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Abstract

Contemporary deep learning based semantic inpainting

can be approached from two directions. First, and the more

explored, approach is to train an offline deep regression

network over the masked pixels with an additional refine-

ment by adversarial training. This approach requires a sin-

gle feed-forward pass for inpainting at inference. Another

promising, yet unexplored approach is to first train a gen-

erative model to map a latent prior distribution to natural

image manifold and during inference time search for the

‘best-matching’ prior to reconstruct the signal. The pri-

mary aversion towards the latter genre is due to its infer-

ence time iterative optimization and difficulty to scale to

higher resolution. In this paper, going against the gen-

eral trend, we focus on the second paradigm of inpainting

and address both of its mentioned problems. Most impor-

tantly, we learn a data driven parametric network to di-

rectly predict a matching prior for a given masked image.

This converts an iterative paradigm to a single feed for-

ward inference pipeline with around 800× speedup. We

also regularize our network with structural prior (computed

from the masked image itself) which helps in better preser-

vation of pose and size of the object to be inpainted. More-

over, to extend our model for sequence reconstruction, we

propose a recurrent net based grouped latent prior learn-

ing. Finally, we leverage recent advancements in high res-

olution GAN training to scale our inpainting network to

256×256. Experiments (spanning across resolutions from

64×64 to 256×256) conducted on SVHN, Standford Cars,

CelebA, CelebA-HQ and ImageNet image datasets, and

FaceForensics video datasets reveal that we consistently im-

prove upon contemporary benchmarks from both schools of

approaches.

1. Introduction

Semantic inpainting refers to filling up of holes or

masked regions with plausible pixel values coherent with
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Figure 1: Examples of inpainting on ImageNet (first two rows) and CelebA-HQ

(bottom row). On complex multi category dataset such as Imagenet, our network is

significantly more capable of recovering semantic parts of the objects to be inpainted

compared to state-of-the-art frameworks of MC-CNN [42], PIC [49] and GIP [47].

On simpler structures such as faces we perform comparable (sometimes better) to

competing methods. All images are of 256×256. Zoom-in for better visualization.

the neighborhood context. Traditional techniques [4, 17]

were mainly successful in inpainting background and

scenes with repetitive textures by matching and copying

background patches into holes. However, these methods fail

on cases where patterns are unique or non-repetitive such

as on faces and objects. Recent state-of-the-art generative

models usually leverage advancements in deep generative

models such as Variational Autoencoeder (VAE) [23] and

Generative Adversarial Networks (GAN) [16]. There are

mainly two schools of approach, a) ‘single-pass-inference’

and b) ‘iterative inference’ . The first approach has drawn

majority of recent attraction [35, 21, 47, 29, 28] due to its

fast inference speed and appreciable performance at high

resolution. In general, this paradigm trains on a paired

dataset of masked and unmasked images and is initially

guided with traditional reconstruction loss over the masked

regions. To get the finer details, the next step is to refine

the reconstructions with an adversarial loss. The second ap-

proach is to first train a generative model such as a GAN

on clean/unmasked images and then, based on the masked

image at inference time, predict a suitable latent prior to

complete the image. From a generative modeling research

view point, this approach is appealing because the model is

never explicitly guided by reconstruction loss over masked
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pixels. However, absence of any reconstruction loss makes

it harder to train these models because it has to ‘hallucinate’

an entire object with no information of masked/damaged

pixels. Additionally, it also creates a run-time bottleneck

due to iterative optimization during inference. Such an iter-

ative framework prohibits real time applications.

In this paper, we want to encourage our readers to per-

ceive inpainting as a search for best latent prior for a pre-

trained generative model. This perspective is quite general

and transcends across image and video domains. For this,

we adopt the iterative-inference genre of approach and pri-

marily aim to massively accelerate inference speed with si-

multaneous visual quality improvement. For this we fol-

low a two-stage training strategy. In stage 1, we train a

GAN network to map a noise distribution to the manifold

of natural images. In stage 2, we fix the pre-trained GAN

network and train another deep neural network to predict a

suitable noise prior from a given masked image. Finally,

during inference, we get a matching noise prior (in single

feed-forward pass) for a given masked image and use the

generator module of the pre-trained GAN to reconstruct an

unmasked image.

Single image inpainting has multi-modal completion

possibility. For example, a masked lip region can be in-

painted to be neutral, smiling, angry etc. This is not an issue

for current single image inpainting frameworks in which the

primary objective is photo-realism. However, if we want to

extend to videos such multi-modal possibilities leads to an-

noying jittering effects. In this paper, we present a condi-

tional GAN setting [33] in which a structural prior is aug-

mented with the noise prior while generating an image. We

show that such structural priors not only help in improving

sample quality but also force the generative model to better

respect the pose and orientation of the object. To allevi-

ate any human intervention during inference time, we also

design a denoising auto-encoder [39] inspired network to

automatically compute the structural priors from partially

observed data points derived from masked images.

Contemporary single image inpainting models cannot be

appreciably applied on videos. Though each frame might

be photo-realistic, when viewed as a sequence, there are jit-

ters due to temporal inconsistency of the models. We pro-

pose to subdue such inconsistencies with a recurrent neural

net based grouped noise prior prediction. Such joint pre-

diction of noise priors enables the network to respect the

temporal dynamics of natural videos. Note, in this paper,

by video inpainting we are referring to damaged regions

of a frame. In traditional video coding literature this is re-

ferred to as ‘error concealment’ in videos [11, 2, 38]. HEVC

[37], which is the current standard for video transmission is

highly bandwidth efficient but is more susceptible to packet

error compared to its successor, H.264 [32]. At the decoder

(end user) side, HEVC cannot guarantee end-to-end repro-

duction. Since video streams are packaged and coded in

rectangular patches, packet error manifests as rectangular

holes on frames. Thus, video inpainting as an extension

of image inpainting can serve as the ‘concealment’ mod-

ule at the decoder side to reconstruct damaged blocks using

spatio-temporal cues.

Our contributions are summarized as follows:

1. Converting ‘iterative-inference’ pipeline of inpainting

to a single feed-forward framework and, in-process,

achieving up to 800× simultaneous visual quality im-

provement

2. Augmenting structural priors (by automatically deriv-

ing from masked images) with noise priors to improve

GAN samples which eventually results in better in-

painting reconstructions. Such priors also regularize

GAN training to respect pose and size of the object to

be inpainted

3. Designing a recurrent neural net based grouped prior

learning framework for video inpainting. This re-

sults in superior spatio-temporal characteristics com-

pared to single-image baselines from both ‘iterative-

inference’ and ‘single-pass-inference’ frameworks and

also recent multi-frame approaches

4. Leveraging recent advancements in GAN training

to scale up inpainting resolution to 256×256 com-

pared to visually plausible maximum resolution of

64×64 available from current compared to ‘iterative-

inference’ baselines

2. Related works

Image Inpainting: Traditional image inpainting meth-

ods [3, 5, 13, 14] broadly worked with matching patches

and diffusion of low level features from unmasked sections

to the masked region. These method mainly worked on syn-

thesis of stationary textures of background scenes where it

is plausible to find a matching patch from unmasked re-

gions. However, complex objects lack such redundancy of

appearance features and thus recent methods leverage hier-

archical feature learning capability of deep neural nets to

learn higher order semantics of a scene.

Single-pass inference models → Initial frameworks of

[24, 43] were mainly deep regression networks trained with

the usual ℓ2 reconstruction loss. With the advent of GANs,

a common school of approach (‘hybrid’) [35, 21, 47, 29] is

to train a regression network with variants of ℓ1 or ℓ2 loss

imposed on the masked regions. In Context Encoder(CE)

[35] Pathak et al., tried to learn scene representation along

with inpainting. Iizuka et al. proposed ‘Globally and Lo-

cally Consistent Image Completion’ (GLCIC) in which a

inpaint network is pitted against a local and global discrim-

inator. Recently, Yu et al. [47] improved upon GLCIC,
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Figure 2: Our basic inpainting model. Step 1: Learn a GAN model. Step 2: Freeze GAN modules (shown as ‘lock’ symbols) and learn to infer noise prior based on masked

input image. Step 3: During inference, given a masked image, predict a matching noise vector and use pre-trained GAN generator(G) to yield final output. The dashed arrows

show flow of error gradients during training phase. Unlock symbols denote network modules which are being trained.

by incorporating contextual attention within inpainting net-

work so that the net learns to leverage distant information

from unmasked pixels. Wang et al. proposed Generative

Multi-column CNN (GM-CNN) [42] for parallel synthesis

of different image components. In [44], the authors intro-

duce a shift-connection from encoder to decoder in an U-

Net architecture. To handle random shaped holes, partial

convolution [30] gated convolution [48] were proposed.

‘Iterative-inference’ baseline → Introduced by Yeh et al.

[45], this approach obviates the need of pixel information

inside masked region and instead relies on iterative infer-

ence time optimization by leveraging only unmasked pixels.

Video Inpainting: Though a major focus on deep

learning based inpainting has been for single image, video

inpainting still remains majorly unexplored. From a

reconstruction point of view like ours, recently Wang et al.

[40] presented a two stage video inpainting framework. In

first stage, they train 3D CNN at half resolution for a course

volumetric prediction followed by a 2D CNN branch for

upsampling and refinement. The method still suffers from

blurry reconstructions because it had only ℓ1 reconstruction

loss without adversarial loss setting. Some recent works

[9, 10, 34, 27] focus on free form video inpainting mainly

targeted for video editing.

3. Background

3.1. GAN Basics

Proposed by Goodfellow et al. [16], a GAN model con-

sists of two parametrized deep neural nets, viz., genera-

tor, GθG , and discriminator, DθD . The task of the gen-

erator is to yield an image, x ∈ RH×W×3 with a latent

noise prior vector, z ∈ Rd, as input. z is sampled from

a known distribution, pz(z). A common choice [16] is,

z ∼ U [−1, 1]d. The discriminator is pitted against the

generator to distinguish real samples (sampled from pdata)

from fake/generated samples. Specifically, discriminator

and generator play the following two-player min-max game

on V (DθD , GθG):

min
GθG

max
DθD

V (DθD , GθG) = Ex∼pdata(x)[logDθD (x)]

+ Ez∼pz(z)[1−DθD (GθG(z))]. (1)

With enough capacity, on convergence, GθG fools DθD at

random [16].

3.2. Iterative inference baseline

According to the ‘iterative-inference’ school of ap-

proach, given a masked/damaged image, Id, correspond-

ing to an original image, I , and a pre-trained GAN model,

the idea is to iteratively find the ‘closest-matching’ z vector

(starting randomly from U [−1, 1]d) which results in a re-

constructed image whose semantics are similar to corrupted

image. z is optimized as,

ẑ = argmin
z

L(M ⊙GθG(z),M ⊙ I) (2)

, where M is the binary mask with ones on masked pixels

else zeros, M = (1 − M), ⊙ is the Hadamard operator

and L(·) is any loss function. Interesting to note is that the

loss function never makes use of pixels inside the masked

region. Upon convergence, the inpainted image, Î , is given

as, Î = Id +M ⊙GθG(ẑ), where Id = M ⊙ I .

4. Proposed Method

4.1. Data driven noise prior learning

Sluggish inference of Eq. 2 is a major bottleneck of

the ‘iterative-inference’ framework. Instead of iteratively

optimizing for the noise prior, z, for each test image during

inference, we propose to learn an offline parametric model,

Pθz , for predicting z vector directly from masked image,

Id. The parameter set, θz , is optimized to jointly minimize

the following losses:

Spatially Adaptive Contextual Loss: With this loss we

want to penalize any mismatch between the unmasked

pixels of Id and the generated image, GθG(Pθz (Id)).
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Usually ℓ1 or ℓ2 loss on the unmasked pixels can be used

for this. However, to mitigate the requirement for any post-

processing blending, we want to place more importance

to visible pixels near hole boundaries for a better blend of

of Id and GθG(Pθz (Id)). Specifically let, SM be a set of

masked pixels; SM = {(x, y)|M(x, y) = 1}. We define

a spatially adaptive weighting mask, W , whose weight at

location (i, j) is given by,

W (i, j) =




0.99ℓ; ℓ = min

(x,y)/∈SM

|i− x|+ |j − y|,

0; ∀(i, j) ∈ SM

(3)

We define, Lc, as:

Lc = W ⊙ |I −GθG(Pθz (Id)|1. (4)

Photo-realism Loss: This loss ensures that the inpainted

output lies near the real data manifold and is measured by

the log likelihood of belongingness to real class assigned by

the pre-trained discriminator. We define, Lr, as:

Lr = log(1−DθD (GθG(Pθz (Id))). (5)

Gradient Difference Loss: This loss is imposed between

the masked gradient (horizontal and vertical) matrices of Id
and GθG(Pθz (Id)). This compels the network to predict

noise priors which yield high frequency retaining samples

and to further respect the structure of the original scene.

Lg = M ⊙ |∇xId −∇xGθG(Pθz (Id))|

+M ⊙ |∇yId −∇yGθG(Pθz (Id))|. (6)

In summary, parameter set, θz , is optimized to minimize the

combined loss, Lcom
z ,

Lcom
z = Lc + λ1Lr + λ2Lg (7)

, where λi’s controls the relative importance of each loss

factor. After convergence of training of Pθz , given a masked

image, Id, mask, M , we can get the inpainted output, Î , in

one feed forward step. Inpainted image, Î , is given by,

Î = Id +M ⊙GθG(Pθz (Id)). (8)

With Eq. 8, the iterative paradigm of [45] is converted to a

single feed-forward framework leading to significant infer-

ence speedup. We provide a visualization of our proposed

framework in Fig. 2.

4.2. Regularization with Structural Priors

We propose to further regularize our network by aug-

menting structural priors. Structural priors can be any rep-

resentation which captures the pose and size of the object

to be inpainted and thereby compelling the network to yield

outputs by respecting such priors. Such additional priors

can be seen as a conditional variable to the GAN frame-

work. During GAN training, we condition both the gener-

ator and discriminator on such priors. Following this, the

noise prior predictor network, Pθz , has to also optimize θz
by respecting the structural prior as an additional constraint.

In this paper, without any loss of generalization, we have

considered face inpainting with facial landmarks as struc-

tural priors.

Estimating structural priors on masked image. We

initially tried to use the recent facial keypoint alignment

benchmark of Adrian et al. [7] for landmark localization

on masked images. However [7] gives erroneous detection

on masked regions. The masking operation also degrades

the localization efficacy on the unmasked pixels (see Fig.

4). This calls for a refinement stage following the estima-

tion by [7].

We follow a refinement strategy inspired from denoising

autoencoder [39] in which the idea is to recover the original

signal from a noisy signal. On a masked image, j, we de-

note each of the NK initially detected ( by [7] ) keypoints

as, k
j
i := [xj

i , y
j
i ], i ∈ {1, 2, ..., NK}, x

j
i and y

j
i denote

horizontal and vertical keypoint coordinates normalized be-

tween 0 and 1 based on the face bounding box region. For

each k
j
i we have a switch vector, d

j
i such that, if a key-

point falls under masked region, then it is ignored and we

set d
j
i = x

j
i = y

j
i = 0 before feeding to the prediction net-

work, else d
j
i = 1. Let, K ∈ [0, 1]NK×2 encode the key-

points in a matrix. We then learn a parametrized function,

fθf : RNK×2 → RNK×2 to predict the dropped keypoints

(and refine the others) conditioned on detected keypoints.

We realize, f(·) with a three hidden layer fully connected

neural network. For training, fθf (·) we impose ℓ2 loss be-

tween original and refined keypoints;

θ⋆f = min
θf

1

N ∗NK

N∑

j=1

Nk∑

i=1

||tji − k̂
j
i ||

2
2, (9)

, where t
j
i is ith target/ground truth keypoint on jth image,

k̂
j
i is refined keypoint (starting from initially detected, k

j
i )

and N is number of training images. The ‘switch-on’ ( di
= 1) probability is set is 0.3 i.e., during training we cre-

ated random masks to cover 70% of facial keypoints and

were thus dropped during training fθf (·). The final vector

of keypoints, Kf , is given by fθ⋆
f
(K).

4.3. Grouped Noise Prior Learning for Sequences

A naive approach of applying the formulation of Eq. 7

on sequences is to inpaint individual frames independently.

However, such an approach fails to learn the temporal dy-

namics of sequence and thereby yields jittering effects. In

this regard, we propose to use a Long Short Term Mem-

ory (LSTM) network [20] to jointly predict z vectors for a
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Figure 3: Grouped noise prior learning with a combined LSTM-CNN framework.

Unlock sign means parameters to update.

group of W frames at a time. LSTM network has a hid-

den state, ht, to summarize information observed upto that

time step, t. The hidden state is updated after looking at the

previous hidden state and the current masked image (with

optional structural priors), leading to temporally coherent

reconstructions.

Fig. 3 shows our LSTM based framework for jointly re-

covering a group of frames. Let, V = {I1d , I
2
d , ..., I

W
d } be

a group of W corrupted successive frames. Initially, each

frame Itd is passed through a shared CNN module (same ar-

chitecture as of Pθz ), to get an intermediate representation,

ztd. ztd is the input to the LSTM model at time t and the

obtained output is propagated through a feed forward net-

work to get the latent prior ztp. The prior, ztp, is used for

reconstructing Itp with the help of the pre-trained generator,

GθG . We use the loss function in Eq. 7, averaged over the

grouped window of W frames to optimize the parameters

of LSTM and the shared CNN module. Specifically, the

grouped prior loss is defined by, Lgr
z ,

Lgr
z =

1

W

W∑

i=1

Lcom
z (Iid, I

i
p). (10)

Please note, the parameters of pre-trained generator and dis-

criminator are kept frozen.

5. Scaling up resolution

For photo-realistic inpainting at higher resolution

we adopt the recent large scale GAN frameworks of

Progressive-GAN (PG-GAN) [22] and BigGAN [6]. Since

we just need pre-trained generator and discriminator, we use

PG-GAN modules for CelebA-HQ and BigGAN modules

for Imagenet. The authors of BigGAN have not released

the models for CelebA-HQ and thus we adopted the mod-

ules from PG-GAN. However, PG-GAN is not scalable for

ImageNet because it trains a different GAN for each class.

On the contrary, BigGAN uses a single GAN across all 1000

Imagenet categories. We slightly change the nomenclature

of our models to indicate high resolution models. For ex-

ample, Mz is termed as MH
z , Mz+S → MH

z+S and so on.

Figure 4: (a:) Refinement of initial noisy landmark detection by Bulat et al.

[7] on masked image. Note that our refinement stage rectifies even the landmarks

on unmasked regions; (b) Comparing Relative Localization Error of facial keypoints

detection on LS3D-W test set with 50% skin pixels masked.

Table 1: Comparison with the baseline iterative-inference inpainting baseline of

Yeh et al [45] at different rates of hole-to-image ratio. Lower FID indicates more

visually plausible reconstructions.

Method → Metric SVHN Cars CelebA

10% 40% 10% 40% 10% 40%

Yeh et al. → PSNR 21.3 16.5 15.1 12.2 23.8 20.1

Ours (Mz) → PSNR 21.1 17.0 14.8 12.5 23.4 20.3

Ours (Mz+S ) → PSNR - - - - 24.1 21.7

Yeh et al. et al. → FID 3.9 4.8 4.5 5.4 5.8 6.8

Ours (Mz) → FID 3.6 4.3 4.1 5.0 5.1 6.7

Ours(Mz+S ) → FID - - - - 4.9 6.0

6. Experiments

6.1. Training details

All the loss functions are optimized with mini batch

stochastic gradient descent using Adam optimizer. We im-

plemented our models with Tensorflow 1.8.0, CUDA 9.0

and CUDNN 5.1 and executed on Intel(R) Xeon(R) E5-

2650 v4 @ 2.2GHz with NVIDIA Tesla K40 GPU.

6.2. Structural Priors from masked image

We first demonstrate the efficacy of our model to predict

the whole set of facial landmarks by observing only a sub-

set of those detected on a given masked image. We used

LS3D-W dataset [7] and adhered to the released partition

of train/test set. To mitigate the issue of scale variation, we

use Relative Localization Error (RLE), which is the ℓ2 dis-

tance between predicted and original keypoint as a fraction

of distance (inter-ocular distance) between two eye centers

(inter-occular distance, IOD) [15]. In Fig. 4 we report the

percentage of keypoints below a certain RLE with 50% of

image masked by random shaped holes. It is encouraging to

see that the prediction performance of our model on masked

faces is comparable to that of [7] on unmasked faces specif-

ically at stringent condition of RLE ≤ 5%. Advantage of

our refinement state is also shown in Fig. 4.

6.3. Single Image Inpainting

One of the main motivations of the paper was to con-

vert the iterative paradigm of [45] to a ‘single-pass’ frame-

work, yet adhere to the underlying concept of ‘best’ z vector

search for inpainting. In [45] and a recent follow up work

in [46], the authors restrict to 64×64 resolution. This is at-
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Figure 5: Benefit of proposed noise prior learning compared to iterative refine-

ment. For each triad, first column is masked image, second column is the initial

solution by ‘iterative-inference’ baseline of Yeh et al. [45] and third column is our

single-pass solution. Initial solutions of Yeh et al. lie far from natural data manifold

and thus requires prohibitively long iterative refinements.

Figure 6: Proposed structural priors enables GAN to disentangle facial pose and

appearance cues. Left: Faces sampled with same z vector but different structural

priors. Right: Faces sampled with different z vectors for a given structural prior.

Figure 7: Visualizing inpainting on CelebA (top row), SVHN (bottom-left) and

Standford Cars (bottom-right). For each triad, first column is masked image, second

column is the final solution by ‘iterative-inference’ baseline of Yeh et al. [45] and

third column is our single-pass solution. Note, with large holes and out-of-plane

rotated faces, our face model Mz+S is able to reconstruct pragmatic geometry and

texture of the face.

tributed to a) ineptitude of ‘DCGAN’ framework to scale

up to higher resolution and b) iterative search for z is not

scalable with resolution. So, for a fair comparison we show

the benefits of our components at 64×64. However, in Sec.

6.3.3 we will show that our framework also scales to higher

resolution and outperforms several ‘single-pass-inference’

methods.

Dataset Setup: For comparison with [45] we use the same

datasets used by the authors; cropped SVHN[22], Stand-

ford Cars[25] and CelebA[31]. SVHN crops are resized to

64×64. On Standford Cars we use bounding box informa-

tion to extract and resize cars to 64×64. Detected face on

CelebA are center cropped to 64×64. On SVHN and Cars,

we use the dataset provider’s test/train split. On CelebA we

test on 10000 samples. Holes of 32×32 at random locations

are used for training and testing.

For comparing with recent ‘single-pass-inference’ base-

lines of [47, 49, 42], we select CelebA-HQ [31] and Im-

ageNet at 256×256 resolution. Images are resized to

256×256 for training and testing. During training random

rectangular holes with smaller side ranging between 96-128

pixels are used. On CelebA-HQ holes are created at random

locations. On ImageNet we use central holes because ma-

jority of images have the object of concern near the center

of the image. For both CelebA-HQ and ImageNet we keep

10000 images (equally sampled across classes from valida-

tion set of ImageNet) for testing.

Evaluation Metrics: For quantitative comparison, we use

PSNR (in dB). However, recent works [47, 30, 26] have

suggested that reconstruction loss based metrics are not true

reflections of photo-realism due to multi-modal image com-

pletion possibility. So, the current trend is to report the

recently proposed Frechet Inception Distance (FID) met-

ric which correlates well with photo-realism [19]. A lower

value of FID is preferred.

6.3.1 Importance of predicting noise prior:

Faster Inference: The most important improvement that

we achieve over [45] is a significant inference speedup. In

Fig. 5, we compare the initial solution of [45] with our

single feed forward solution. Without any mechanism to

estimate noise prior from masked image, initial solutions

of [45] lie far from real data manifold and thus require

time consuming iterative updates. For convergence, total

1000 and 1500 iterations are required by [45] at 64×64 and

128×128 resolution respectively. Our approach just adds

a noise predictor network and a negligible (optional) over-

head for the structural priors. In Table 4 we compare the

actual inference times on GPU. We achieve almost 780×
and 820× speedup at 64×64 and 128×128 resolutions re-

spectively.

Better generalization: Proposed framework of learning to

predict noise priors from masked images generalizes bet-

ter to novel images and masks than ad hoc iterative opti-

mization of [45]. This is because, with evolution of train-

ing, our network learns to adapt parameters, Pθz , to map

images with similar appearances to closely matched z vec-

tors. Parameter updates for a given image thus implicitly

generalizes to images with similar characteristics. On the

contrary, every image is treated independently by [45] and

chances are high to get stuck in some local minimum yield-

ing inferior reconstructions. From Table 1, we see that our

noise prior prediction model, Mz consistently outperforms

consistently outperforms [45] in terms of FID. Some visual

examples are provided in Fig. 7.

6.3.2 Importance of Structural Priors:

Control of Pose and Expression: During GAN training

the structural priors enables the generator to disentangle ap-

pearance and pose. A given structural prior forces the gen-

erator to match the head pose and facial expression to that

of the structural prior. On the other hand, appearance fac-

tor such as gender, skin texture are controlled by z vectors.
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Table 2: Comparing FID metric of different inpainting methods on 256X256

resolution images of CelebA-HQ and ImageNet datasets. We report performances on

masks of 96x96 and 128x128 at random locations. Lower FID metric is better.

Methods CelebA-HQ ImageNet

Holes→ 96x96 128x128 96x96 128x128

GIP 4.9 11.2 8.7 23.3

PIC 4.0 9.1 7.6 38.2

MC-CNN 4.1 10.0 8.0 28.1

Ours (MH

z ) 4.1 9.2 - -

Ours (MH

z+S ) 3.8 8.5 - -

Ours (MH

z )

(Actual Label)
- - 4.5 14.5

Ours (MH

z )

(Predicted Label)
- - 6.5 17.8

Figure 8: Examples from ImageNet on which our fine-tuned ResNet-101 predicts

correct class label on masked images. We overlay the spatial localization map for

the top-1 class using Grad-CAM [36]; red = most important, blue = least important.

Notice, even though substantial parts of the objects are missing, the network is still

able to attend to unmasked important/complimentary cues for asserting correct class

label.

In Figure 6, we show such disentanglement learned by our

GAN model.

Improved GAN Samples and Reconstructions: During

GAN training, conditioning on structural priors helped us

in achieving more photo-realistic samples than [45]. If

we assume natural images to belong to a joint distribu-

tion, F(T ,P) of texture, T , and pose, P , then an uncon-

ditional GAN learns the following; pz
GθG−−−→ F(T ,P). Un-

der an additional pose constraint, it has to instead learn,

pz
GθG−−−→ F(T |P) which drastically reduces the mapping

space for GθG(·) and easies training for generator. Addi-

tional benefit from structural priors for inpainting is evi-

dent from the lower FID scores reported in Tables 1 and

2. Lastly, from Table 4, we see that structural prior module

adds negligible computational overhead.

6.3.3 Comparison to ‘single-pass-inference’ models

Next, we compare with some of the contemporary ‘single-

pass-inference’ baselines of PIC [49], GIP [47] and MC-

CNN [42]. Here, we our high resolution models. We

compare on CelebA-HQ and ImageNet at 256×256 resolu-

tion. In Table 2, we report FID metrics at different hole-to-

image ratios. We perform comparably with other methods

on CelebA-HQ but showcase a significant improvement on

the more complex ImageNet dataset.

Please note that on ImageNet, the ‘BigGAN’ generator

uses class conditioned BatchNormalization [12]. So, class

Figure 9: Example of facial video reconstruction on a sequence from FaceForen-

sics dataset. Notice that our reconstructions preserve finer details compared to Com-

bCN and perform comparable to LGTSM without gated convolution or temporal dis-

criminator as used in LGTSM.

information is required during inference time. Initially, this

might feel like an overhead. But considering the impressive

inpainting performance, this auxiliary information seems

worth it. Large number of object category is one of major is-

sues in training a single end-to-end inpainting model on Im-

agenet. Unlike datasets such as Places2, which are mainly

concerned with structures, Imagenet has much varied con-

text. It thus helps to condition the network on auxiliary

class information. However, to alleviate human interven-

tion of providing class labels during inference, we also train

a network to predict class labels from masked ImageNet.

Specifically, we fine tune a ResNet-101 [18] pre-trained on

ImageNet on masked images. We achieve a 75.3% top-1 ac-

curacy (starting from 55%) on masked Imagenet validation

set compared to 77% on unmasked version.

In Fig. 8 we show instances in which our fine-tuned

network predicted correct class label from masked image.

From Table 2 we see that the FID metric of our ImageNet

model with predicted class labels is still better than com-

peting models. In Fig. 1, we visualize some inpainting ex-

amples on ImageNet with correct class label predicted from

masked image. Notice, how our model generates signifi-

cantly better semantics consistent with the primary class of

object. In Fig. 10 we show some example cases where

the network could not predict correct and, subsequently,

yielded unpragmatic reconstructions.

6.4. Sequence Inpainting

For sequence inpainting, we select the FaceForensics

dataset [1] which has been one of the preferred facial video

datasets for recent video reconstruction papers [40, 9, 10]. It

contains 1004 face videos from YouTube and the YouTube-

8m dataset [1]. Following the settings in [40, 9, 10] all faces
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Table 3: Video FID metric by different inpainting methods on FaceForensics video dataset averaged over different mask-to-frame ratios between 10%-50%. Lower FID means

better perceptual video quality.

Yeh et al. [45] GLCIC [21] GIP [47] LGTSM [9] 3DGated [10] CombCN [40] Proposed

MH

z MH

z+S MH

z+L MH

z+S+L

0.781 0.762 0.751 0.651 0.670 0.742 0.738 0.710 0.680 0.660

Figure 10: Some fail cases of our inpainting model. We predicted wrong class

on each of these images and thus could not generate the true semantics of the main

masked object. Left: Original image, Middle: Masked image, Right: Inpainted im-

age,

are center cropped to 128×128 and trained with random

rectangular masks in range [0.35l, 0.5l], where l = 128. To-

tal 150 videos were used for testing. We use fine-tuned (on

FaceForensics frames) ‘PG-GAN’ modules for this experi-

ment.

Comparing Methods: We compare against single-image

frameworks of [45, 21, 47]. We also compare against recent

video inpainting frameworks of CombCN [40], 3DGated

[9] and LGTSM [10].

Quantitative Evaluation: PSNR calculated on individual

frame does not reflect the temporal characteristics of a se-

quence. Following the settings in [9] we use the recently

proposed video-FID metric [41] with I3D [8] pre-trained

video recognition CNN. A lower video-FID is better and is

an indicative of realistic spatio-temporal characteristics. In

Table 3, we compare the average test set video-FID. It also

provides an ablation study of different components of our

model. It is encouraging to see that even our single image

model, MH
z , performs better than the competing single im-

age models. Since there is no temporal guidance, this can

be attributed to better spatial reconstruction with ‘BigGAN’

generator. With incorporation of structural priors (MH
z+S)

and LSTM grouped prior (MH
z+L) the performance progres-

sively improves. The combined model, MH
z+S+L manifests

the best performance. The video inpainting model of Com-

bCN [40] is only trained with ℓ1 losses without any adver-

sarial refinement. Thus, even though the results are sta-

ble, the outputs are blurry and is finally penalized by high

video-FID score. Our combined model has comparable per-

formance to that of [9, 10] even though those models use

time dimension specific convolutional concepts of tempo-

Table 4: Comparison of inpainting inference time (in ms). We dramatically im-

prove the inference of our starting iterative baseline of Yeh et al. [45]. Our run time

is also comparable with contemporary ‘single-pass-inference’ methods of PIC [49],

GIP [47] and MC-CNN [42]. Note, at 256×256 resolution, we are refering to the

‘BigGAN’ generator network.

Res Yeh et al. PIC GIP MC-CNN
Mz

(Ours)

Mz+S

(Ours)

64X64 2175 - - - 2.7 2.8

128X128 10750 - - 11.0 13.2

256X256 Not Converge 70 30 50 68 75

ral shifts and gated 3D kernels with temporal PatchGAN

based discriminator. Those modules can be integrated to

our model as well, but we leave that for a future work.

7. Discussion and Conclusion

In this paper we revisited an iterative inference frame-

work for inpainitng with the objective of speeding up in-

ference time. Towards this we showed the importance of

data driven noise prior learning which gave about 800×
speedup with simultaneous improvement of reconstruction

compared to the baseline of [45]. We also extended our

model for video inpainting and concepts of structural priors

and LSTM driven grouped prior learning were introduced to

significantly improve temporal dynamics. We also showed

state-of-the-art performance against recent benchmarks in

image inpainting and video reconstruction. Our paper insti-

gates a new dimension to perceive inpainting as a search for

‘best-matching’ latent prior instead of the current trend of

encoder-decoder driven ‘image refinement’ perspective.

We acknowledge that currently our model is not well

suited for inpainting natural videos or outdoor scenes. This

is not a drawback of our framework in general but a man-

ifestation of inability of current GAN frameworks to syn-

thesize natural scenes. However, with the release of PG-

GAN and BigGAN the community is quite optimistic to-

wards complex scene generation with GANs. As such,

our framework is extremely modularized to accept any new

GAN model and benefit from its generative capability. We

leave this as a future work of exploration.
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