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Abstract

Modern face alignment methods have become quite ac-

curate at predicting the locations of facial landmarks, but

they do not typically estimate the uncertainty of their pre-

dicted locations nor predict whether landmarks are visi-

ble. In this paper, we present a novel framework for jointly

predicting landmark locations, associated uncertainties of

these predicted locations, and landmark visibilities. We

model these as mixed random variables and estimate them

using a deep network trained with our proposed Location,

Uncertainty, and Visibility Likelihood (LUVLi) loss. In ad-

dition, we release an entirely new labeling of a large face

alignment dataset with over 19,000 face images in a full

range of head poses. Each face is manually labeled with

the ground-truth locations of 68 landmarks, with the addi-

tional information of whether each landmark is unoccluded,

self-occluded (due to extreme head poses), or externally oc-

cluded. Not only does our joint estimation yield accurate es-

timates of the uncertainty of predicted landmark locations,

but it also yields state-of-the-art estimates for the landmark

locations themselves on multiple standard face alignment

datasets. Our method’s estimates of the uncertainty of pre-

dicted landmark locations could be used to automatically

identify input images on which face alignment fails, which

can be critical for downstream tasks.

1. Introduction

Modern methods for face alignment (facial landmark lo-

calization) perform quite well most of the time, but all of

them fail some percentage of the time. Unfortunately, al-

most all of the state-of-the-art (SOTA) methods simply out-

put predicted landmark locations, with no assessment of

whether (or how much) downstream tasks should trust these

landmark locations. This is concerning, as face alignment

is a key pre-processing step in numerous safety-critical ap-

∗Equal Contributions

Figure 1: Results of our joint face alignment and uncer-

tainty estimation on three test images. Ground-truth (green)

and predicted (yellow) landmark locations are shown. The

estimated uncertainty of the predicted location of each land-

mark is shown in blue (Error ellipse for Mahalanobis dis-

tance 1). Landmarks that are occluded (e.g., by the hand in

center image) tend to have larger uncertainty.

plications, including advanced driver assistance systems

(ADAS), driver monitoring, and remote measurement of vi-

tal signs [57]. As deep neural networks are notorious for

producing overconfident predictions [33], similar concerns

have been raised for other neural network technologies [46],

and they become even more acute in the era of adversar-

ial machine learning where adversarial images may pose a

great threat to a system [14]. However, previous work in

face alignment (and landmark localization in general) has

largely ignored the area of uncertainty estimation.

To address this need, we propose a method to jointly esti-

mate facial landmark locations and a parametric probability

distribution representing the uncertainty of each estimated

location. Our model also jointly estimates the visibility of

landmarks, which predicts whether each landmark is oc-

cluded due to extreme head pose.

We find that the choice of methods for calculating mean

and covariance is crucial. Landmark locations are best ob-

tained using heatmaps, rather than by direct regression. To

estimate landmark locations in a differentiable manner us-

ing heatmaps, we do not select the location of the maximum

(argmax) of each landmark’s heatmap, but instead propose

to use the spatial mean of the positive elements of each
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heatmap. Unlike landmark locations, uncertainty distribu-

tion parameters are best obtained by direct regression rather

than from heatmaps. To estimate the uncertainty of the

predicted locations, we add a Cholesky Estimator Network

(CEN) branch to estimate the covariance matrix of a mul-

tivariate Gaussian or Laplacian probability distribution. To

estimate visibility of each landmark, we add a Visibility Es-

timator Network (VEN). We combine these estimates using

a joint loss function that we call the Location, Uncertainty

and Visibility Likelihood (LUVLi) loss. Our primary goal

in designing this model was to estimate uncertainty in land-

mark localization. In the process, not only does our method

yields accurate uncertainty estimation, but it also produces

SOTA landmark localization results on several face align-

ment datasets.

Uncertainty can be broadly classified into two cate-

gories [41]: epistemic uncertainty is related to a lack of

knowledge about the model that generated the observed

data, and aleatoric uncertainty is related to the noise inher-

ent in the observations, e.g., sensor or labelling noise. The

ground-truth landmark locations marked on an image by hu-

man labelers would vary across multiple labelings of an im-

age by different human labelers (or even by the same human

labeler). Furthermore, this variation will itself vary across

different images and landmarks (e.g., it will vary more for

occluded landmarks and poorly lit images). The goal of our

method is to estimate this aleatoric uncertainty.

The fact that each image only has one ground-truth la-

beled location per landmark makes estimating this uncer-

tainty distribution difficult, but not impossible. To do so,

we use a parametric model for the uncertainty distribution.

We train a neural network to estimate the parameters of the

model for each landmark of each input face image so as

to maximize the likelihood under the model of the ground-

truth location of that landmark (summed across all land-

marks of all training faces).

The main contributions of this work are as follows:

• This is the first work to introduce the concept of para-

metric uncertainty estimation for face alignment.

• We propose an end-to-end trainable model for the joint

estimation of landmark location, uncertainty, and visi-

bility likelihood (LUVLi), modeled as a mixed random

variable.

• We compare our model using multivariate Gaussian

and multivariate Laplacian probability distributions.

• Our algorithm yields accurate uncertainty estimation

and state-of-the-art landmark localization results on

several face alignment datasets.

• We are releasing a new dataset with manual labels of

the locations of 68 landmarks on over 19,000 face im-

ages in a wide variety of poses, where each landmark

is also labeled with one of three visibility categories.

2. Related Work

2.1. Face Alignment

Early methods for face alignment were based on Ac-

tive Shape Models (ASM) and Active Appearance Models

(AAM) [16, 18, 66, 69, 78] as well as their variations [1, 19,

36, 49, 50, 62]. Subsequently, direct regression methods be-

came popular due to their excellent performance. Of these,

tree-based regression methods [9,17,40,60,76] proved par-

ticularly fast, and the subsequent cascaded regression meth-

ods [2, 22, 75, 77, 83] improved accuracy.

Recent approaches [7, 72, 73, 79, 81, 84, 87, 88] are all

based on deep learning and can be classified into two sub-

categories: direct regression [10, 73] and heatmap-based

approaches. The SOTA deep methods, e.g., stacked hour-

glass networks [7, 84] and densely connected U-nets (DU-

Net) [72], use a cascade of deep networks, originally de-

veloped for human body 2D pose estimation [55]. These

models [7, 55, 71, 72] are trained using the ℓ2 distance be-

tween the predicted heatmap for each landmark and a proxy

ground-truth heatmap that is generated by placing a sym-

metric Gaussian distribution with small fixed variance at the

ground-truth landmark location. [48] uses a larger variance

for early hourglasses and a smaller variance for later hour-

glasses. [79] employs different variations of MSE for dif-

ferent pixels of the proxy ground-truth heatmap. Recent

works also infer facial boundary maps to improve align-

ment [79, 81]. In heatmap-based methods, landmarks are

estimated by the argmax of each predicted heatmap. Indi-

rect inference through a predicted heatmap offers several

advantages over direct prediction [4].

Disadvantages of Heatmap-Based Approaches. These

heatmap-based methods have at least two disadvantages.

First, since the goal of training is to mimic a proxy ground-

truth heatmap containing a fixed symmetric Gaussian, the

predicted heatmaps are poorly suited to uncertainty predic-

tion [13, 14]. Second, they suffer from quantization errors

since the heatmap’s argmax is only determined to the near-

est pixel [51, 56, 70]. To achieve sub-pixel localization for

body pose estimation, [51] replaces the argmax with a spa-

tial mean over the softmax. Alternatively, for sub-pixel lo-

calization in videos, [70] samples two additional points ad-

jacent to the max of the heatmap to estimate a local peak.

Landmark Regression with Uncertainty. We have

only found two other methods that estimate uncertainty of

landmark regression, both developed concurrently with our

approach. The first method [13, 14] estimates face align-

ment uncertainty using a non-parametric approach: a ker-

nel density network obtained by convolving the heatmaps

with a fixed symmetric Gaussian kernel. The second [32]

performs body pose estimation with uncertainty using di-

rect regression method (no heatmaps) to directly predict the

mean and precision matrix of a Gaussian distribution.
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2.2. Uncertainty Estimation in Neural Networks

Uncertainty estimation broadly uses two types of

approaches [46]: sampling-based and sampling-free.

Sampling-based methods include Bayesian neural net-

works [67], Monte Carlo dropout [29], and bootstrap en-

sembles [45]. They rely on multiple evaluations of the input

to estimate uncertainty [46], and bootstrap ensembles also

need to store several sets of weights [37]. Thus, sampling-

based methods work for small 1D regression problems but

might not be feasible for higher-dimensional problems [37].

Sampling-free methods produce two outputs, one for the

estimate and the other for the uncertainty, and optimize

Gaussian log-likelihood (GLL) instead of classification and

regression losses [41, 45, 46]. [45] combines the benefits of

sampling-free and sampling-based methods.

Recent object detection methods have used uncertainty

estimation [3, 34, 35, 38, 46, 47, 53]. Sampling-free meth-

ods [35, 46, 47] jointly estimate the four parameters of the

bounding box using Gaussian log-likelihood [47], Lapla-

cian log-likelihood [46], or both [35]. However, these

methods assume the four parameters of the bounding box

are independent (assume a diagonal covariance matrix).

Sampling-based approaches use Monte Carlo dropout [53]

and network ensembles [45] for object detection. Un-

certainty estimation has also been applied to pixelwise

depth regression [41], optical flow [37], pedestrian detec-

tion [5, 6, 54] and 3D vehicle detection [26].

3. Proposed Method

Figure 2 shows an overview of our LUVLi Face Align-

ment. The input RGB face image is passed through a

DU-Net [72] architecture, to which we add three additional

components branching from each U-net. The first new com-

ponent is a mean estimator, which computes the estimated

location of each landmark as the weighted spatial mean of

the positive elements of the corresponding heatmap. The

second and the third new component, the Cholesky Estima-

tor Network (CEN) and the Visibility Estimator Network

(VEN), emerge from the bottleneck layer of each U-net.

CEN and VEN weights are shared across all U-nets. The

CEN estimates the Cholesky coefficients of the covariance

matrix for each landmark location. The VEN estimates the

probability of visibility of each landmark in the image, 1
meaning visible and 0 meaning not visible. For each U-net i

and each landmark j, the landmark’s location estimate µij ,

estimated covariance matrix Σij , and estimated visibility

v̂ij are tied together by the LUVLi loss function Lij , which

enables end-to-end optimization of the entire framework.

Rather than the argmax of the heatmap, we choose a

mean estimator for the heatmap that is differentiable and

enables sub-pixel accuracy: the weighted spatial mean of

the heatmap’s positive elements. Unlike the non-parametric

model of [13,14], our uncertainty prediction method is para-

CENVEN

LUVLi

CENVEN

v̂ij HijLij

LUVLi

CENVEN

LUVLi

LijL
T
ij Mean Estimator

v̂ij Lij Hij

Lij = −(1− vj) ln(1− v̂ij)− vj ln(v̂ij)

− vj ln(P(pj |µij ,Σij))

Predictions

v̂ij µij = [µijx, µijy]
TΣij

µij

Σij

pj

Figure 2: Overview of our LUVLi method. From each U-

net of a DU-Net, we append a shared Cholesky Estimator

Network (CEN) and Visibility Estimator Network (VEN)

to the bottleneck layer and apply a mean estimator to the

heatmap. The figure shows the joint estimation of location,

uncertainty, and visibility of the landmarks performed for

each U-net i and landmark j. The landmark has ground-

truth (labeled) location pj and visibility vj ∈ {0, 1}.

metric: we directly estimate the parameters of a single mul-

tivariate Laplacian or Gaussian distribution. Furthermore,

our method does not constrain the Laplacian or Gaussian

covariance matrix to be diagonal.

3.1. Mean Estimator

Let Hij(x, y) denote the value at pixel location (x, y) of

the jth landmark’s heatmap from the ith U-net. The land-

mark’s location estimate µij = [µijx, µijy]
T is given by

first post-processing the pixels of the heatmap Hij with a

function σ, then taking the weighted spatial mean of the

result (See (16) in the supplementary material). We con-

sidered three different functions for σ: the ReLU func-

tion (eliminates the negative values), the softmax func-

tion (makes the mean estimator a soft-argmax of the

heatmap [12,25,51,85]), and a temperature-controlled soft-

max function (which, depending on the temperature setting,

provides a continuum of softmax functions that range from

a “hard” argmax to the uniform distribution). The ablation

studies (Section 5.5) show that choosing σ to be the ReLU

function yields the simplest and best mean estimator.

3.2. LUVLi Loss

Occluded landmarks, e.g., landmarks on the far side of

a profile-pose face, are common in real data. To explic-

itly represent visibility, we model the probability distri-

butions of landmark locations using mixed random vari-
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ables. For each landmark j in an image, we denote the

ground-truth (labeled) visibility by the binary variable vj ∈
{0, 1}, where 1 denotes visible, and the ground-truth lo-

cation by pj . By convention, if the landmark is not vis-

ible (vj = 0), then pj = ∅, a special symbol indicating

non-existence. Together, these variables are distributed ac-

cording to an unknown distribution p(vj ,pj). The marginal

Bernoulli distribution p(vj) captures the probability of visi-

bility, p(pj |vj=1) denotes the distribution of the landmark

location when it is visible, and p(pj |vj = 0) = 1∅(pj),
where 1∅ denotes the PMF that assigns probability one to

the symbol ∅.

After each U-net i, we estimate the joint distribution of

the visibility v and location z of each landmark j via

q(v, z) = qv(v)qz(z|v), (1)

where qv(v) is a Bernoulli distribution with

qv(v = 1) = v̂ij , qv(v = 0) = 1− v̂ij , (2)

where v̂ij is the predicted probability of visibility, and

qz(z|v = 1) = P(z|µij ,Σij), (3)

qz(z|v = 0) = ∅, (4)

where P denotes the likelihood of the landmark being at lo-

cation z given the estimated mean µij and covariance Σij .

The LUVLi loss is the negative log-likelihood with re-

spect to q(v, z), as given by

Lij =− ln q(vj ,pj)

=− ln qv(vj)− ln qz(pj |vj)
=− (1− vj) ln(1− v̂ij)− vj ln(v̂ij)

− vj ln
(
P(pj |µij ,Σij)

)
, (5)

and thus minimizing the loss is equivalent to maximum like-

lihood estimation.

The terms of (5) are a binary cross entropy plus vj times

the negative log-likelihood of pj with respect to P . This

can be seen as an instance of multi-task learning [11], since

we are predicting three things about each landmark: its lo-

cation, uncertainty, and visibility. The first two terms on

the right hand side of (5) can be seen as a classification loss

for visibility, while the last term corresponds to a regression

loss of location estimation. The sum of classification and re-

gression losses is also widely used in object detection [39].

Minimization of negative log-likelihood also corre-

sponds to minimizing KL-divergence, since

E[− ln q(vj ,pj)] = E

[
ln

p(vj ,pj)

q(vj ,pj)
− ln p(vj ,pj)

]
(6)

= DKL(p(vj ,pj)‖q(vj ,pj)) + E[− ln p(vj ,pj)], (7)

where expectations are with respect to (vj ,pj) ∼ p(vj ,pj),
and the entropy term E[− ln p(vj ,pj)] is constant with re-

spect to the estimate q(vj ,pj). Further, since

E[− ln q(vj ,pj)] = Evj∼p(vj)[− ln q(vj)]

+ pvEpj∼p(pj |vj=1)[− lnP(pj |µij ,Σij)], (8)

where pv := p(vj = 1) for brevity, minimizing the negative

log-likelihood (LUVLi loss) is also equivalent to minimiz-

ing the combination of KL-divergences given by

DKL

(
p(vj)‖q(v)

)
+pvDKL

(
p(pj |vj=1)‖P(z|µij ,Σij)

)
(9)

3.2.1 Models for Location Likelihood

For the multivariate location distribution P , we consider

two different models: Gaussian and Laplacian.

Gaussian Likelihood. The 2D Gaussian likelihood is:

P(z|µij ,Σij)=
exp

(
− 1

2 (z−µij)
TΣ−1

ij (z−µij)
)

2π
√
|Σij |

. (10)

Substituting (10) into (5), we have

Lij = −(1−vj) ln(1−v̂ij)− vj ln(v̂ij) +vj
1

2
log |Σij |

︸ ︷︷ ︸
T1+ vj

1

2
(pj− µij)

TΣ−1
ij (pj −µij)

︸ ︷︷ ︸
T2

. (11)

In (11), T2 is the squared Mahalanobis distance, while T1

serves as a regularization or prior term that ensures that the

Gaussian uncertainty distribution does not get too large.

Laplacian Likelihood. We use a 2D Laplacian likeli-

hood [43] given by:

P (z|µij ,Σij)=
e
−
√

3(z−µij)TΣ
−1

ij
(z−µij)

2π
3

√
|Σij |

. (12)

Substituting (12) in (5), we have

Lij = −(1−vj) ln(1−v̂ij)− vj ln(v̂ij) + vj
1

2
log |Σij |

︸ ︷︷ ︸
T1+ vj

√
3(pj−µij)TΣ

−1
ij (pj−µij)

︸ ︷︷ ︸
T2

. (13)

In (13), T2 is a scaled Mahalanobis distance, while T1

serves as a regularization or prior term that ensures that the

Laplacian uncertainty distribution does not get too large.

Note that if Σij is the identity matrix and if all landmarks

are assumed to be visible, then (11) simply reduces to the

squared ℓ2 distance, and (13) just minimizes the ℓ2 distance.

3.3. Uncertainty and Visibility Estimation

Our proposed method uses heatmaps for estimating land-

marks’ locations, but not for estimating their uncertainty

and visibility. We experimented with several methods for

computing a covariance matrix directly from a heatmap, but

none were accurate enough. We discuss this in Section 5.1.

Cholesky Estimator Network (CEN). We represent the

uncertainty of each landmark location using a 2× 2 co-

variance matrix Σij , which is symmetric positive defi-

nite. The three degrees of freedom of Σij are captured

by its Cholesky decomposition: a lower-triangular matrix

Lij such that Σij = LijL
T
ij . To estimate the elements

of Lij , we append a Cholesky Estimator Network (CEN)

to the bottleneck of each U-net. The CEN is a fully con-

nected linear layer whose input is the bottleneck of the U-
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net (128×4×4=2,048 dimensions) and output is an Np×3-

dimensional vector, where Np is the number of landmarks

(e.g., 68). As the Cholesky decomposition Lij of a covari-

ance matrix must have positive diagonal elements, we pass

the corresponding entries of the output through an ELU ac-

tivation function [15], to which we add a constant to ensure

the output is always positive (asymptote is negative x-axis).

Visibility Estimator Network (VEN). To estimate the

visibility of the landmark ve, we add another fully con-

nected linear layer whose input is the bottleneck of the U-

net (128×4×4 = 2,048 dimensions) and output is an Np-

dimensional vector. This is passed through a sigmoid acti-

vation so the predicted visibility v̂ij is between 0 and 1.

The addition of these two fully connected layers only

slightly increases the size of the original model. The loss for

a single U-net is the averaged Lij across all the landmarks

j = 1, ..., Np , and the total loss L for each input image is a

weighted sum of the losses of all K of the U-nets:

L =
K∑

i=1

λiLi , where Li =
1

Np

Np∑

j=1

Lij . (14)

At test time, each landmark’s mean and Cholesky coeffi-

cients are derived from the Kth (final) U-net. The covari-

ance matrix is calculated from the Cholesky coefficients.

4. New Dataset: MERL-RAV

To promote future research in face alignment with un-

certainty, we now introduce a new dataset with entirely

new, manual labels of over 19,000 face images from the

AFLW [42] dataset. In addition to landmark locations, ev-

ery landmark is labeled with one of three visibility classes.

We call the new dataset MERL Reannotation of AFLW with

Visibility (MERL-RAV).

Visibility Classification. Each landmark of every face is

classified as either unoccluded, self-occluded, or externally

occluded, as illustrated in Figure 3. Unoccluded denotes

landmarks that can be seen directly in the image, with no

obstructions. Self-occluded denotes landmarks that are oc-

cluded because of extreme head pose—they are occluded by

another part of the face (e.g., landmarks on the far side of a

profile-view face). Externally occluded denotes landmarks

that are occluded by hair or an intervening object such as

a cap, hand, microphone, or goggles. Human labelers are

generally very bad at localizing self-occluded landmarks,

so we do not provide ground-truth locations for these. We

do provide ground-truth (labeled) locations for both unoc-

cluded and externally occluded landmarks.

Relationship to Visibility in LUVLi. In Section 3, vis-

ible landmarks (vj = 1) are landmarks for which ground-

truth location information is available, while invisible land-

marks (vj = 0) are landmarks for which no ground-truth

location information is available (pj = ∅). Thus, invisible

(vj = 0) in the model is equivalent to the self-occluded

Table 1: Overview of face alignment datasets. [Key:

Self Occ= Self-Occlusions, Ext Occ= External Occlusions]

Dataset #train #test #marks Profile Self Ext

Images Occ Occ

COFW [8] 1,345 507 29 ✕ ✕ X

COFW-68 [30] - 507 68 ✕ ✕ X

300-W [63–65] 3,837 600 68 ✕ ✕ ✕

Menpo 2D [21, 74, 86] 7,564 7,281 68/39 X F/P ✕

300W-LP-2D [90] 61,225 - 68 X T ✕

WFLW [81] 7,500 2,500 98 X ✕ ✕

AFLW [42] 20,000 4,386 21 X X ✕

AFLW-19 [89] 20,000 4,386 19 X ✕ ✕

AFLW-68 [59] 20,000 4,386 68 X ✕ ✕

MERL-RAV (Ours) 15,449 3,865 68 X X X

landmarks in our dataset. In contrast, both unoccluded

and externally occluded landmarks are considered visible

(vj = 1) in our model. We choose this because human

labelers are generally good at estimating the locations of

externally occluded landmarks but poor at estimating the

locations of self-occluded landmarks.

Existing Datasets. The most commonly used publicly

available datasets for evaluation of 2D face alignment are

summarized in Table 1. The 300-W dataset [63–65] uses

a 68-landmark system that was originally used for Multi-

PIE [31]. Menpo 2D [21, 74, 86] makes a hard distinction

(denoted F/P) between nearly frontal faces (F) and profile

faces (P). Menpo 2D uses the same landmarks as 300-W for

frontal faces, but for profile faces it uses a different set of

39 landmarks that do not all correspond to the 68 landmarks

in the frontal images. 300W-LP-2D [7, 90] is a synthetic

dataset created by automatically reposing 300-W faces, so

it has a large number of labels, but they are noisy. The 3D

model locations of self-occluded landmarks are projected

onto the visible part of the face as if the face were trans-

parent (denoted by T). The WFLW [81] and AFLW-68 [59]

datasets do not identify which landmarks are self-occluded,

but instead label self-occluded landmarks as if they were

located on the visible boundary of the noseless face.

Differences from Existing Datasets. Our MERL-

RAV dataset is the only one that labels every landmark us-

ing both types of occlusion (self-occlusion and external oc-

clusion). Only one other dataset, AFLW, indicates which

individual landmarks are self-occluded, but it has far fewer

landmarks and does not label external occlusions. COFW

and COFW-68 indicate which landmarks are externally oc-

cluded but do not have self-occlusions. Menpo 2D catego-

rizes faces as frontal or profile, but landmarks of the two

classes are incompatible. Unlike Menpo 2D, our dataset

smoothly transitions from frontal to profile, with gradually

more and more landmarks labeled as self-occluded.

Our dataset uses the widely adopted 68 landmarks used

by 300-W, to allow for evaluation and cross-dataset com-

parison. Since it uses images from AFLW, our dataset has

pose variation up to ±120◦ yaw and ±90◦ pitch. Focusing

on yaw, we group the images into five pose classes: frontal,

8240



Pose Side #Train #Test

Frontal - 8,778 2,195
Half- Left half 1,180 295

Profile Right half 1,221 306

Profile
Left 2,080 521

Right 2,190 548

Total - 15,449 3,865

Table 2: Statistics of our new

dataset for face alignment.

Figure 3: Unoccluded,

externally occluded, and

self-occluded landmarks.

left and right half-profile, and left and right profile. The

train/test split is in the ratio of 4 : 1. Table 2 provides the

statistics of our MERL-RAV dataset. A sample image from

the dataset is shown in Figure 3. In the figure, unoccluded

landmarks are green, externally occluded landmarks are red,

and self-occluded landmarks are indicated by black circles

in the face schematic on the right.

5. Experiments

Our experiments use the datasets 300-W [63–65], 300W-

LP-2D [90], Menpo 2D [21, 74, 86], COFW-68 [8, 30],

AFLW-19 [42], WFLW [81], and our MERL-RAV dataset.

Training and testing protocols are described in the supple-

mentary material. On a 12 GB GeForce GTX Titan-X GPU,

the inference time per image is 17 ms.

Evaluation Metrics. We use the standard metrics NME,

AUC, and FR [14, 72, 79]. In each table, we report results

using the same metric adopted in respective baselines.

Normalized Mean Error (NME). The NME is defined as:

NME (%) =
1

Np

Np∑

j=1

vj
‖pj − µKj‖2

d
× 100, (15)

where vj , pj and µKj respectively denote the visibility,

ground-truth and predicted location of landmark j from the

Kth (final) U-net. The factor of vj is there because we can-

not compute an error value for points without ground-truth

location labels. Several variations of the normalizing term

d are used. NMEbox [7,14,86] sets d to the geometric mean

of the width and height of the ground-truth bounding box(√
wbbox · hbbox

)
, while NMEinter-ocular [44, 64, 72] sets d to

the distance between the outer corners of the two eyes. If a

ground-truth box is not provided, the tight bounding box of

the landmarks is used [7,14]. NMEdiag [68,81] sets d as the

diagonal of the bounding box.

Area Under the Curve (AUC). To compute the AUC, the

cumulative distribution of the fraction of test images whose

NME (%) is less than or equal to the value on the horizontal

axis is first plotted. The AUC for a test set is then computed

as the area under that curve, up to the cutoff NME value.

Failure Rate (FR). FR refers to the percentage of images

in the test set whose NME is larger than a certain threshold.

5.1. 300W Face Alignment

We train on the 300-W [63–65], and test on 300-W,

Menpo 2D [21, 74, 86], and COFW-68 [8, 30]. Some of the

Table 3: NMEinter-ocular on 300-W Common, Challenge, and

Full datasets (Split 1). [Key: Best, Second best]

NMEinter-ocular (%)(↓)

Common Challenge Full

SAN [23] 3.34 6.60 3.98
AVS [59] 3.21 6.49 3.86
DAN [44] 3.19 5.24 3.59

LAB (w/B) [81] 2.98 5.19 3.49
Teacher [24] 2.91 5.91 3.49

DU-Net (Public code) [72] 2.97 5.53 3.47
DeCaFa (More data) [20] 2.93 5.26 3.39

HR-Net [68] 2.87 5.15 3.32
HG-HSLE [91] 2.85 5.03 3.28

AWing [79] 2.72 4.52 3.07
LUVLi (Ours) 2.76 5.16 3.23

Table 4: NMEbox and AUC7
box comparisons on 300-W Test

(Split 2), Menpo 2D and COFW-68 datasets.

[Key: Best, Second best, * = Pretrained on 300W-LP-2D]

NMEbox (%) (↓) AUC7

box (%) (↑)

300-W Menpo COFW 300-W Menpo COFW

SAN* [23] in [14] 2.86 2.95 3.50 59.7 61.9 51.9
2D-FAN* [7] 2.32 2.16 2.95 66.5 69.0 57.5
KDN [13] 2.49 2.26 - 67.3 68.2 -

Softlabel* [14] 2.32 2.27 2.92 66.6 67.4 57.9
KDN* [14] 2.21 2.01 2.73 68.3 71.1 60.1
LUVLi (Ours) 2.24 2.18 2.75 68.3 70.1 60.8
LUVLi* (Ours) 2.10 2.04 2.57 70.2 71.9 63.4

models are pre-trained on the 300W-LP-2D [90].

Data Splits and Evaluation Metrics. There are two

commonly used train/test splits for 300-W; we evaluate our

method on both. Split 1: The train set contains 3,148 im-

ages and full test set has 689 images [72]. Split 2: The train

set includes 3,837 images and test set has 600 images [14].

The model trained on Split 2 is additionally evaluated on

the 6,679 near-frontal training images of Menpo 2D and

507 test images of COFW-68 [14]. For Split 1, we use

NMEinter-ocular [68,72,79]. For Split 2, we use NMEbox and

AUCbox with 7% cutoff [7, 14].

Results: Localization and Cross-Dataset Evaluation.

The face alignment results for 300-W Split 1 and Split 2
are summarized in Table 3 and 4, respectively. Table 4 also

shows the results of our model (trained on Split 2) on the

Menpo and COFW-68 datasets, as in [7, 14]. The results in

Table 3 show that our LUVLi landmark localization is com-

petitive with the SOTA methods on Split 1, usually one of

the best two. Table 4 shows that LUVLi significantly out-

performs the SOTA on Split 2, performing best on 5 out of

the 6 cases (3 datasets × 2 metrics). This is particularly im-

pressive on 300-W Split 2, because even though most of the

other methods are pre-trained on the 300W-LP-2D dataset

(as was our best method, LUVLi*), our method without pre-

training still outperforms the SOTA in 2 of 6 cases. Our

method performs particularly well in the cross-dataset eval-

uation on the more challenging COFW-68 dataset, which

has multiple externally occluded landmarks.
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Figure 4: Mean squared residual error vs. predicted covari-

ance matrix for all landmarks in 300-W Test (Split 2).

Accuracy of Predicted Uncertainty. To evaluate the

accuracy of the predicted uncertainty covariance matrix,

ΣKj =

[
ΣKjxx ΣKjxy

ΣKjxy ΣKjyy

]
, we compare all three unique terms of

this prediction with the statistics of the residuals (2D error

between the ground-truth location pj and the predicted lo-

cation µKj) of all landmarks in the test set. We explain

how we do this for ΣKjxx in Figure 4a. First, we bin ev-

ery landmark of every test image according to the value of

the predicted variance in the x-direction
(
ΣKjxx

)
. Each

bin is represented by one point in the scatter plot. Averag-

ing ΣKjxx across the Nbin = 734 landmark points within

each bin gives a single predicted ΣKjxx value (horizontal

axis). We next compute the residuals in the x-direction of

all landmarks in the bin, and calculate the average of the

squared residuals to obtain Σxx = E(pjx−µKjx)
2 for the

bin. This mean squared residual error, Σxx, is plotted on the

vertical axis. If our predicted uncertainties are accurate, this

residual error, Σxx, should be roughly equal to the predicted

uncertainty variance in the x-direction (horizontal axis).

Figure 4 shows that all three terms of our method’s pre-

dicted covariance matrices are highly predictive of the ac-

tual uncertainty: the mean squared residuals (error) are

strongly proportional to the predicted covariance values, as

evidenced by Pearson correlation coefficients of 0.98 and

0.99. However, decreasing Nbin from 734 (plotted in Fig-

ure 4) to just 36 makes the correlation coefficients decrease

to 0.84, 0.80, 0.72. Thus, the predicted uncertainties are ex-

cellent after averaging but may yet have room to improve.

Uncertainty is Larger for Occluded Landmarks. The

COFW-68 [30] test set annotates which landmarks are ex-

ternally occluded. Similar to [14], we use this to test uncer-

tainty predictions of our model, where the square root of the

determinant of the uncertainty covariance is a scalar mea-

sure of predicted uncertainty. We report the error, NMEbox,

and average predicted uncertainty, |ΣKj |1/2, in Table 5. We

do not use any occlusion annotation from the dataset during

training. Like [14], we find that our model’s predicted un-

certainty is much larger for externally occluded landmarks

than for unoccluded landmarks. Furthermore, our method’s

location estimates are more accurate (smaller NMEbox) than

those of [14] for both occluded and unoccluded landmarks.

Heatmaps vs. Direct Regression for Uncertainty. We

tried multiple approaches to estimate the uncertainty dis-

Table 5: NMEbox and uncertainty
(
|ΣKj |1/2

)
on un-

occluded and externally occluded landmarks of COFW-

68 dataset. [Key: Best]

Unoccluded Externally Occluded

NMEbox |Σ|1=2 NMEbox |Σ|1=2

Softlabel [14] 2.30 5.99 5.01 7.32
KDN [14] 2.34 1.63 4.03 11.62

LUVLi (Ours) 2.15 9.31 4.00 32.49

Table 6: NME and AUC on the AFLW-19 dataset (previous

results are quoted from [14, 68]). [Key: Best, Second best]

NMEdiag NMEbox AUC7

box

Full Frontal Full Full

CFSS [88] 3.92 2.68 - -

CCL [89] 2.72 2.17 - -

DAC-CSR [28] 2.27 1.81 - -

LLL [61] 1.97 - - -

SAN [23] 1.91 1.85 4.04 54.0
DSRN [52] 1.86 - - -

LAB (w/o B) [81] 1.85 1.62 - -

HR-Net [68] 1.57 1.46 - -

Wing [27] - - 3.56 53.5
KDN [14] - - 2.80 60.3

LUVLi (Ours) 1.39 1.19 2.28 68.0

Figure 5: Histogram of the smallest eigenvalue of ΣKj .

tribution from heatmaps, but none of these worked nearly

as well as our direct regression using the CEN. We believe

this is because in current heatmap-based networks, the res-

olution of the heatmap (64 × 64) is too low for accurate

uncertainty estimation. This is demonstrated in Figure 5,

which shows a histogram over all landmarks in 300-W Test

(Split 2) of LUVLi’s predicted covariance in the narrowest

direction of the covariance ellipse (the smallest eigenvalue

of the predicted covariance matrix). The figure shows that

in most cases, the uncertainty ellipses are less wide than one

heatmap pixel, which explains why heatmap-based methods

are not able to accurately capture such small uncertainties.

5.2. AFLW19 Face Alignment

On AFLW-19, we train on 20,000 images, and test on

two sets: the AFLW-Full set (4,386 test images) and the

AFLW-Frontal set (1,314 test images), as in [68,81,89]. Ta-

ble 6 compares our method’s localization performance with

other methods that only train on AFLW-19 (without train-

ing on any 68-landmark dataset). Our proposed method

outperforms not only the other uncertainty-based method

KDN [14], but also all previous SOTA methods, by a sig-

nificant margin on both AFLW-Full and AFLW-Frontal.
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