding

To robustly estimate the per-pixel 3D flow between a

pair of images, we provide the DFFNet network, section

4.2, not only with I1&I2, but also with another image that

stores a Projected Normalised coordinates Code (PNCC)

of the estimated 3D shape of the reference frame I1, i.e.

PNCC ∈ R
W×H×3. The PNCC codes that we consider

are essentially images encoding the normalised x,y, and z

coordinates of facial vertices visible from each correspond-

ing pixel in I1 based on the camera’s view angle. The in-

clusion of such images allows the CNN to better associate

each RGB value in I1 with the corresponding point in the

3D space, providing the network with a better initialisation

in the problem space and establishing a reference 3D mesh

that facilitates the warping in the 3D space during the course

of training. Equation 3 shows how to compute the PNCC
image of the reference frame I1.

PNCC(x, y)
(x,y)∈M

= V(S, c) = P(R[S(tj1),S(t
j
2),S(t

j
3)]

tj∈{T |tj is visible from(x,y)}

b+ t3d),

(3)

where V(., .) is the function rendering the normalised ver-

sion of S, c ∈ R
7 is the camera parameters, i.e. rotation

angles, translation and scale (R, t3d, fc), and P is a 3 × 3
diagonal matrix with main diagonal elements ( fc

W
, fc
H
, fc
D

).

The multiplication with P scales the posed 3D face with

fc to be first in the image space coordinates and then nor-

malises it with the width and height of the rendered image

size and the maximum z value D computed from the entire

dataset of our annotated 3D shapes. This results in an image

with RGB channels storing the normalised ([0, 1]) x-y-z co-

ordinates of the corresponding rendered 3D shape. The rest

of the parameters in equation 3 are detailed in section 3.3

and utilised in equation 2.

3DMeshReg. The PNCC image generation discussed in

equation 3 still lacks the estimation of the 3D facial shape S

of I1. We deal with this problem by training a deep CNN,

termed as 3DMeshReg, that aims at regressing a dense 3D

mesh S through per-vertex 3D coordinates estimations. We

use our collected dataset (Face3DVid) and the 4DFAB [8]

3D scans to train this network in a supervised manner. We

formulate a loss function composed of two terms:

L(Φ) =
1

N

N∑

i=1

||sGT
i − si||

2 +
1

O

O∑

j=1

||eGT
j − ej ||

2. (4)

The first term in the above equation penalises the devia-

tion of each vertex 3D coordinates from the corresponding

ground-truth vertex (si = [x, y, z]T ), while the second term

ensures similar edge lengths between vertices in the esti-

mated and ground-truth mesh, given that ej is the ℓ2 dis-

tance between vertices v
1
j and v

2
j defining edge j in the

original ground-truth 3D template. Instead of estimating

the camera parameters c separately, which are needed at the

very input of the renderer, we assume a Scaled Orthographic

Projection (SOP) as the camera model and train the network

to regress directly the scaled 3D mesh by multiplying the x-

y-z coordinates of each vertex of frame i with f i
c .

4.2. Face Flow Prediction

Given I1, I2 and PNCC images, the 3D flow estimation

problem is a mapping F : {I1, I2,PNCC} ∈ R
W×H×9 →

FW×H×3. Using both the annotated Face3DVid detailed in

section 3 and 4DFAB [8] datasets, we train a fully convo-

lutional encoder-decoder CNN structure (F), called Deep-

FaceFlowNet (DFFNet), that takes three images, namely:

I1, I2 and PNCC, and produces the 3D flow estimate from

each foreground pixel in I1 to I2 as a W × H × 3 image.

The designed network follows the generic U-Net architec-

ture with skip connections [29] and was inspired particu-

larly by FlowNetC [10], see figure 3. Distinguished from

FlowNetC, we extend the network to account for the PNCC
image at the input and modify the structure to account for

the 3D flow estimation task, rather than 2D optical flow. We

propose the following two-term loss function:

L(Ψ)=
L∑

i=1

wi||F
GT
i −Fi(Ψ)||F+α||I1−W(F,PNCC;I2)||

2

F
(5)
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Figure 3. Architecture of our designed DFFNet for the purpose of estimating the 3D flow between a pair of RGB images.

The first term in Eq. (5) is the endpoint error, which

corresponds to a 3D extension of the standard error mea-

sure for optical flow methods. It computes the frobenius

norm (||.||F) error between the estimated 3D flow F (Ψ)
and the ground truth FGT , with Ψ representing the network

learnable weights. Practically, since at the decoder part of

our DFFNet each fractionally-strided convolution opera-

tion, aka. deconvolution, produces an estimation of the flow

at different resolutions, we compare this multi-resolution

3D flow with the downsampled versions of the FGT , up un-

til the full resolution at stage L, and use the weighted sum

of the frobenius norm error as a penalisation term. The sec-

ond term in Eq. (5) is the photo-consistency error, which

assumes that the colour of each point does not change from

I1 to I2. The warping operation was done with the help

of the warping function W(., .). This function warps the

3D shape of I1 encoded inside the PNCC image using the

estimated flow F and samples I2 at the vertices of the resul-

tant projected 3D shape. The warping function in equation

5 was implemented by a differentiable layer detecting the

occlusions by the virtue of our 3D flow, and sampling the

second image (backward warping) in a differentiable man-

ner at the output stage of our DFFNet. The scale α is used

for the sake of terms balancing while training.

5. Experiments

In this section, we compare our framework with state-of-

the-art methods in optical flow and 3D face reconstruction.

We ran all the experiments on an NVIDIA DGX1 machine.

5.1. Datasets

Although the collected Face3DVid dataset has a wide

variety of facial dynamics and identities captured under

plenitude of set-ups and viewpoints depicting the in-the-

wild scenarios of videos capture, the dataset was anno-

tated with pseudo ground-truth 3D shapes, not real 3D

scans. Relying only on this dataset, therefore, for train-

ing our framework could result in mimicking the perfor-

mance of the 3DMM-based estimation, which we want ide-

ally to initialise with and then depart from. Thus, we fine-

tune our framework on the 4DFAB dataset [8]. The 4DFAB

dataset is a large-scale database of dynamic high-resolution

3D faces with subjects displaying both spontaneous and

posed facial expressions with the corresponding per-frame

3D scans. We leave a temporal gap between consecutive

frames sampled from each video if the average 3D flow per

pixel is <= 1 between each pair. In total, around 3M im-

age pairs (1600 subjects) form the Face3DVid dataset and

500K from the 4DFAB (175 subjects) were used for train-

ing/testing purposes. We split the Face3DVid into train-

ing/validation vs test (80% vs 20%) in the first phase of

the training. Likewise, 4DFAB dataset was split into train-

ing/validation vs test (80% vs 20%) during the fine-tuning.

5.2. Architectures and Training Details

Our pipeline consists of two networks (see Fig. 2):

a) 3DMeshReg: The aim of this network is to accept an

input image (I1 ∈ R
224×224×3 ) and regress the per-vertex

(x, y, z) coordinates describing the subject’s facial geome-

try. ResNet50 [15] network architecture was selected and

trained for this purpose after replacing the output fully-

connected (fc) layer with a convolutional one (3 × 3, 512)

and then a linear fc layer with ∼ 1.5k×3 neurons. This net-

work was trained initially and separately from the rest of the

framework on the Face3DVid dataset and then fine-tuned

on the 4DFAB dataset [8]. Adam optimizer was used [20]

during the training with learning rate of 0.0001, β1 = 0.9,

β2 = 0.999, and batch size 32.
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Figure 4. Training schedule for the learning rate used while train-

ing our network and other state-of-the-art approaches for 3D flow

estimation. The first 20 epochs for all methods were ran on

Face3DVid dataset and the next 20 on 4DFAB. Each training

epoch on Face3DVid and 4DFAB is composed of 18.75 · 104 and

3.13 · 104 iterations, respectively, each with batch size of 16.

b) DFFNet: Figure 3 shows the structure of this network.

Inspired by FlowNetC [10], this network has similarly nine

convolutional layers. The first three layers use kernels of

size 5 × 5 and the rest have kernels of size 3 × 3. Where

occurs, downsampling is carried out with strides of 2 and

non-linearity is implemented with ReLU layers. We extend

this architecture at the input stage by a branch dedicated

for processing the PNCC image. The feature map gener-

ated at the end of the PNCC branch is concatenated with

the correlation result between the feature maps of I1 and

I2. For the correlation layer, we follow the implementation

suggested by [10] and we keep the same parameters for this

layer (neighborhood search size is 2*(21)+1 pixels). At the

decoder section, the flow is estimated from the finest level

up until the full resolution. While training, we use a batch

size of 16 and the Adam optimization algorithm [20] with

the default parameters recommended in [20] (β1 = 0.9 and

β2 = 0.999). Figure 4 demonstrates our scheduled learning

rates over epochs for training and fine-tuning. We also set

wi = 1 and α = 10 in equation 5 and normalise input im-

ages to the range [0, 1]. While testing, our entire framework

takes only around 17ms (6ms (3DMehsReg)+ 6ms (raster-

ization &PNCC generation) + 5ms (DFFNet)) to generate

the 3D dense flow map, given a registered pair of images.

5.3. Evaluation of 3D Flow Estimation

In this section, we quantitatively evaluate the ability of

our approach in estimating the 3D flow. As there exist no

other methods for 3D scene flow from simple RGB images,

we adapt existing methods that solve closely-related prob-

lems so that they produce 3D flow estimation. In more

detail, we use two 3D reconstruction methods (ITWMM

[5] and DNSfM-3DMM [23]), as well as four optical flow

methods after retraining them all specifically for the task

of 3D flow estimation. The four optical flow methods in-

clude the best performing methods in table 2 on our datasets

(LiteNet&FlowNet2) as well as two additional baselines

(FlowNetS&FlowNetC).

To estimate the 3D flow by ITWMM and DNSfM-3DMM,

we first generate the per-frame dense 3D mesh of each test

video by passing a single frame at a time to the ITWMM

method and the entire video for the DNSfM-3DMM (as it

is a video-based approach). Then, following our annotation

procedure discussed in 3.3, the 3D flow values for each pair

of test images were obtained.

Since the deep learning-based methods we compare against

in this section were proposed as 2D flow estimators, we

modify the sizes of some filters in their original architec-

tures so that their output flow is a 3-channel image stor-

ing the x-y-z coordinates of the flow and train them on

our 3D-facial-flow datasets with the learning rate sched-

ules reported in figure 4. FlowNet2 is a very deep architec-

ture (around 160M parameters) composed of stacked net-

works. As suggested in [18], we did not train this network

in one go, but instead sequentially. More specifically, we

fused the separately trained individual networks (FlowNetS,

FlowNetC, and FlowNetSD [18]) on our datasets together

and fine-tuned the entire stacked architecture, see 4 for the

learning rate schedule. Please consult the supplementary

material for more information on what we modified exactly

in each flow network we compare against here.

Table 1 shows the generated facial AEPE results by each

method on the Face3DVid and 4DFAB datasets. Our pro-

posed architecture and its variant (‘ours depth’) report the

lowest (best) AEPE numbers on both datasets. Figure 5 vi-

sualises some color-coded 3D flow results produced by the

methods presented in table 1. To color-code the 3D flow, we

convert the x-y-z estimated flow coordinates from Cartesian

to spherical coordinates and normalise them so that they

represent the coordinates of an HSV coloring system, more

details on that are available in the supplementary material.

It is noteworthy that the 3D facial reconstruction methods

we compare against fail to produce as accurate tracking of

the 3D flow as our approach. Their result is not smooth and

consistent in the model space, resulting in a higher inten-

sity motion in the space. This can be attributed to the fact

that such methods pay attention to the fidelity of the recon-

struction from the camera’s view angle more than the 3D

temporal flow. On the other hand, the other deep architec-

tures we train in this section are unable to capture the full

facial motion with same precision, with more fading flow

around cheeks and forehand.

5.4. Evaluation of 2D Flow Estimation

The aim of this experiment is to probe the performance

of our framework in estimating the 2D optical facial flow

between a pair of facial images by keeping only the dis-

placements produced at the output in the x and y directions

while ignoring those in the z direction. We separate the

comparisons in this section into two parts. Firstly, we eval-
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Figure 5. Color-coded 3D flow estimations of random test pairs from the Face3DVid and 4DFAB datasets. Left-to-right: pair of input

RGB images, Ground Truth, ours, ours depth, compared methods. For the color coding, see the Supp. Material.

Figure 6. Color-coded 2D flow estimations. Rows are random samples from the test split of the Face3DVid and 4DFAB datasets and their

2D flow estimations. The first two columns of each row show the input pair of RGB images. For the color coding, see the Supp. Material.

Table 1. Comparison between our obtained 3D face flow results

against state-of-the-art methods on the test splits of the 4DFAB

and Face3DVid datasets. Comparison metric is the standard Av-

erage End Point Error (AEPE)

Method 4DFAB(↓) Face3DVid(↓)

ITWMM [5] 3.43 4.1

DNSfM-3DMM [23] 2.8 3.9

FlowNetS [10] 2.25 3.7

FlowNetC [10] 1.95 2.425

FlowNet2 [18] 1.89 2.4

LiteNet [17] 1.5 2.2

ours depth 1.6 1.971

ours 1.3 1.77

uate our method against generic 2D flow approaches us-

ing their best performing trained models provided by the

original authors of each. Secondly, we train the same ar-

chitectures from scratch on the same datasets we train our

framework on, namely the training splits of Face3DVid and

4DFAB, using a learning rate of 1e-4 that drops 5 times

each 10 epochs. We keep the same network design as pro-

vided by each paper’s authors and only train the network

to minimise a masked loss composed of photo-consistency

and data terms. The masked loss is computed with the help

of a foreground (facial) mask for each reference image pro-

vided with our utilised datasets. Table 2 presents the ob-

tained facial Average End Point Error (AEPE) metric values

by our proposed approach against other state-of-the-art opti-

cal flow prediction methods on the test splits of Face3DVid

and 4DFAB datasets. As can be noted from table 2, our

proposed method always achieves the smallest (best) AEPE

values on both employed datasets. As expected, the AEPE

values decrease when training the other methods on our

dataset for the specific task of facial 2D flow estimation.

However, our method still produces lower errors and out-

performs the compared against methods on this task. The

‘ours depth’ variant of our network comes as the second

best performing method on both datasets. This variant was

trained in a very similar manner to our original framework

but with feeding the DFFNet with I1, I2 and only the z

coordinates (last channel) of the PNCC image while ignor-

ing the x and y (first two channles). Figure 6 demonstrates

some qualitative results generated by the methods reported
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Table 2. Comparison between our obtained 2D flow results against

state-of-the-art methods on the test splits of the 4DFAB and

Face3DVid datasets. Comparison metric is the standard Average

End Point Error (AEPE). ‘original models’ refers to trained mod-

els provided by the authros of each, and ‘trained from scratch’

indicates that the same architectures were trained on the training

sets of both Face3DVid and 4DFAB to estimate the 2D facial flow.

Method
original models trained from scratch

4DFAB Face3DVid 4DFAB Face3DVid

FlowNetS [10] 1.832 5.1425 1.956 2.6

SpyNet [28] 1.31 3 1.042 1.5

FlowNetC [10] 1.212 2.6 1.061 1.498

UnFlow [25] 1.163 2.6553 1.055 1.45

LiteNet [17] 1.16 2.6 1.018 1.268

PWC-Net[32] 1.159 2.625 1.035 1.371

FlowNet2 [18] 1.15 2.6187 1.063 1.352

ours depth 0.99 1.176 0.99 1.176

ours 0.941 1.096 0.941 1.096

in table 2, as well as ours. Please refer to the supplementary

material for more information on the color-coding followed

for encoding the flow values.

5.5. Video­to­Video Synthesis With 3D Flow

We further investigate the functionality of our proposed

framework in capturing the human facial 3D motion and

successfully employing it in a full-head reenactment appli-

cation. Towards that aim, we use the recently proposed

method of [37], which is in essence a general video-to-video

synthesis approach mapping a source (conditioning) video

to a photo-realistic output one. The authors of [37] train

their framework in an adversarial manner and learn the tem-

poral dynamics of a target video during the training time

with the help of the 2D flow estimated by FlowNet2 [18].

In this experiment, we replace the FlowNet2 employed in

[37] by our proposed approach and aid the generator and

video discriminator to learn the temporal facial dynamics

represented by our 3D facial flow. We firstly conduct a

self-reenactment test as done in [37], where we divide each

video into a train/test splits (first 2 third vs last third) and re-

port the average per-pixel RGB error between fake and real

test frames. Table 3 reveals the average pixel distance ob-

tained for 4 different videos we trained a separate model for

each. The only difference between the second and third row

of table 3 is the flow estimation method, everything else

(structure, loss functions, conditioning, etc.) is the same.

As can be noted from table 3, our 3D flow better reveals

the facial temporal dynamics of the training subject and as-

sists the video synthesis generator in capturing these tem-

poral characteristics, resulting in a lower error. In the sec-

ond experiment, we make a full-head reenactment test to

fully transfer the head pose and expression from the source

person to a target one. Figure 7 manifests the synthesised

frames using our 3D flow and the 2D flow of FlowNet2.

Figure 7. Full-head reenactment using [37] combined with either

FlowNet2 (second row) or our 3D flow approach (last row).

Looking closely at figure 7, our 3D flow results in a more

photo-realistic video synthesis with highly accurate head

pose, facial expression, as well as temporal dynamics, while

the manipulated frames generated with FlowNet2 fail to

demonstrate the same fidelity. More details regarding this

experiment are in the supplementary material.

Table 3. Average RGB distance obtained under a self-reenactment

setup on 4 videos (each with 1K test frames) using either FlowNet2

[18] or our facial 3D flow with the method of Wang et al. [37]

Video 1 2 3 4

[37]+FlowNet2 (↓) 7.5 9.5 8.7 9.2

[37]+Ours (3D flow) (↓) 6.3 7.9 7.5 7.7

6. Conclusion and Future Work

In this work, we put forward a novel and fast frame-

work for densely estimating the 3D flow of human faces

from only a pair of monocular RGB images. The frame-

work was trained on a very large-scale dataset of in-the-

wild facial videos (Face3DVid) and fine-tuned on a 4D fa-

cial expression database (4DFAB [8]) with ground-truth 3D

scans. We conduct extensive experimental evaluations that

show that the proposed approach: a) yields highly-accurate

estimations of 2D and 3D facial flow from monocular pair

of images and successfully captures complex non-rigid mo-

tions of the face and b) outperforms many state-of-the-art

approaches in estimating both the 2D and 3D facial flow,

even when training other approaches under the same setup

and data. We additionally reveal the promising potential of

our work in a full-head facial manipulation application that

capitalises on our facial flow to produce highly loyal and

photo-realistic fake facial dynamics indistinguishable from

real ones.
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