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Abstract

There is a strong incentive to develop versatile learn-

ing techniques that can transfer the knowledge of class-

separability from a labeled source domain to an unlabeled

target domain in the presence of a domain-shift. Existing do-

main adaptation (DA) approaches are not equipped for prac-

tical DA scenarios as a result of their reliance on the knowl-

edge of source-target label-set relationship (e.g. Closed-set,

Open-set or Partial DA). Furthermore, almost all prior unsu-

pervised DA works require coexistence of source and target

samples even during deployment, making them unsuitable

for real-time adaptation. Devoid of such impractical assump-

tions, we propose a novel two-stage learning process. 1) In

the Procurement stage, we aim to equip the model for future

source-free deployment, assuming no prior knowledge of the

upcoming category-gap and domain-shift. To achieve this,

we enhance the model’s ability to reject out-of-source distri-

bution samples by leveraging the available source data, in a

novel generative classifier framework. 2) In the Deployment

stage, the goal is to design a unified adaptation algorithm

capable of operating across a wide range of category-gaps,

with no access to the previously seen source samples. To

this end, in contrast to the usage of complex adversarial

training regimes, we define a simple yet effective source-

free adaptation objective by utilizing a novel instance-level

weighting mechanism, named as Source Similarity Metric

(SSM). A thorough evaluation shows the practical usabil-

ity of the proposed learning framework with superior DA

performance even over state-of-the-art source-dependent

approaches. Our implementation is available on github1.

1. Introduction

Deep learning models have proven to be highly successful

over a wide variety of tasks [20, 35]. However, a majority

of these are heavily dependent on access to a huge amount

of labeled data to achieve a reliable level of generalization.

A recognition model trained on a certain distribution of la-

beled samples (source domain) often fails to generalize [7]

∗Equal contribution.
1Code: https://github.com/val-iisc/usfda
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Figure 1: We address unsupervised domain adaptation in absence

of source data (source-free), without any category-gap knowledge

(universal). A lock indicates “no access” during adaptation.

when deployed in a new environment (target domain) with

discrepancy in the data distribution [43]. Unsupervised Do-

main Adaptation (DA) algorithms seek to minimize this

discrepancy without accessing the target label information,

either by learning a domain invariant feature representa-

tion [26, 21, 9, 45], or by learning independent transforma-

tions [28, 32] to a common latent representation through

adversarial distribution matching [46, 22].

Most of the existing approaches [38, 56, 46] assume a

shared label set between the source and the target domains

(i.e. Cs = Ct), i.e. Closed-Set DA (Fig. 2A). Though this as-

sumption helps gain various insights for DA algorithms [2],

it rarely holds true in real-world scenarios. Recently, re-

searchers have independently explored two broad adaptation

settings by partly relaxing the Closed-Set assumption (see

Fig. 2A). In the first kind, Partial DA [54, 5, 6], the target

label space is considered as a subset of the source label space

(i.e. Ct ⊂ Cs). This setting is more suited for large-scale

universal source datasets, which will almost always subsume

the label set of a wide range of target domains. However,

the availability of such a large-scale source is highly ques-

tionable for a wide range of input domains. In the second

kind, Open-set DA [39, 1, 10], the target label space is con-

sidered as a superset of the source label space (i.e. Ct ⊃ Cs).

The major challenge in this setting is to detect target sam-

ples from the unobserved categories (similar to detection

of out-of-distribution samples [31]) in a fully-unsupervised

scenario. Apart from the above two extremes, certain works

define a partly mixed scenario by allowing a “private” label
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set for both source and target domains (i.e. Cs \ Ct 6= ∅ and

Ct \ Cs 6= ∅) but with extra supervision such as few-shot la-

beled data [30] or the knowledge of common categories [4].

Most of the prior approaches [46, 39, 5] consider each sce-

nario in isolation and propose independent solutions. Thus,

the knowledge of the relationship between the source and

the target label space (category-gap) is required to carefully

choose whether to apply Closed-set, Open-set or Partial DA

algorithm for the problem in hand. Furthermore, all the prior

unsupervised DA works require the coexistence of source

and target samples even during deployment, hence are not

source-free. This is highly impractical, as labeled source

data may not be accessible after deployment due to several

reasons. Many datasets are withheld due to privacy concerns

(e.g. biometric data) [29] or simply due to the proprietary

nature of the dataset. Moreover, in real-time deployment

scenarios [51], training on the entire source data is not fea-

sible due to computational limitations. Even otherwise, an

accidental loss (e.g. data corruption) of the source data ren-

ders the prior unsupervised DA methods non-viable for a

future model adaptation [25]. Acknowledging these issues,

we aim to formalize a unified solution for unsupervised DA

completely devoid of these limitations. Our problem setting

is illustrated in Fig. 1 (note source-free and universal).

The available DA techniques heavily rely on the adversar-

ial discriminative [46, 56, 38] strategy. Thus, they require

access to the source samples to reliably characterize the

source domain distribution. Clearly, such approaches are not

equipped to operate in a source-free setting. Though a gen-

erative model can be used as a memory-network [41, 3] to

realize source-free adaptation, such a solution is not scalable

for large-scale source datasets (e.g. ImageNet [36]), as it

introduces unnecessary additional parameters along with the

associated training difficulties [40]. As a novel alternative,

we hypothesize that, to facilitate source-free adaptation, the

source model should have the ability to reject samples that

are out of the source data distribution [14].

In general, fully-discriminative deep models have a ten-

dency to over-generalize for regions not covered by the train-

ing set, hence are highly confident in their predictions even

for negative samples [24]. Though this problem can be ad-

dressed by training the source model on a negative source

dataset, a wrong choice of negative data makes the model

incapable of rejecting unknown target samples encountered

after deployment [42]. Aiming towards a data-free setting,

we hypothesize that the target samples have similar local

part-based features as found in the source data, which also

holds for novel target categories as encountered in Open-set

DA. For example, consider an animal classification model

(see Fig. 2B) where the deployed environment contains novel

target categories unobserved in the source dataset (e.g. Gi-

raffe). Here, the composition of local regions (e.g. body-

parts) between pairs of source images drawn from different

Seahorse Tiger
Composite images Target-private imagesSource dataset

2
1 2

81
2

8
1 1

5
8

3 3

Closed-set Partial 

a
d

1
1
3

3

Open-set

1
8

Ours: Universal

Source Target SharedA.

B.

Hypothetical class < unlabelled >

Figure 2: a) Various label-set relationships (category-gap). b)

Composite image as a reliable negative sample.

categories (e.g. Seahorse and Tiger) can be used to syntheti-

cally generate hypothetical negative classes which can act as

a proxy for the unobserved animal categories. Such synthetic

samples are a better approximation of the expected charac-

teristics (e.g. long-neck) in the deployed target environment,

as compared to samples from other unrelated datasets.

In summary, we propose a convenient DA framework,

which is equipped to address Universal Source-Free Domain

Adaptation. A thorough evaluation shows the practical us-

ability of our approach with superior DA performance even

over state-of-the-art source dependent approaches, across a

variety of unknown label-set relationships.

2. Related work

We briefly review the available domain adaptation meth-

ods under the three major divisions according to the as-

sumption on label-set relationship. a) Closed-set DA. The

cluster of prior closed-set DA works focuses on minimiz-

ing the domain gap at the latent space either by minimizing

well-defined statistical distance functions [49, 8, 55, 37] or

by formalizing it as an adversarial distribution matching

problem [46, 17, 27, 16, 15] inspired from the Generative

Adversarial Nets [11]. Certain prior works [41, 57, 15] use

the GAN framework to explicitly generate target-like im-

ages translated from the source image samples, which is also

regarded as pixel-level adaptation [3] in contrast to other

feature level adaptation works [32, 46, 26, 28]. b) Partial

DA. [5] proposed to achieve adversarial class-level match-

ing by utilizing multiple domain discriminators furnishing

a class-level and an instance-level weighting for individual

data samples. [54] proposed to utilize importance weights

for source samples depending on their similarity to the target

domain data using an auxilliary discriminator. To effectively

address the problem of negative-transfer [50], [6] employed

a single discriminator to achieve both adversarial adaptation

and class-level weighting of source samples. c) Open-set

DA. [39] proposed a more general open-set DA setting with-

out accessing the knowledge of source-private labels in con-

trast to [33]. They extended the classifier to accommodate an

additional “unknown” class, which is adversarially trained

against other source classes to detect target-private samples.
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Figure 3: Latent space cluster arrangement during adaptation (see Section 3.1.1).

d) Universal DA. [52] proposed the Universal DA setting,

which requires no prior knowledge of label-set relationship

(see Fig. 2A), similar to our proposed setting, but considers

access to both source and target samples during adaptation.

3. Proposed approach

Our approach to solve the source-free domain adaptation

problem is broadly divided into a two stage process. Note,

source-free DA means the adaptation step is source-free. See

Supplementary for a notation table.

a) Procurement stage. In this stage, we have a labeled

source dataset, Ds = {(xs, ys) : xs ∼ p, ys ∈ Cs},

where p is the distribution of source samples and Cs de-

notes the label-set of the source domain. Here, the prime

objective is to equip the model for a future source-free adap-

tation, where the model will encounter an unknown domain-

shift and category-gap in the target domain. To achieve

this we rely on an artificially generated negative dataset,

Dn = {(xn, yn) : xn ∼ pn, yn ∈ Cn}, where pn is the dis-

tribution of negative source samples such that Cn ∩ Cs = ∅.

b) Deployment stage. After obtaining a trained model from

the Procurement stage, the model will have its first encounter

with the unlabeled target domain samples from the deployed

environment. We denote the unlabeled target data by Dt =
{xt : xt ∼ q}, where q is the distribution of target samples.

Note that, the source dataset Ds from the Procurement stage

is inaccessible during adaptation in the Deployment stage.

Suppose that, Ct is the label-set of the target domain. In the

Universal setting [52], we do not have any knowledge of the

relationship between Ct and Cs. Nevertheless, without the

loss of generality, we define the shared labels as C = Cs ∩Ct
and the private label-set for the source and the target domains

as Cs = Cs \ Ct and Ct = Ct \ Cs respectively.

3.1. Learning in the Procurement stage

3.1.1. Challenges. The available DA techniques heavily

rely on the adversarial discriminative [46, 38] strategy. Thus,

they require access to the source data to reliably characterize

the source distribution. Further, these approaches are not

equipped to operate in a source-free setting. Though a gen-

erative model can be used as a memory-network [41, 3] to

realize source-free adaptation, such a solution is not scalable

for large-scale source datasets (e.g. ImageNet [36]), as it

introduces unnecessary additional parameters alongside the

associated training difficulties [40]. This calls for a fresh

analysis of the requirements beyond the existing solutions.

In a general DA scenario, with access to source samples

in the Deployment stage (specifically for Open-set or Partial

DA), a widely adopted approach is to learn domain invariant

features. In such approaches, the placement of source cate-

gory clusters is learned in the presence of unlabeled target

samples which obliquely provides a supervision regarding

the relationship between Cs and Ct. For instance, in case

of Open-set DA, the source clusters may have to disperse

to make space for the clusters from target-private Ct (see

Fig. 3A to 3B). Similarly, in partial DA, the source clus-

ters may have to rearrange themselves to keep all the target

shared clusters (C = Ct) separated from the source private

Cs (see Fig. 3A to 3C). However in a completely source-free

framework, we do not have the liberty to leverage such infor-

mation as source and target samples never coexist together

during training. Motivated by the adversarial discrimina-

tive DA technique [46], we hypothesize that, inculcating

the ability to reject samples that are out of the source data

distribution can facilitate future source-free domain align-

ment using this discriminatory knowledge. Therefore, in the

Procurement stage the overarching objective is two-fold.

• Firstly, we must aim to learn a certain placement of

source clusters best suited for all kinds of category-gap

scenarios acknowledging the fact that, a source-free sce-

nario does not allow us to modify the placement in the

presence of target samples during adaptation (Fig. 3D).

• Secondly, the model must have the ability to reject out-

of-distribution samples, which is an essential require-

ment for unsupervised adaptation under domain-shift.

3.1.2. Solution. In the presence of source data, we aim

to restrain the model’s domain and category bias which is

generally inculcated as a result of the over-confident super-

vised learning paradigms. To achieve this goal, we adopt

two regularization strategies viz. i) utilization of a labeled

simulated negative source dataset to generalize for the latent

4546



Procurement stage

Deployment stage

Frozen CNN FC Frozen FC

Softmax output probabilities

SSM

Fr
oz

en
 w

eig
ht

s

B. Architecture of the 2-stage methodA. Simulation of -ve samples

Mug Bag

Cal. Bike

+ve 
Samples 

-ve 
Samples

Shelf Laptop c-45

c-23

c-78

before procurement

C. Latent-space t-SNE

p=20
lr=1
iter=806

np

p np

p

With procurement

Without procurement

Sh
ar

ed

Source samples

Negative samples

Intra-class compactness

Inter-class separability

Source samples
Negative samples Intra-class compactness

Inter-class separability

C. Procurement stage encourages well-separated tight source clusters

Training 
progression

Figure 4: A) Simulated labeled negative samples using randomly created spline segments (in pink), B) Proposed architecture, C)

Procurement stage promotes intra-class compactness with inter-class separability.

regions not covered by the given positive source samples

(see Fig. 4C) and ii) regularization via generative modeling.

How to configure the negative source dataset? While

configuring Dn, the following key properties have to be met.

Firstly, latent clusters formed by the negative categories must

lie in-between the latent clusters of positive source categories

to enable a higher degree of intra-class compactness with

inter-class separability (Fig. 4C). Secondly, the negative

source samples must enrich the source domain distribution

without forming a new domain by themselves. This rules out

the use of Mixup [53] or adversarial noise [44] as negative

samples in this scenario. Thus, we propose the following

method to synthesize the desired negative source dataset.

Image-composition. One of the key characteristics

shared between the samples from source and unknown target

domain is the semantics of the local part-related features

specifically for image-based object recognition tasks. Rely-

ing on this assumption, we propose a systematic procedure

to simulate the samples of Dn by randomly compositing lo-

cal regions between a pair of images drawn from the source

dataset Ds (see Fig. 4A and Suppl. Algo. 1). These compos-

ite samples xn created on image pairs from different positive

source classes are expected to lie in-between the two source

clusters in the latent space, thus introducing a combinatorial

amount of new class labels i.e. |Cn| =
|Cs|C2.

This approach is motivated from and conforms with the

observation in the literature, that one can indeed generate

semantics for new classes using the known classes [23, 48].

Intuitively, from the perspective of combining features, when

local parts from two different positive source classes are com-

bined, the resulting image would tend to produce activations

for both the classes (due to the presence of salient features

from both classes). Thus, the sample would fall near the

decision boundary in-between the two clusters in the latent

space. Alternatively, from the perspective of discarding fea-

tures, as we mask-out regions in a source image xs (Fig. 4),

the activation in the corresponding class ys reduces. Thus,

the model would be less confident for such samples, thereby

emulating the characteristics of a negative class.

Training procedure. The generative source classifier is

divided into three stages; i) backbone-model M , ii) feature

extractor Fs, and iii) classifier D (see Fig. 4B). The output

of the backbone-model is denoted as v = M(x), where x is

drawn from either Ds or Dn. Following this, the output of

Fs and D are represented as u and d respectively.

D outputs a K-dimensional logit vector denoted as d =
[d(k)] for k = 1, 2, ...,K, where K = |Cs| + |Cn|. The

individual class probabilities, ŷ(k) are obtained by applying

softmax over the logits i.e. ŷ(k) = σ(k)(D ◦ Fs ◦ M(x)),
where ◦ denotes function composition, σ denotes the softmax

activation and the superscript (k) denotes the class-index.

Additionally, we define priors only for the positive source

classes, P (us|ci) = N (us|µci ,Σci) (for i = 1, 2, ..., |Cs|)
at the intermediate embedding us = Fs ◦M(xs). Here, the

parameters of the normal distributions are computed during

training as shown in line-10 of Algo. 1. A cross-entropy

loss over these prior distributions is defined as Lp (line-7 in

Algo. 1), that effectively enforces intra-class compactness

with inter-class separability (Fig. 4C).

Motivated by generative variational auto-encoder (VAE)

setup [19], we introduce a decoder G, which minimizes the

cyclic reconstruction loss selectively for the samples vs from

positive source categories and randomly drawn samples ur

from the corresponding class priors (i.e. losses Lv and Lu in

line-6 of Algo. 1). This, along with a lower weightage α for

the negative source categories (i.e. at the cross-entropy loss

LCE in line-6 of Algo. 1), is incorporated to deliberately

bias Fs towards the positive source samples, considering the

level of unreliability of the generated negative dataset.

3.2. Learning in the Deployment stage

3.2.1. Challenges. We hypothesize that, the large number

of negative source categories along with the positive source

classes i.e. Cs ∪ Cn can be interpreted as a universal source

dataset, which can subsume label-set Ct of a wide range

of target domains. Moreover, we seek to realize a unified

adaptation algorithm, which can work for a wide range of

category-gaps. However, a forceful adaptation of target sam-
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Algorithm 1 Training algorithm in the Procurement stage

1: input: (xs, ys) ∈ Ds, (xn, yn) ∈ Dn; θFs , θD , θG: Parameters of Fs, D and G respectively.

2: initialization: pretrain {θFs , θD} using cross-entropy loss on (xs, ys) followed by initialization of the sample mean µci and covariance

Σci (at u-space) of Fs ◦M(xs) for xs from class ci; i = 1, 2, ...|Cs|
3: for iter < MaxIter do

4: vs = M(xs); us = Fs(vs); v̂s = G(us); ur ∼ N (µci ,Σci) for i = 1, 2, ...|Cs|; ûr = Fs ◦G(ur)

5: ŷ
(ks)
s = σ(ks)(D ◦ Fs ◦M(xs)), and ŷ

(kn)
n = σ(kn)(D ◦ Fs ◦M(xn)) where ks, kn are the indices of ground-truth class ys, yn

6: LCE = − log ŷ
(ks)
s − α log ŷ

(kn)
n ; Lv = |vs − v̂s|; Lu = |ur − ûr|

7: Lp = − log(exp(P (us|cks))/
∑|Cs|

i=1 exp(P (us|ci))), where P (us|ci) = N (us|µci ,Σci)

8: Update θFs , θD , θG by minimizing LCE , Lv , Lu, and Lp alternatively using separate optimizers.

9: if (iter % UpdateIter == 0) then

10: Recompute the sample mean (µci ) and covariance (Σci ) of Fs ◦M(xs) for xs from class ci;

i = 1, 2...|Cs| (For D(b)
n : generate fresh latent-simulated negative samples using the updated priors)

ples to positive source categories will cause target-private

samples to be classified as an instance of the source pri-

vate or the common label-set, instead of being classified as

"unknown", i.e. one of the negative categories in Cn.

3.2.2. Solution. In contrast to domain agnostic architec-

tures [52, 5, 38], we resort to an architecture supporting

domain specific features [46], as we must avoid disturbing

the placement of source clusters obtained from the Procure-

ment stage. This is an essential requirement to retain the

task-dependent knowledge gathered from the source dataset.

Thus, we introduce a domain specific feature extractor de-

noted as Ft, whose parameters are initialized from the fully

trained Fs (see Fig. 4B). Further, we aim to exploit the

learned generative classifier from the Procurement stage

to complement for the purpose of separate ad-hoc networks

(critic or discriminator) as utilized by the prior works [52, 6].

a) Source Similarity Metric (SSM). For each target sam-

ple xt, we define a weighting factor w(xt) called the SSM. A

higher value of this metric indicates xt’s similarity towards

the positive source categories, specifically inclined towards

the common label space C. Similarly, a lower value of this

metric indicates xt’s similarity towards the negative source

categories Cn, showing its inclination towards the private

target labels Ct. Let, ps̄, qt̄ be the distribution of source and

target samples with labels in Cs and Ct respectively. We

define, pc and qc to denote the distribution of samples from

source and target domains belonging to the shared label-set C.

Then, the SSM for the positive and negative source samples

should lie on the two extremes, forming the inequality:

E
x∼pn

w(x) ≈ E
x∼qt̄

w(x) < E
x∼qc

w(x) < E
x∼pc

w(x) ≈ E
x∼ps̄

w(x) (1)

To formalize the SSM criterion we rely on the class prob-

abilities defined at the output of source model only for the

positive class labels, i.e. ŷ(k) for k = 1, 2...|Cs|. Note that,

ŷ(k) is obtained by performing softmax over |Cs|+ |Cn| cat-

egories as discussed in the Procurement stage. Finally, the

SSM w and its complement w′ are defined as,

w(xt) = max
i=1...|Cs|

exp(ŷ(i))

w′(xt) = max
i=1...|Cs|

exp(1− ŷ(i))
(2)

We hypothesize that this definition will satisfy Eq. 1, as

a result of the generative learning strategy adopted in the

Procurement stage. In Eq. 2 the exponent is used to further

amplify separation between target samples from the shared

label-set C and those from the private label-set Ct (Fig. 5A).

b) Source-free domain adaptation. To perform do-

main adaptation, the objective function aims to move the

target samples with higher SSM value towards the clusters

of positive source categories and vice-versa at the frozen

source embedding, u-space (from the Procurement stage).

To achieve this, parameters of only Ft network are allowed

to be trained in the Deployment stage. However, the decision

of weighting the loss on target samples towards the positive

or negative source clusters is computed using the source

feature extractor Fs i.e. the SSM in Eq. 2. We define, the

deployment model as h = D ◦ Ft ◦M(xt) using the target

feature extractor, with softmax predictions over K categories

obtained as ẑ(k) = σ(k)(h). Thus, the primary loss function

for adaptation is defined as,

Ld1 = w(xt) ·
(

− log(
∑|Cs|

k=1 ẑ
(k))

)

+

w′(xt) ·
(

− log(
∑|Cs|+|Cn|

k=|Cs|+1 ẑ
(k))

) (3)

Additionally, in the absence of label information, there

would be uncertainty in the predictions ẑ(k) as a result of

distributed class probabilities. This leads to a higher entropy

for such samples. Entropy minimization [12, 28] is adopted

in such scenarios to move the target samples close to the

highly confident regions (i.e. positive and negative cluster

centers from the Procurement stage) of the classifier’s feature

space. However, it has to be done separately for positive

and negative source categories based on the SSM values of
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individual target samples to effectively distinguish the target-

private set from the full target dataset. To achieve this, we

define two different class probability vectors separately for

the positive and negative source classes (Fig. 4B) as,

z̃(i)s =
exp(h(i))

∑|Cs|
j=1 exp(h

(j))
; z̃(i)n =

exp(h(i+|Cs|))
∑|Cn|

j=1 exp(h(j+|Cs|))
(4)

We obtain the entropy of the target samples for the pos-

itive source classes as Hs(xt) = −
∑|Cs|

i=1 z̃
(i)
s log z̃

(i)
s and

for the negative classes as Hn(xt) = −
∑|Cn|

i=1 z̃
(i)
n log z̃

(i)
n .

Subsequently, the entropy minimization is formulated as,

Ld2 = w(xt) ·Hs(xt) + w′(xt) ·Hn(xt) (5)

Thus, the final loss function for adaptation is Ld =
Ld1 + βLd2. Here β is a hyper-parameter controlling the

importance of entropy minimization during adaptation.

4. Experiments

We perform a thorough evaluation of the proposed universal

source-free domain adaptation framework against prior state-

of-the-art methods across multiple datasets. We also provide

a comprehensive ablation study to establish generalizability

of the approach across a variety of label-set relationships

and justification of the various model components.

4.1. Experimental Setup

a) Datasets. We resort to the experimental settings fol-

lowed by [52] (UAN). Office-Home [47] dataset consists

of images from 4 different domains - Artistic (Ar), Clip-art

(Cl), Product (Pr) and Real-world (Rw). VisDA2017 [34]

dataset comprises of 12 categories with synthetic (S) and

real (R) domains. Office-31 [37] dataset contains images

from 3 distinct domains - Amazon (A), DSLR (D) and Web-

cam (W). To evaluate scalability, we use ImageNet-Caltech

with 84 common classes (following [52]).

b) Simulation of labeled negative samples. To simulate

negative samples for training in the Procurement stage, we

first sample a pair of images, each from different categories

of Cs, to create unique negative classes in Cn. Note that,

we impose no restriction on how the hypothetical classes

are created (e.g. one can composite non-animal with ani-

mal). A random mask is defined which splits the images

into two complementary regions using a quadratic spline

passing through a central image region (see Suppl. Algo.

1). Then, the negative image is created by merging alternate

mask regions as shown in Fig. 2A. For the I→C task of

ImageNet-Caltech, the source domain ImageNet (I), having

1000 classes, results in a large number of possible negative

classes (i.e. |Cn| =
|Cs|C2). We address this by randomly

selecting only 600 of these negative classes for ImageNet (I),

and 200 negative classes for Caltech (C) in the task C→I.

4.2. Evaluation Methodology

a) Average accuracy on Target dataset, Tavg . We re-

sort to the evaluation protocol proposed in the VisDA2018

Open-Set Classification challenge. Accordingly, all the

target-private classes are grouped into a single "unknown"

class and the metric reports the average of per-class accuracy

over |Cs|+ 1 classes. In our framework, a target sample is

marked as "unknown" if it is classified (argmaxkẑ
(k)) into

any of the negative |Cn| classes. In contrast, UAN [52] relies

on the sample-level weight, to mark a target sample as "un-

known" based on a sensitive threshold hyperparameter. Also

note that our method is truly source-free during adaptation,

while all other methods have access to the full source-data.

b) Accuracy on Target-Unknown data, Tunk. We eval-

uate the target unknown accuracy, Tunk, as the proportion

of actual target-private samples (i.e. {(xt, yt) : yt ∈ Ct})

being classified as "unknown" after adaptation. Note that,

UAN [52] does not report Tunk which is a crucial metric to

evaluate the vulnerability of the model after its deployment in

the target environment. The Tavg metric fails to capture this

as a result of class-imbalance in the Open-set scenario [39].

Hence, to realize a common evaluation ground, we train the

UAN implementation provided by the authors [52] and de-

note it as UAN* in further sections of this paper. We observe

that, the UAN[52] training algorithm is often unstable with

a decreasing trend of Tunk and Tavg over increasing training

iterations. We thus report the mean and standard deviation of

the peak values of Tunk and Tavg achieved by UAN*, over

5 separate runs on Office-31 dataset (see Table 2).

c) Implementation Details. We implement our network

in PyTorch and use ResNet-50 [13] as the backbone-model

M , pre-trained on ImageNet [36] inline with UAN [52]. The

complete architecture of other components is provided in

the Supplementary. We denote our approach as USFDA. A

sensitivity analysis of the major hyper-parameters used in

the proposed framework is provided in Fig. 5B-C, and Suppl.

Fig. 2B. In all our ablations across the datasets, we fix the

hyperparameters values as α = 0.2 and β = 0.1. We utilize

Adam optimizer [18] with a fixed learning rate of 0.0001
for training in both the Procurement and the Deployment

stages. For the implementation of UAN*, we use the hyper-

parameter value w0 = −0.5, as specified by the authors for

the task A→D in the Office-31 dataset.

4.3. Discussion

a) Comparison against prior arts. We compare our ap-

proach with UAN [52], and other prior methods. The results

are presented in Tables 1-2. Our approach yields state-of-

the-art results even in a source-free setting on several tasks.

Particularly in Table 2, we present Tunk on various datasets

and also report the mean and standard-deviation for both the

accuracy metrics computed over 5 random initializations in
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Table 1: Average per-class accuracy (Tavg) for universal-DA tasks on Office-Home dataset (with |C|/|Cs ∪ Ct| = 0.15). Scores for the

prior works are directly taken from UAN [52]. Here, SF denotes support for source-free adaptation.

Method SF
Office-Home

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet [13] ✗ 59.37 76.58 87.48 69.86 71.11 81.66 73.72 56.30 86.07 78.68 59.22 78.59 73.22

IWAN [54] ✗ 52.55 81.40 86.51 70.58 70.99 85.29 74.88 57.33 85.07 77.48 59.65 78.91 73.39

PADA [54] ✗ 39.58 69.37 76.26 62.57 67.39 77.47 48.39 35.79 79.60 75.94 44.50 78.10 62.91

ATI [33] ✗ 52.90 80.37 85.91 71.08 72.41 84.39 74.28 57.84 85.61 76.06 60.17 78.42 73.29

OSBP [39] ✗ 47.75 60.90 76.78 59.23 61.58 74.33 61.67 44.50 79.31 70.59 54.95 75.18 63.90

UAN [52] ✗ 63.00 82.83 87.85 76.88 78.70 85.36 78.22 58.59 86.80 83.37 63.17 79.43 77.02

Ours USFDA ✓ 63.35 83.30 89.35 70.96 72.34 86.09 78.53 60.15 87.35 81.56 63.17 88.23 77.03
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Figure 5: Ablative analysis on the task A→D (Office-31). A) Histogram of SSM values of xt separately for target-private and target-shared

samples at the Procurement iteration 100 (top) and 500 (bottom). B) The sensitivity curve for β shows marginally stable adaptation accuracy

for a wide-range of values. C) A marginal increase in Tavg is observed with increase in |Cn|.

the Office-31 dataset (the last six rows). Our method is able

to achieve much higher Tunk than UAN* [52], highlighting

our superiority as a result of the novel learning approach

incorporated in both Procurement and Deployment stages.

We also perform a characteristic comparison of algorithm

complexity in terms of the amount of learnable parameters

and training time; a) Procurement: [11.1M, 380s], b) De-

ployment: [3.5M, 44s], c) UAN [52]: [26.7M, 450s] (in a

consistent setting). The significant computational advantage

in the Deployment stage makes our approach highly suitable

for real-time adaptation. In contrast to UAN, the proposed

framework offers a much simpler adaptation algorithm de-

void of networks such as an adversarial discriminator and

additional finetuning of the ResNet-50 backbone.

b) Does SSM satisfy the expected inequality? Effec-

tiveness of the proposed learning algorithm, in case of

source-free deployment, relies on the formulation of SSM,

which is expected to satisfy Eq. 1. Fig. 5A shows a his-

togram of the SSM separately for samples from target-shared

(blue) and target-private (red) label space. The success of

this metric is attributed to the generative nature of Procure-

ment stage, which enables the source model to distinguish

between the marginally more negative target-private samples

as compared to the samples from the shared label space.

c) Sensitivity to hyper-parameters. As we tackle DA in

a source-free setting simultaneously intending to generalize

across varied category-gaps, a low sensitivity to hyperparam-

eters would further enhance our practical usability. To this

end, we fix certain hyperparameters for all our experiments

(also in Fig. 6C) even across datasets (i.e. α = 0.2, β = 0.1).

Thus, one can treat them as global-constants with |Cn| be-

ing the only hyperparameter, as variations in one by fixing

the others yield complementary effect on regularization in

the Procurement stage. A thorough analysis reported in the

Suppl. Fig. 2, demonstrates a reasonably low sensitivity of

our model to these hyperparameters.

d) Generalization across category-gap. One of the key

objectives of the proposed framework is to effectively oper-

ate in the absence of the knowledge of label-set relationships.

To evaluate it in the most compelling manner, we propose

a tabular form shown in Fig. 6A. We vary the number of

private classes for target and source along the x-axis and

y-axis respectively, with a fixed |Cs ∪Ct| = 31. We compare

the Tavg metric at the corresponding table instances, shown

in Fig. 6B-C. The results clearly highlight superiority of

the proposed framework specifically for the more practical

scenarios (close to the diagonal instances) as compared to

the unrealistic Closed-set setting (|Cs| = |Ct| = 0).

e) DA in absence of shared categories. In universal

adaptation, we seek to transfer the knowledge of "class-

separability criterion" obtained from the source domain to

the deployed target environment. More concretely, it is at-

tributed to the segregation of data samples based on some

expected characteristics, such as classification of objects ac-

cording to their pose, color, or shape etc. To quantify this, we

consider an extreme case where Cs∩Ct = ∅ (A→D in Office-

31 with |Cs| = 15, |Ct| = 16). Allowing access to a single

labeled target sample from each category in Ct = Ct, we

aim to obtain a one-shot recognition accuracy (assignment

of cluster index or class label using the one-shot samples as
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Table 2: Tavg on Office-31 (with |C|/|Cs ∪ Ct| = 0.32), VisDA (with |C|/|Cs ∪ Ct| = 0.50), and ImageNet-Caltech (with

|C|/|Cs ∪ Ct| = 0.07). Scores for the prior works are directly taken from UAN [52]. SF denotes support for source-free adaptation.

Method SF
Office-31 VisDA ImNet-Caltech

A→W D→W W→D A→D D→A W→A Avg S → R I → C C → I

ResNet [13] ✗ 75.94 89.60 90.91 80.45 78.83 81.42 82.86 52.80 70.28 65.14

IWAN [54] ✗ 85.25 90.09 90.00 84.27 84.22 86.25 86.68 58.72 72.19 66.48

PADA [54] ✗ 85.37 79.26 90.91 81.68 55.32 82.61 79.19 44.98 65.47 58.73

ATI [33] ✗ 79.38 92.60 90.08 84.40 78.85 81.57 84.48 54.81 71.59 67.36

OSBP [39] ✗ 66.13 73.57 85.62 72.92 47.35 60.48 67.68 30.26 62.08 55.48

UAN [52] ✗ 85.62 94.77 97.99 86.50 85.45 85.12 89.24 60.83 75.28 70.17

UAN* Tavg ✗ 83.00±1.8 94.17±0.3 95.40±0.5 83.43±0.7 86.90±1.0 87.18±0.6 88.34 54.21 74.77 71.51

Ours USFDA Tavg ✓ 85.56±1.6 95.20±0.3 97.79±0.1 88.47±0.3 87.50±0.9 86.61±0.6 90.18 63.92 76.85 72.13

UAN* Tunk ✗ 20.72±11.7 53.53±2.4 51.57±5.0 34.43±3.3 51.88±4.8 43.11±1.3 42.54 19.68 33.43 31.24

Ours USFDA Tunk ✓ 73.98±7.5 85.64±2.2 80.00±1.1 82.23±2.7 78.59±3.2 75.52±1.5 79.32 36.25 51.21 48.76
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Figure 6: Comparison across varied label-set relationships for the task A→D in Office-31 dataset. A) Visual representation of label-set

relationships and Tavg at the corresponding instances for B) UAN* [52] and C) ours source-free model. Effectively, the direction along

x-axis (blue horizontal arrow) characterizes increasing Open-set complexity. The direction along y-axis (red vertical arrow) shows increasing

complexity of Partial DA scenario. The pink diagonal arrow denotes the effect of decreasing shared label space.

the cluster center at Ft ◦M(xt)) to quantify the above met-

ric. We obtain 64.72% accuracy for the proposed framework

as compared to 13.43% for UAN*. This strongly validates

our superior knowledge transfer capability as a result of the

generative classifier with labeled negative samples comple-

menting for the target-private categories.

f) Dependency on the simulated negative dataset. Con-

ceding that a combinatorial amount of negative labels can be

created, we evaluate the scalability of the proposed approach,

by varying the number of negative classes in the Procurement

stage by selecting 0, 4, 8, 64, 150 and 190 negative classes as

reported in the X-axis of Fig. 5C. For the case of 0 negative

classes, denoted as |Cn|
∗ = 0 in Fig. 5C, we synthetically

generate random negative features at the intermediate level u,

which are at least 3-σ away from each of the positive source

priors P (us|ci) for i = 1, 2, ..., |Cs|. We then make use of

these feature samples along with positive image samples,

to train a (|Cs|+ 1) class Procurement model with a single

negative class. The results are reported in Fig. 5C on the

A→D task of Office-31 dataset with category relationship

inline with the setting in Table 2. We observe an acceptable

drop in accuracy with decrease in number of negative classes,

hence validating scalability of the approach for large-scale

classification datasets (such as ImageNet). Similarly, we also

evaluated our framework by combining three or more images

to form such negative classes. However, we found that with

increasing number of negative classes (|Cs|C3 > |Cs|C2), the

model achieves under-fitting on positive source categories

(similar to Fig. 5C, where accuracy reduces beyond a certain

limit because of over regularization).

5. Conclusion

We have introduced a novel Universal Source-Free Do-

main Adaptation framework, acknowledging practical do-

main adaptation scenarios devoid of any assumption on the

source-target label-set relationship. In the proposed two-

stage framework, learning in the Procurement stage is found

to be highly crucial, as it aims to exploit the knowledge of

class-separability in the most general form with enhanced

robustness to out-of-distribution samples. Besides this, the

success in the Deployment stage is attributed to the well-

designed learning objectives effectively utilizing the source

similarity criterion. This work can be served as a pilot study

towards learning efficient inheritable models in future.
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