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Abstract

This paper presents a novel calibration algorithm for

Multi-Focus Plenoptic Cameras (MFPCs) using raw im-

ages only. The design of such cameras is usually complex

and relies on precise placement of optic elements. Several

calibration procedures have been proposed to retrieve the

camera parameters but relying on simplified models, recon-

structed images to extract features, or multiple calibrations

when several types of micro-lens are used. Considering

blur information, we propose a new Blur Aware Plenop-

tic (BAP) feature. It is first exploited in a pre-calibration

step that retrieves initial camera parameters, and secondly

to express a new cost function for our single optimization

process. The effectiveness of our calibration method is val-

idated by quantitative and qualitative experiments.

1. Introduction

The purpose of an imaging system is to map incoming
light rays from the scene onto pixels of photo-sensitive de-
tector. The radiance of a light ray is given by the plenop-

tic function L (x,θ, λ, τ), introduced by Adelson et al. [1],
where x ∈ R

3 is the spatial position of observation, θ ∈ R
2

is the angular direction of observation, λ is the wavelength
of the light and τ is the time. Conventional cameras capture
only one point of view. A plenoptic camera is a device that
allows to retrieve spatial as well as angular information.

From Lumigraph [17] to commercial plenoptic cameras

[19, 23], several designs have been proposed. This paper
focuses on plenoptic cameras based on a Micro-Lenses Ar-
ray (MLA) placed between the main lens and the photo-
sensitive sensor (see Fig. 2). The specific design of such a
camera allows to multiplex both types of information onto
the sensor in the form of a Micro-Images Array (MIA) (see
Fig. 1 (b)), but implies a trade-off between the angular and
spatial resolutions [10, 16, 8]. It is balanced according to
the MLA position with respect to the main lens focal plane
(i.e., focused [23, 9] and unfocused [19] configurations).

Figure 1: The Raytrix R12 multi-focus plenoptic cam-
era used in our experimental setup (a), along with a raw
image of a checkerboard calibration target (b). The image
is composed of several micro-images with different blurred
levels and arranged in an hexagonal grid. In each micro-
image, our new Blur Aware Plenoptic (BAP) feature is il-
lustrated by its center and its blur radius (c).

The mapping of incoming light rays from the scene onto
pixels can be expressed as a function of the camera model.
Classical cameras are usually modeled as pinhole or thin
lens. Due to the complexity of plenoptic camera’s design,
the used models are usually high dimensional. Specific cal-
ibration methods have to be developed to retrieve the intrin-
sic parameters of these models.

1.1. Related Work

Unfocused plenoptic camera calibration. In this config-
uration, light rays are focused by the MLA on the sensor
plane. The calibration of unfocused plenoptic camera [19]
has been widely studied in the literature [6, 2, 25, 24, 11,
36]. Most approaches rely on a thin-lens model for the main
lens and an array of pinholes for the micro-lenses. Most of
them require reconstructed images to extract features, and
limit their model to the unfocused configuration, i.e., set-
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ting the micro-lens focal length at the distance MLA-sensor.
Therefore those models cannot be directly extended to the
focused or multi-focus plenoptic camera.

Focused plenoptic camera calibration. With the arrival
of commercial focused plenoptic cameras [18, 23], new
calibration methods have been proposed. Based on [14],
Heinze et al. [13] have developed a new projection model
and a metric calibration procedure which is incorporated
in the RxLive software of Raytrix GmbH. Other cal-
ibration methods and models have been proposed, either
to overcome the fragility of the initialization [26], or to
model more finely the camera parameters using depth in-
formation [33, 32]. O’Brien et al. [22] introduced a new
3D feature called plenoptic disc and defined by its center
and its radius. Nevertheless, all previous methods rely on
reconstructed images meaning that they introduce error in
the reconstruction step as well as in the calibration process.

To overcome this problem, several calibration meth-
ods [35, 34, 29, 20, 3, 21, 31] have been proposed using
only raw plenoptic images. In particular, features extrac-
tion in raw micro-images has been studied in [3, 21, 20]
achieving improved performance through automation and
accurate identification of feature correspondences. How-
ever, most of the methods rely on simplified models for op-
tic elements: the MLA is modeled as a pinholes array mak-
ing it impossible to retrieve the focal lengths, or the MLA
misalignment is not considered. Some do not consider dis-
tortions [35, 21, 31] or restrict themselves to the focused
case [35, 34, 20].

Finally, few have considered the multi-focus case [13, 3,
21, 31] but dealt with it in separate processes, leading to
different intrinsic and extrinsic parameters according to the
type of micro-lenses.

1.2. Contributions

This paper focuses on the calibration of micro-lenses-
based Multi-Focus Plenoptic Camera (MFPC). To the best
of our knowledge, this is the first method proposing a sin-
gle optimization process that retrieves intrinsic and extrinsic
parameters of a MFPC directly from raw plenoptic images.
The main contributions are the following:
• We present a new Blur Aware Plenoptic (BAP) feature

defined in raw image space that enables us to handle
the multi-focus case.

• We introduce a new pre-calibration step using BAP
features from white images to provide a robust initial
estimate of internal parameters.

• We propose a new reprojection error function exploit-
ing BAP features to refine a more complete model, in-
cluding in particular the multiple micro-lenses focal
lengths. Our checkerboard-based calibration is con-
ducted in a single optimization process.
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Figure 2: Focused Plenoptic Camera model in Galilean con-
figuration (i.e., the main lens focuses behind the sensor)
with the notations used in this paper.

A visual overview of our method is given in Fig. 3. The
remainder of this paper is organized as follows: first, the
camera model and BAP feature are presented in Section 2.
The proposed pre-calibration step is explained in Section 3.
Then, the feature detection is detailed in Section 4 and the
calibration process in Section 5. Finally, our results are pre-
sented and discussed in Section 6. The notations used in
this paper are shown in Fig. 2. Pixel counterparts of metric
values are denoted in lower-case Greek letters.

2. Camera model and BAP feature

2.1. Multifocus Plenoptic Camera

We consider multi-focus plenoptic cameras as described
in [9, 23]. The main lens, modeled as a thin-lens, maps
object point to virtual point behind (resp., in front of) the
image sensor in Galilean (resp., Keplerian) configuration.
Therefore, the MLA consists of I different lens types with
focal lengths f (i), i ∈ {1, . . . , I} which are focused on
I different planes behind the image sensor. This multi-
focus setup corresponds to the Raytrix camera system
described in [23] when I = 3. The micro-lenses are mod-
eled as thin-lenses allowing to take into account blur in the
micro-image. Our model takes into account the MLA mis-
alignment, freeing all six degrees of freedom.

The tilt of the main lens is included in the distortion
model and we make the hypothesis that the main lens plane
Πl is parallel to the sensor plane Πs. Furthermore, we
choose the main lens frame as our camera reference frame,
with O being the origin, the z-axis coinciding with the op-
tical axis and pointing outside the camera, and the y-axis
pointing downwards. Only distortions of the main lens are
considered. We use the model of Brown-Conrady [4, 5]
with three coefficients for the radial component and two for
the tangential.
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Furthermore, we take into account the deviation of the
image center and the optical center for each micro-lens be-
cause it tends to cause inaccuracy in decoded light field.
Therefore, the principal point ck,l0 of the micro-lens indexed
by (k, l) is given by

c
k,l
0 =

[
uk,l
0

vk,l0

]

=
d

D + d

([
u0

v0

]

− ck,l

)

+ ck,l, (1)

where ck,l is the center in pixels of the micro-image (k, l),
[
u0 v0

]⊤
is the main lens principal point, d is the distance

MLA-sensor and D is the distance main lens-MLA, as illus-
trated in Fig. 2.

Finally, each micro-lens produces a micro-image onto
the sensor. The set of these micro-images has the same
structural organization as the MLA, i.e., in our case an
hexagonal grid, alternating between each type of micro-
lens. The data can therefore be interpreted as an array of
micro-images, called by analogy the MIA. The MIA coor-
dinates are expressed in image space. Let δc be the pixel dis-
tance between two arbitrary consecutive micro-images cen-
ters ck,l. With s the metric size of a pixel, let ∆c = s · δc be
its metric value, and ∆C be the metric distance between the
two corresponding micro-lenses centers Ck,l. From similar
triangles, the ratio between them is given by

∆C

∆c
=

D

d+D
⇐⇒ ∆C = ∆c · D

d+D
. (2)

We make the hypothesis that ∆C is equal to the micro-lens
diameter. Since d ≪ D, we can make the following ap-
proximation:

D

D + d
= λ ≈ 1 =⇒ ∆C = ∆c · D

D + d
≈ ∆c. (3)

This approximation will be validated in the experiments.

2.2. BAP feature and projection model

Using a camera with a circular aperture, the blurred im-
age of a point on the image detector is circular in shape and
is called the blur circle. From similar triangles and from the
thin-lens equation, the signed blur radius of a point in an
image can be expressed as

ρ =
1

s
· A
2
d

(
1

f
− 1

a
− 1

d

)

, (4)

with s the size of a pixel, d the distance between the con-
sidered lens and the sensor, A the aperture of this lens, f its
focal length, and a the distance of the object from the lens.

This radius appears at different levels in the camera pro-
jection: in the blur introduced by the thin-lens model of the
micro-lenses and during the formation of the micro-image
while taking a white image. To leverage blur information,

we introduce a new Blur Aware Plenoptic (BAP) feature
characterized by its center and its radius, i.e., p = (u, v, ρ).

Therefore, our complete plenoptic camera model allows
us to link a scene point pw to our new BAP feature p

through each micro-lens (k, l)






u
v
ρ
1






∝ P (i, k, l) · Tµ(k, l) · ϕ(K(F ) · Tc · pw) , (5)

where P (i, k, l) is the blur aware plenoptic projection ma-
trix through the micro-lens (k, l) of type i, and computed
as

P (i, k, l) = P (k, l) ·K
(

f (i)
)

(6)

=







d/s 0 uk,l
0 0

0 d/s vk,l0 0
0 0 s∆C

2 −s∆C
2 d

0 0 −1 0













1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/f (i) 1







.

P (k, l) is a matrix that projects the 3D point onto the sen-
sor. K(f) is the thin-lens projection matrix for the given
focal length. Tc is the pose of the main lens with respect
to the world frame and Tµ(k, l) is the pose of the micro-
lens (k, l) expressed in the camera frame. The function ϕ(·)
models the lateral distortion.

Finally, the projection model defined in Eq. (5) con-
sists of a set Ξ of (16 + I) intrinsic parameters to be opti-
mized, including the main lens focal length F and its 5 lat-
eral distortion parameters, the sensor translation, encoded
in (u0, v0) and d, the MLA misalignment, i.e., 3 rotations
(θx, θy, θz) and 3 translations (tx, ty, D), the micro-lens
inter-distance ∆C, and the I micro-lens focal lengths f (i).

3. Pre-calibration using raw white images

Drawing inspiration from depth from defocus the-
ory [27], we leverage blur information to estimate param-
eters (e.g., here our blur radius) by varying some other pa-
rameters (e.g., the focal length, the aperture, etc.) in com-
bination with known (i.e., fixed or measured) parameters.
For instance, when taking a white picture with a controlled
aperture, each type of micro-lens produces a micro-image
(MI) with a specific size and intensity, providing a way to
distinguish between them. In the following all distances
are given with reference to the MLA plane. Distances are
signed according to the following convention: f is positive
when the lens is convergent; distances are positive when the
point is real, and negative when virtual.

3.1. Microimage radius derivation

Taking a white image is equivalent for the micro-lenses
to image a white uniform object of diameter A at a distance
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Figure 3: Overview of our proposed method with the pre-
calibration step and the detection of BAP features that are
used in the non-linear optimization process.

D. This is illustrated in Fig. 4. We relate the micro-image
(MI) radius to the plenoptic camera parameters. From op-
tics geometry, the image of this object, i.e. the resulting MI,
is equivalent to the image of an imaginary point constructed
as the vertex of the cone passing through the main lens and
the considered micro-lens (noted V in Fig. 4). Let a′ be
the distance of this point from the MLA plane, given from
similar triangles and Eq. (2) by

a′ = −D ∆C

A−∆C
= −D

(

A

(
d+D

∆cD

)

− 1

)−1

, (7)

with A the main lens aperture. Note the minus sign is due
to the fact that the imaginary point is always formed behind
the MLA plane at a distance a′, and thus considered as a
virtual object for the micro-lenses. Conceptually, the MI
formed can be seen as the blur circle of this imaginary point.
Therefore, using Eq. (4), the metric MI radius R is given by

R =
∆C

2
d

(
1

f
− 1

a′
− 1

d

)

= A · d

2D
+

(
∆cD

d+D

)

· d
2
·
(
1

f
− 1

D
− 1

d

)

. (8)

From the above equation, we see that the radius depends lin-
early on the aperture of the main lens. However, the main
lens aperture cannot be computed directly whereas we have
access to the f -number value. The f -number of an opti-
cal system is the ratio of the system’s focal length F to the
diameter of the entrance pupil, A, given by N = F/A.

V

V ′

Main Lens
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∆C

Sensor

-

R

R b′

f

d D

a′

Figure 4: Formation of a micro-image with its radius R
through a micro-lens while taking a white image at an aper-
ture A. The point V is the vertex of the cone passing by the
main lens and the considered micro-lens. V ′ is the image of
V by the micro-lens and R is the radius of its blur circle.

Finally, we can express the MI radius for each micro-lens
focal length type i as

R
(
N−1

)
= m ·N−1 + qi (9)

with

m =
dF

2D
and qi =

1

f (i)
·
(

∆cD

d+D

)

· d
2
− ∆c

2
. (10)

Let q′i be the value obtained by q′i = qi +∆c/2.

3.2. Internal parameters estimation

The internal parameters Ω = {m, q′1, . . . , q
′

I} are used
to compute the radius part of the BAP feature and to initial-
ize the parameters of the calibration process. Given several
raw white images taken at different apertures, we estimate
the coefficients of Eq. (9) for each type of micro-image. The
standard full-stop f -number conventionally indicated on the
lens differs from the real f -number calculated with the aper-
ture value AV as N =

√
2AV.

From raw white images, we are able to measure each
micro-image (MI) radius ̺ = |R| /s in pixels for each dis-
tinct focal length f (i) at a given aperture. Due to vignetting
effect, the estimation is only conducted on center micro-
images which are less sensitive to this effect. Our method
is based on image moments fitting. It is robust to noise,
works under asymmetrical distribution and is easy to use,
but needs a parameter α to convert the standard deviation
σ into a pixel radius ̺ = α · σ. We use the second order
central moments of the micro-image to construct a covari-
ance matrix. Finally, we choose σ as the square root of the
greater eigenvalue of the covariance matrix. The parameter
α is determined such that at least 98% of the distribution is
taken into account. According to the standard normal distri-
bution Z-score table, α is picked up in [2.33, 2.37]. In our
experiments, we set α = 2.357.
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in green and type (3) in blue) with its computed radius. For
each type an histogram of the radii distribution is given.

Finally, from radii measurements at different f -
numbers, we estimate the coefficients of Eq. (9), X =
{m, q1, . . . , qI}, with a least-square estimation. Fig. 5
shows the radii computed in a white image taken with an
f -number N = 8, the histogram of these radii distributions
for each type, and the estimated linear functions.

4. BAP feature detection in raw images

At this point, the internal parameters Ω, used to express
our blur radius ρ, are available. The process (illustrated in
Fig. 3) is divided into three phases: 1) using a white raw
image, the MIA is calibrated and micro-image centers are
extracted; 2) checkerboard images are processed to extract
corners at position (u, v); and 3) with the internal parame-
ters and the associated virtual depth estimate for each cor-
ner, the corresponding BAP feature is computed.

4.1. Blur radius derivation through microlens

To respect the f -number matching principle [23], we
configure the main lens f -number such that the micro-
images fully tile the sensor without overlap. In this con-
figuration the working f -number of the main imaging sys-
tem and the micro-lens imaging system should match. The
following relation is then verified for at least one type of
micro-lens:

∆C

d
=

A

D
⇐⇒ 1

d
·
(

∆cD

d+D

)

=
F

ND
. (11)

We consider the general case of measuring an object p at a
distance al from the main lens. First, p is projected through
the main lens according to the thin lens equation, 1/F =
1/al + 1/bl, resulting in a point p′ at a distance bl behind
the main lens, i.e. at a distance a = D − bl from the MLA.
The metric radius of the blur circle r formed on the sensor

for a given point p′ at distance a through a micro-lens of
type i is expressed as

r =

(
∆cD

d+D

)

· d
2
·
(

1

f (i)
− 1

a
− 1

d

)

=
∆cD

d+D
· d
2
· 1

f (i)

︸ ︷︷ ︸

=q′
i

(10)

− ∆cD

d+D
· d
2
· 1
d

︸ ︷︷ ︸

=∆C/2 (2)

− ∆cD

d+D
︸ ︷︷ ︸

=∆C (2)

·d
2
· 1
a

=

(

−∆C · d
2

)

· 1
a
+

(

q′i −
∆C

2

)

. (12)

In practice, we do not have access to the value of ∆C but
we can use the approximation from Eq. (3). Moreover, a
and d cannot be measured in the raw image space, but the
virtual depth can. Virtual depth refers to relative depth value
obtained from disparity. It is defined as the ratio between
the object distance a and the sensor distance d:

ν =
a

d
. (13)

The sign convention is reversed for virtual depth computa-
tion, i.e. distances are negative in front of the MLA plane.
If we re-inject the latter in Eq. (12), taking caution of the
sign, we can derive the radius of the blur circle of a point p′

at a distance a from the MLA by

r =
λ∆c

2
· ν−1 +

(

q′i −
λ∆c

2

)

. (14)

This equation allows to express the pixel radius of the blur
circle ρ = r/s associated to each point having a virtual
depth without explicitly evaluating A,D, d, F and f (i).

4.2. Features extraction

First, the Micro-Images Array has to be calibrated. We
compute the micro-image centers observations {ck,l} by in-
tensity centroid method with sub-pixel accuracy [30, 20,
28]. The distance between two micro-image centers δc is
then computed as the optimized edge-length of a fitted 2D
grid mesh with a non-linear optimization. The pixel trans-
lation offset in the image coordinates, (τx, τy), and the ro-
tation around the (−z)-axis, ϑz , are also determined during
the optimization process. From the computed distance and
the given size of a pixel, the parameter λ∆c is computed.

Secondly, as we based our method on checkerboard cal-
ibration pattern, we detect corners in raw images using the
detector introduced by Noury et al. [20]. The raw images
are devignetted by dividing them by a white raw image
taken at the same aperture.

With a plenoptic camera, contrarily to a classical camera,
a point is projected into more than one observation onto the
sensor. Due to the nature of the spatial distribution of the
data, we used the DBSCAN algorithm [7] to identify the
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clusters. We then associate each point with its cluster of
observations.

Once each cluster is identified, we can compute the vir-
tual depth ν from disparity. Given the distance ∆C1−2 be-
tween the centers of the micro-lenses C1 and C2, i.e. the
baseline, and the Euclidean distance ∆i = |i1 − i2| be-
tween images of the same point in corresponding micro-
images, the virtual depth ν can be calculated with the inter-
cept theorem:

ν =
∆C1−2

∆C1−2 −∆i
=

η∆C

η∆C −∆i
=

ηλ∆c

ηλ∆c−∆i
, (15)

where ∆C = λ∆c is the distance between two consecutive
micro-lenses and η ≥ 1.0. Due to noise in corner detec-
tion, we use a median estimator to compute the virtual depth
of the cluster taking into account all combinations of point
pairs in the disparity estimation.

Finally, from internal parameters Ω and with the avail-
able virtual depth ν we can compute the BAP features us-
ing Eq. (14). In each frame n, for each micro-image (k, l)
of type i containing a corner at position (u, v) in the image,
the feature pn

k,l is given by

pn
k,l = (u, v, ρ) , with ρ = r/s. (16)

In the end, our observations are composed of a set of micro-

image centers {ck,l} and a set of BAP features
{

pn
k,l

}

al-

lowing us to introduce two reprojection error functions cor-
responding to each set of features.

5. Calibration process

To retrieve the parameters of our camera model, we use
a calibration process based on non-linear minimization of
a reprojection error. The calibration process is divided into
three phases: 1) the intrinsics are initialized using the in-
ternal parameters Ω; 2) the initial extrinsics are estimated
from the raw checkerboard images; and 3) the parameters
are refined with a non-linear optimization leveraging our
new BAP features.

5.1. Parameters initialization

Optimization processes are sensitive to initial parame-
ters. To avoid falling into local minima during the optimiza-
tion process, the parameters have to be carefully initialized
not too far from the solution.

First, the camera is initialized in Keplerian or Galilean

configuration. First, given the camera configuration, the
internal parameters Ω, the focus distance h, and from the
Eq. (17) of [23], the following parameters are set as

d←− 2mH

F + 4m
and D ←− H − 2d, (17)

where H is given by

H =

∣
∣
∣
∣
∣

h

2

(

1−
√

1± 4
F

h

)∣
∣
∣
∣
∣
, (18)

with positive (resp., negative) sign in Galilean (resp., Kep-

lerian) configuration.
The focal length, and the pixel size s are set according to

the manufacturer value. All distortion coefficients are set to
zero. The principal point is set as the center of the image.
The sensor plane is thus set parallel to the main lens plane,
with no rotation, at a distance − (D + d).

Seemingly, the MLA plane is set parallel to the main
lens plane at a distance −D. From the pre-computed MIA
parameters the translation takes into account the offsets
(−sτx,−sτy) and the rotation around the z-axis is initial-
ized with −ϑz . The micro-lenses inter-distance ∆C is set
according to Eq. (2). Finally, from internal parameters Ω,
the focal lengths are computed as follows:

f (i) ←− d

2 · q′i
·∆C. (19)

5.2. Initial poses estimation

The camera poses {T n
c }, i.e., the extrinsic parameters

are initialized using the same method as in [20]. For each
cluster of observation, the barycenter is computed. Those
barycenters can been seen as the projections of the checker-
board corners through the main lens using a standard pin-
hole model. For each frame, the pose is then estimated us-
ing the Perspective-n-Point (PnP) algorithm [15].

5.3. Nonlinear optimization

The proposed model allows us to optimize all the param-
eters into one single optimization process. We propose a
new cost function Θ taking into account the blur informa-
tion using our new BAP feature. The cost is composed of
two main terms both expressing errors in the image space:
1) the blur aware plenoptic reprojection error, where, for
each frame n, each checkerboard corner pn

w is reprojected
into the image space through each micro-lens (k, l) of type
i according to the projection model of Eq. (5) and compared
to its observations pn

k,l; and 2) the micro-lens center repro-
jection error, where, the main lens center O is reprojected
according to a pinhole model in the image space through
each micro-lens (k, l) and compared to the detected micro-
image center ck,l.

Let S = {Ξ, {T n
c }} be the set of intrinsic Ξ and extrinsic

{T n
c } parameters to be optimized. The cost function Θ(S)

is expressed as
∑∥

∥pn
k,l −Πk,l (p

n
w)
∥
∥
2
+
∑

‖ck,l −Πk,l (O)‖2 . (20)

The optimization is conducted using the Levenberg-
Marquardt algorithm.
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R12-A (h = 450mm) R12-B (h = 1000mm) R12-C (h = ∞)

Unit Initial Ours [20] Initial Ours [20] Initial Ours [20]

F [mm] 50 49.720 54.888 50 50.047 51.262 50 50.011 53.322

D [mm] 56.66 56.696 62.425 52.11 52.125 53.296 49.38 49.384 52.379

∆C [µm] 127.51 127.45 127.38 127.47 127.45 127.40 127.54 127.50 127.42

f (1) [µm] 578.15 577.97 - 581.10 580.48 - 554.35 556.09 -
f (2) [µm] 504.46 505.21 - 503.96 504.33 - 475.98 479.03 -
f (3) [µm] 551.67 551.79 - 546.39 546.37 - 518.98 521.33 -

u0 [pix] 2039 2042.55 2289.83 2039 1790.94 1759.29 2039 1661.95 1487.2

v0 [pix] 1533 1556.29 1528.24 1533 1900.19 1934.87 1533 1726.91 1913.81

d [µm] 318.63 325.24 402.32 336.84 336.26 363.17 307.93 312.62 367.40

Table 1: Initial intrinsic parameters for each dataset along with the optimized parameters obtained by our method and with
the method of [20]. Some parameters are omitted for compactness.

6. Experiments and Results

We evaluate our calibration model quantitatively in a
controlled environment and qualitatively when ground truth
is not available.

6.1. Experimental setup

For all experiments we used a Raytrix R12 color
3D-light-field-camera, with a MLA of F/2.4 aperture. The
mounted lens is a Nikon AF Nikkor F/1.8D with a
50mm focal length. The MLA organization is hexago-
nal, and composed of 176 × 152 (width × height) micro-
lenses with I = 3 different types. The sensor is a Basler
beA4000-62KC with a pixel size of s = 0.0055mm. The
raw image resolution is 4080× 3068.

Datasets. We calibrate our camera for three different fo-
cus distance configurations hand build three corresponding
datasets: R12-A for h = 450 mm, R12-B for h = 1000
mm, and R12-C for h =∞. Each dataset is composed of:
• white raw plenoptic images acquired at different aper-

tures (N ∈ {4, 5.66, 8, 11.31, 16}) with augmented
gain to ease circle detection in the pre-calibration step,

• free-hand calibration targets acquired at various poses
(in distance and orientation), separated into two sub-
sets, one for the calibration process and the other for
the qualitative evaluation,

• a white raw plenoptic image acquired in the same lu-
minosity condition and with the same aperture as in the
calibration targets acquisition,

• and calibration targets acquired with a controlled trans-
lation motion for quantitative evaluation, along with
the depth maps computed by the Raytrix software
(RxLive v4.0.50.2).

We use a 9 × 5 of 10mm side checkerboard for R12-A, a
8×5 of 20mm for R12-B, and a 7×5 of 30mm for R12-C.
Datasets and our source code are publicly available1.

1 https://github.com/comsee-research

Free-hand camera calibration. The white raw plenop-
tic image is used for devignetting other raw images and for
computing micro-images centers. From the set of calibra-
tion targets images, BAP features are extracted, and camera
intrinsic and extrinsic parameters are then computed using
our non-linear optimization process.

Controlled environment evaluation. In our experimen-
tal setup (see Fig. 1), the camera is mounted on a linear mo-
tion table with micro-metric precision. We acquired several
images with known relative motion between each frame.
Therefore, we are able to quantitatively evaluate the esti-
mated displacement from the extrinsic parameters with re-
spect to the ground truth. The extrinsics are computed with
the intrinsics estimated from the free-hand calibration. We
compared our computed relative depth to those obtained by
the RxLive software.

Qualitative evaluation. When no ground truth is avail-
able, we evaluate qualitatively our parameters on the evalu-
ation subset by estimating the reprojection error using the
previously computed intrinsics. We use the Root-Mean-
Square Error (RMSE) as our metric to evaluate the repro-
jection, individually on the corner reprojection and the blur
radius reprojection.

Comparison. Since our model is close to [20], we com-
pare our intrinsics with the ones obtained under their pin-
hole assumption using only corner reprojection error and
with the same initial parameters. We also provide the cali-
bration parameters obtained from the RxLive software.

6.2. Results

Internal parameters. Note that the pixel MI radius is
given by ̺ = |R| /s, and R is either positive if formed after
the rays inversion (as in Fig. 4), or negative if before. With
our camera f (i) > d [12], so R < 0 implying that m and ci
are also negative. In practice, it means we use the value −̺
in the estimation process.
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In our experiments, we set λ = 0.9931. We verified that
the error introduced by this approximation is less than the
metric size of a pixel (i.e., less than 1% of its optimized
value). Fig. 5 shows the estimated lines (see Eq. (9)), with
a cropped white image taken at N = 8, where each type
of micro-lens is identified with its radius. An histogram of
the radii distribution is also given for each type. From the
radii measurements, the computed internal parameters are
estimated and given for each dataset in Tab. 2.

R12-A R12-B R12-C

∆c 128.222 128.293 128.333

m −140.596 −159.562 −155.975

q′1 35.135 36.489 35.443

q′2 40.268 42.075 41.278

q′3 36.822 38.807 37.858

m∗
−142.611 −161.428 −158.292

ǫm 1.41% 1.16% 1.52%

Table 2: Internal parameters (in µm) computed during the
pre-calibration step for each dataset. The expected value for
m is given by m∗ and the relative error ǫm = (m∗−m)/m∗

is computed.

As expected, the internal parameters ∆c and m are dif-
ferent for each dataset, as D and δc vary with the focus dis-
tance h, whereas the q′i values are close for each dataset.
Using intrinsics, we compare the expected coefficient m∗

(from the closed form in Eq. (10) with the optimized pa-
rameters) with its calculated m value. The mean error over
all datasets is ǭm = 1.36% which is smaller than a pixel.

Free-hand camera calibration. The initial parameters
for each dataset are given in Tab. 1 along with the optimized
parameters obtained from our calibration and from the
method in [20]. Some parameters are omitted for compact-
ness (i.e., distortions coefficient and MLA rotations which
are negligible). The main lens focal lengths obtained with
the proprietary RxLive software are: Fh=450 = 47.709
mm, Fh=1000 = 50.8942 mm, and Fh=∞ = 51.5635 mm.

With our method and [20], the optimized parameters are
close to their initial value, showing that our method pro-
vides a good initialization for our optimization process. The
F , d and ∆C are consistent across the datasets with our
method. In contrast, the F and d obtained with [20] show a
larger discrepancy. This is also the case for the focal lengths
obtained by RxLive.

Poses evaluation. Tab. 3 presents the relative translations
and their errors with respect to the ground truth for the con-
trolled environment experiment. Even if our relative errors
are similar with [20], we are able to retrieve more param-
eters. With our method, absolute errors are of the order
of the mm (R12-A: 0.37 ± 0.15 mm, R12-B: 1.66 ± 0.58
mm and R12-C: 1.38 ± 0.85 mm) showing that the re-
trieved scale is coherent. Averaging over all the datasets,

our method presents the smallest relative error, with low dis-
crepancy between datasets, outperforming the estimations
of the RxLive software.

R12-A R12-B R12-C All

Error [%] ǭz σz ǭz σz ǭz σz ǭz

Ours 3.73 1.48 3.32 1.17 2.95 1.35 3.33

[20] 6.83 1.17 1.16 1.06 2.70 0.86 3.56

RxLive 4.63 2.51 4.26 5.79 11.52 3.22 6.80

Table 3: Relative translation error along the z-axis with re-
spect to the ground truth displacement. For each dataset,
the mean error ǭz and its standard deviation σz are given.
Results are given for our method and compared with [20]
and the proprietary software RxLive.

Reprojection error evaluation. For each evaluation
dataset, the total squared pixel error is reported with its
computed RMSE in Tab. 4. The error is less than 1pix per
feature for each dataset demonstrating that the computed in-
trinsics are valid and can be generalized to images different
from the calibration set.

R12-A (#11424) R12-B (#3200) R12-C (#9568)

Total RMSE Total RMSE Total RMSE

ǭall 8972.91 0.886 1444.98 0.672 5065.33 0.728

ǭu,v 8908.65 0.883 1345.20 0.648 5046.68 0.726

ǭρ 64.257 0.075 99.780 0.177 18.659 0.044

Table 4: Reprojection error for each evaluation dataset with
their number of observations. For each component of the
feature, the total squared pixel error is reported with its
computed RMSE.

7. Conclusion

To calibrate the Multi-Focus Plenoptic Camera, state-
of-the-art methods rely on simplifying hypotheses, on re-
constructed data or require separate calibration processes to
take into account the multi-focal aspect. This paper intro-
duces a new pre-calibration step which allows us to com-
pute our new BAP feature directly in the raw image space.
We then derive a new projection model and a new reprojec-
tion error using this feature. We propose a single calibration
process based on non-linear optimization that enables us to
retrieve camera parameters, in particular the micro-lenses
focal lengths. Our calibration method is validated by qual-
itative experiments and quantitative evaluations. In the fu-
ture, we plan to exploit this new feature to improve metric
depth estimation.
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