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Figure 1: MSeg unifies multiple semantic segmentation datasets by reconciling their taxonomies and resolving incompatible annotations.

This enables training models that perform consistently across domains and generalize better. Input images in this figure were taken (top to

bottom) from the ScanNet [8], WildDash [44], and Pascal VOC [10] datasets, none of which were seen during training.

Abstract

We present MSeg, a composite dataset that unifies se-

mantic segmentation datasets from different domains. A

naive merge of the constituent datasets yields poor perfor-

mance due to inconsistent taxonomies and annotation prac-

tices. We reconcile the taxonomies and bring the pixel-level

annotations into alignment by relabeling more than 220,000

object masks in more than 80,000 images. The resulting

composite dataset enables training a single semantic seg-

mentation model that functions effectively across domains

and generalizes to datasets that were not seen during train-

ing. We adopt zero-shot cross-dataset transfer as a bench-

mark to systematically evaluate a model’s robustness and

show that MSeg training yields substantially more robust

models in comparison to training on individual datasets or

naive mixing of datasets without the presented contribu-

tions. A model trained on MSeg ranks first on the WildDash

leaderboard for robust semantic segmentation, with no ex-

posure to WildDash data during training.

*Equal contribution

1. Introduction

When Papert first proposed computer vision as a summer

project in 1966 [26], he described the primary objective as

“...a system of programs which will divide a vidisector pic-

ture into regions such as likely objects, likely background

areas and chaos.” Five decades later, computer vision is a

thriving engineering field, and the task described by Papert

is known as semantic segmentation [5, 15, 20, 33, 42, 45].

Have we delivered on Papert’s objective? A cursory

examination of the literature would suggest that we have.

Hundreds of papers are published every year that re-

port ever-higher accuracy on semantic segmentation bench-

marks such as Cityscapes [7], Mapillary [25], COCO [19],

ADE20K [46], and others. Yet a simple exercise can show

that the mission has not been accomplished. Take a camera

and begin recording as you traverse a sequence of environ-

ments: for example, going about your house to pack some

supplies, getting into the car, driving through your city to

a forest on the outskirts, and going on a hike. Now per-

form semantic segmentation on the recorded video. Is there

a model that will successfully perform this task?

A computer vision professional will likely resort to mul-
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tiple models, each trained on a different dataset. Perhaps

a model trained on the NYU dataset for the indoor por-

tion [34], a model trained on Mapillary for the driving por-

tion, and a model trained on ADE20K for the hike. Yet this

is not a satisfactory state of affairs. It burdens practition-

ers with developing multiple models and implementing a

controller that decides which model should be used at any

given time. It also indicates that we haven’t yet arrived at a

satisfactory vision system: after all, an animal can traverse

the same environments with a single visual apparatus that

continues to perform its perceptual duties throughout.

A natural solution is to train a model on multiple

datasets, hoping that the result will perform as well as the

best dedicated model in any given environment. As has pre-

viously been observed, and confirmed in our experiments,

the results are far from satisfactory. A key underlying issue

is that different datasets have different taxonomies: that is,

they have different definitions of what constitutes a ‘cate-

gory’ or ‘class’ of visual entities. Taxonomic clashes and

inconsistent annotation practices across datasets from dif-

ferent domains (e.g., indoor and outdoor, urban and natural,

domain-specific and domain-agnostic) substantially reduce

the accuracy of models trained on multiple datasets.

In this paper, we take steps towards addressing these

issues. We present MSeg, a composite dataset that uni-

fies semantic segmentation datasets from different domains:

COCO [19], ADE20K [46], Mapillary [25], IDD [40],

BDD [43], Cityscapes [7], and SUN RGB-D [36]. A naive

merge of the taxonomies of the seven datasets would yield

more than 300 classes, with substantial internal inconsis-

tency in definitions and annotation standards. Instead, we

reconcile the taxonomies, merging and splitting classes to

arrive at a unified taxonomy with 194 categories. To bring

the pixel-level annotations in conformance with the unified

taxonomy, we conduct a large-scale annotation effort via the

Mechanical Turk platform and produce compatible annota-

tions across datasets by relabeling object masks.

The resulting composite dataset enables training unified

semantic segmentation models that come a step closer to

delivering on Papert’s vision. MSeg training yields models

that exhibit much better generalization to datasets that were

not seen during training. We adopt zero-shot cross-dataset

transfer as a proxy for a model’s expected performance in

the “real world” [27]. In this mode, MSeg training is sub-

stantially more robust than training on individual datasets,

or training on multiple datasets without the reported taxo-

nomic reconciliation. In particular, our MSeg-trained model

sets a new state of the art of the WildDash benchmark for

robust semantic segmentation [44]. Our model ranks first

on the WildDash leaderboard, without seeing any WildDash

data during training.

2. Related Work

Cross-domain semantic segmentation. Mixing segmenta-

tion datasets has primarily been done within a single do-

main and application, such as driving. Ros et al. [30]

aggregated six driving datasets. Bevandic et al. [1] mix

Mapillary Vistas, Cityscapes, the WildDash validation set,

and ImageNet-1K-BB (a subset of ImageNet [9] for which

bounding box annotations are available) for joint segmenta-

tion and outlier detection on WildDash [44]. On a smaller

scale, [16, 22] mix Mapillary, Cityscapes, and the German

Traffic Sign Detection Benchmark. In contrast to these

works, we focus on semantic segmentation across multiple

domains and resolve inconsistencies between datasets at a

deeper level, including relabeling incompatible annotations.

Varma et al. [40] evaluate the transfer performance of

semantic segmentation datasets for driving. They only use

16 common classes, without any dataset mixing. They ob-

serve that cross-dataset transfer is significantly inferior to

“self-training” (i.e., training on the target dataset). We have

observed the same outcomes when models are trained on

individual datasets, or when datasets are mixed naively.

Liang et al. [18] train a model by mixing Cityscapes,

ADE20K, COCO Stuff, and Mapillary, but do not eval-

uate cross-dataset generalization. Kalluri et al. [14] mix

pairs of datasets (Cityscapes + CamVid, Cityscapes + IDD,

Cityscapes + SUN RGB-D) for semi-supervised learning.

An underlying issue that impedes progress on unified se-

mantic segmentation is the incompatibility of dataset tax-

onomies. In contrast to the aforementioned attempts, we di-

rectly address this issue by deriving a consistent taxonomy

that bridges datasets from multiple domains.

Domain adaptation and generalization. Training datasets

are biased and deployment in the real world presents the

trained models with data that is unlike what had been seen

during training [38]. This is known as covariate shift [32]

or selection bias [13], and can be tackled in the adaptation

or the generalization setting. In adaptation, samples from

the test distribution (deployment environment) are available

during training, albeit without labels. In generalization, we

expect models to generalize to previously unseen environ-

ments after being trained on data from multiple domains.

We operate in the generalization mode and aim to train

robust models that perform well in new environments, with

no data from the target domain available during training.

Many domain generalization approaches are based on the

assumption that learning features that are invariant to the

training domain will facilitate generalization to new do-

mains [21, 23]. Volpi et al. [41] use distributionally robust

optimization by considering domain difference as noise in

the data distribution space. Bilen and Vedaldi [2] propose to

learn a unified representation and eliminate domain-specific

scaling factors using instance normalization. Mancini et

al. [21] modify batch normalization statistics to make fea-
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tures and activations domain-invariant.

The aforementioned domain generalization methods as-

sume that the same classifier can be applied in all environ-

ments. This relies on compatible definitions of visual cate-

gories. Our work is complementary and can facilitate future

research on domain generalization by providing a compat-

ible taxonomy and consistent annotations across semantic

segmentation datasets from different domains.

Visual learning over diverse domains. The Visual Do-

main Decathlon [28] introduced a benchmark over ten im-

age classification datasets, but allows training on all of

them. More importantly, its purpose is not training a sin-

gle classifier. Instead, they hope domains will assist each

other by transferring inductive biases in a multi-task set-

ting. Triantafillou et al. [39] proposed a meta-dataset for

benchmarking few-shot classification algorithms.

For the problem of monocular depth estimation, Ranftl et

al. [27] use multiple datasets and mix them via a multi-task

learning framework. We are inspired by this work and aim

to facilitate progress on dataset mixing and cross-dataset

generalization in semantic segmentation. Unlike the work

of Ranftl et al., which dealt with a geometric task (depth es-

timation), we are confronted with inconsistencies in seman-

tic labeling across datasets, and make contributions towards

resolving these.

3. The MSeg Dataset

Table 1 lists the semantic segmentation datasets used in

MSeg. This set of datasets is the result of a selection process

that considered a much larger number of candidates. The

datasets that were not used, and reasons for not including

them, are listed in the supplement.

Our guiding principle for selecting a training/test dataset

split is that large, modern datasets are most useful for train-

ing, whereas older and smaller datasets are good candidates

for testing. We test zero-shot cross-dataset performance on

the validation subsets of these datasets. Note that data from

the test datasets (including their training splits) is never used

for training in MSeg. For validation, we use the validation

subsets of the training datasets listed in Table 1.

We use the free, academic version of Mapillary Vis-

tas [25]. In this we forego highly detailed classification

of traffic signs, traffic lights, and lane markings in favor of

broader access to MSeg.

For COCO [19], we use the taxonomy of COCO Panop-

tic as a starting point, rather than COCO Stuff [4]. The

COCO Panoptic taxonomy merges some of the material-

based classes of COCO Stuff into common categories that

are more compatible with other datasets. (E.g., floor-

marble, floor-other, and floor-tile are merged into floor.)

Naively combining the component datasets yields

roughly 200K images with 316 semantic classes (after

merging classes with synonymous names). We found that

Table 1: Component datasets in MSeg.

Dataset name Origin domain # Images

Training & Validation

COCO [19]
Everyday objects 123,287

+ COCO STUFF [4]

ADE20K [46] Everyday objects 22,210

MAPILLARY [25] Driving (Worldwide) 20,000

IDD [40] Driving (India) 7,974

BDD [43] Driving (United States) 8,000

CITYSCAPES [7] Driving (Germany) 3,475

SUN RGBD [36] Indoor 5,285

Test

PASCAL VOC [10] Everyday objects 1,449

PASCAL CONTEXT [24] Everyday objects 5,105

CAMVID [3] Driving (U.K.) 101

WILDDASH [44] Driving (Worldwide) 70

KITTI [11] Driving (Germany) 400

SCANNET-20 [8] Indoor 5,436

training on naively combined datasets yields low accuracy

and poor generalization. We believe the main cause for this

failure is inconsistency in the taxonomies and annotation

practices in the different datasets. The following subsec-

tions explain these issues and our solution.

3.1. Taxonomy

In order to train a cross-domain semantic segmentation

model, we need a unified taxonomy. We followed a se-

quence of decision rules, summarized in Figure 3, to decide

on split and merge operations on taxonomies of the com-

ponent datasets. We condensed the 316 classes obtained by

merging the component datasets into a unified taxonomy of

194 classes. The full list is given in Figure 4 and further

described and visualized in the supplement. Each of these

classes is derived from classes in the component datasets.

We have two primary objectives in designing the MSeg

taxonomy. First, as many classes should be preserved as

possible. For example, guardrail should not be discarded

just because COCO, BDD, or IDD do not annotate it. Merg-

ing classes can reduce the discriminative ability of the re-

sulting models. Second, the taxonomy should be flat, rather

than hierarchical, to maximize compatibility with standard

training methods.

An MSeg category can have one of the following rela-

tionships to classes in a component dataset: (a) it can be in

direct correspondence to a class in a component taxonomy,

(b) it can be the result of merging a number of classes from

a component taxonomy, (c) it can be the result of splitting

a class in a component taxonomy (one-to-many mapping),

or (d) it can be the union of classes which are split from

different classes in the component taxonomy.
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Figure 2: Visualization of a subset of the class mapping from each dataset to our unified taxonomy. This figure shows 40 of the 194 classes;

see the supplement for the full list. Each filled circle means that a class with that name exists in the dataset, while an empty circle means

that there is no pixel from that class in the dataset. A rectangle indicates that a split and/or merge operation was performed to map to the

specified class in MSeg. Rectangles are zoomed-in in the right panel. Merge operations are shown with straight lines and split operations

are shown with dashed lines. (Best seen in color.)
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Figure 3: Procedure for determining the set of categories in the

MSeg taxonomy. See the supplement for more details.

Figure 2 visualizes these relationships for 40 classes.

For example, the class ‘person’ in COCO and ADE20K

corresponds to four classes (‘person’, ‘rider-other’, ‘bicy-

clist’, and ‘motorcyclist’) in the Mapillary dataset. Thus

the ‘person’ labels in COCO and ADE20K need to be

split into one of the aforementioned four Mapillary cat-

egories depending on the context. (See boxes COCO-E

and ADE20K-D in Figure 2.) Mapillary is much finer-

grained than other driving datasets and classifies Pothole,

Parking, Road, Bike Lane, Service Lane, Crosswalk-Plain,

Lane Marking-General, Lane Marking-Crosswalk sepa-

rately. These classes are merged into a unified MSeg ‘road’

class. (See box Mapillary-C in Figure 2.)

Merging and splitting of classes from component

datasets have different drawbacks. Merging is easy and can

be performed programmatically, with no additional label-

ing. The disadvantage is that labeling effort that was in-

vested into the original dataset is sacrificed and the result-

ing taxonomy has coarser granularity. Splitting, on the other

hand, is labor-intensive. To split a class from a component

dataset, all masks with that class need to be relabeled. This

provides finer granularity for the resulting taxonomy, but

costs time and labor. The procedure summarized in Fig-

ure 3 is our approach to trading off these costs.

3.2. Relabeling Instances of Split Classes

We utilize Amazon Mechanical Turk (AMT) to relabel

masks of classes that need to be split. We re-annotate

only the datasets used for learning, leaving the evaluation

datasets intact. Instead of recomputing boundaries, we for-

mulate the problem as multi-way classification and ask an-

notators to classify each mask into finer-grained categories

from the MSeg taxonomy. We include an example label-

ing screen, workflow and labeling validation process in the

supplement. In total, we split 31 classes and relabel 221,323

masks. We visualize some of the split operations in Figure 2

and provide additional details in the supplement.

AMT workers sometimes submit inaccurate, random,

or even adversarial decisions [35]. To ensure annotation

quality, we embed ‘sentinel’ tasks within each batch of

work [6, 12, 29], constituting at least 10% of each batch.

These sentinels are tasks for which the ground truth is un-

ambiguous and is manually annotated by us. We use the

sentinels to automatically evaluate the reliability of each an-

notator so that we can direct work towards more reliable an-

notators. Five workers annotate each batch, and the work is

resubmitted until all submitted batches meet a 100% sen-

tinel accuracy. Afterwards, the category is determined by

majority vote; categories that do not meet these criteria are

manually labeled in-house by expert annotator (one of the

authors).

4. Experimental Results

Implementation details. We use the HRNet-W48 [37] ar-

chitecture as our model. We use SGD with momentum and

polynomial learning rate decay, starting with a learning rate

of 0.01. When forming a minibatch of size m from multi-

ple datasets, we evenly split the minibatch by the number

of training datasets n, meaning each dataset will contribute
m/n examples to each minibatch. Accordingly, there is no

notion of “epoch” for the unified dataset during our training,

but rather only total samples seen from each dataset. For ex-

ample, in a single effectual “COCO epoch”, Mapillary will

complete more than 6 effectual epochs, as its dataset is less

than 1

6
th the size of COCO. We train until one million crops

from each dataset’s images have been seen.

Image resolution is inconsistent across component

datasets. For example, Mapillary contains many images

of resolution ∼2000× 4000, while most ADE20K images

have resolution ∼300× 400. Before training, we use 2×

or 3× super-resolution [17] to first upsample the train-

ing datasets with lower resolution to a higher one (at least

1000p). At training time, we resize images from different

datasets to a consistent resolution. Specifically, in our ex-

periments, we resize all images such that their shorter side

is 1080 pixels (while preserving aspect ratios) and use a

crop size of 713× 713px. At test time, we resize the image

to one of three different resolutions (360/720/1080 as the

images’ shorter side), perform inference, and then interpo-

late the prediction maps back to the original resolutions for

evaluation. The resolution level (360/720/1080) is set per

dataset. More details are provided in the supplement.
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Figure 4: Semantic classes in MSeg. Left: pixel counts of MSeg

classes, in log scale. Right: percentage of pixels from each com-

ponent dataset that contribute to each class. Any single dataset is

insufficient for describing the visual world.

Using the MSeg taxonomy on a held-out dataset. At in-

ference time, at each pixel we obtain a vector of probabili-

ties over the unified taxonomy’s mu categories. These uni-

fied taxonomy probabilities must be allocated to test dataset

taxonomy buckets. For example, we have three separate

probabilities in our unified taxonomy for ‘motorcyclist’,

‘bicyclist’, and ‘rider-other’. We sum these three together

to compute a Cityscapes ‘rider’ probability. We implement

this remapping from mu classes to mt classes for the eval-

uation dataset as a linear mapping P from ❘
mu to ❘mt .

The matrix weights Pij are binary 0/1 values and are fixed

before training or evaluation; the weights are determined

manually by inspecting label maps of the test datasets. Pij

is set to 1 if unified taxonomy class j contributes to evalua-

tion dataset class i, otherwise Pij = 0.

Zero-shot transfer performance. We use the MSeg train-

ing set to train a unified semantic segmentation model. Ta-

ble 2 lists the results of zero-shot transfer of the model to

MSeg test datasets. Note that none of these datasets were

seen by the model during training. For comparison, we list

the performance of corresponding models that were trained

on the individual training datasets that were used to make up

MSeg. For reference, we also list the performance of ‘ora-

cle’ models that were trained on the training splits of the

test datasets. Note that WildDash does not have a training

set, thus no ‘oracle’ performance is provided for it.

The results in Table 2 indicate that good performance

on a particular test dataset can sometimes be obtained by

training on a specific training dataset that has compatible

priors. For example, training on COCO yields good per-

formance on VOC, and training on Mapillary yields good

performance on KITTI. But no individual training dataset

yields good performance across test datasets. In contrast,

the model trained on MSeg performs consistently across all

datasets. This is evident in the aggregate performance, sum-

marized by the harmonic mean across datasets. The har-

monic mean mIoU achieved by the MSeg-trained model

is 28% higher than the accuracy of the best individually-

trained baseline (COCO).

Performance on training datasets. Table 3 lists the accu-

racy of trained models on the MSeg training datasets. We

test on the validation sets and compute IoU on a subset of

classes that are jointly present in the dataset and MSeg’s

taxonomy. Except for Cityscapes and BDD100K, results on

validation sets of all training datasets are not directly com-

parable to the literature since the MSeg taxonomy involves

merging multiple classes. As expected, individually-trained

models generally demonstrate good accuracy when tested

on the same dataset: a model trained on COCO performs

well on COCO, etc. The aggregate performance of the

MSeg model is summarized by the harmonic mean across

datasets. It is 68% higher than the best individually-trained

baseline (COCO).
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WildDash benchmark. The WildDash benchmark [44]

specifically evaluates the robustness of semantic segmen-

tation models. Images mainly contain road scenes with un-

usual and hazardous conditions (e.g., poor weather, noise,

distortion). The benchmark is intended for testing the ro-

bustness of models trained on other datasets, and does not

provide a training set of its own. A small set of 70 annotated

images is provided for validation. The primary mode of

evaluation is a leaderboard, with a testing server and a test

set with hidden annotations. The main evaluation measure

is Meta Average mIoU, which combines performance met-

rics associated with different hazards and per-frame IoU.

We submitted result from a model trained on MSeg to the

WildDash test server, with multi-scale inference. Note that

WildDash in not among the MSeg training sets and the sub-

mitted model has never seen WildDash images during train-

ing. The results are reported in Table 4. Our model is ranked

1st on the leaderboard. Remarkably, our model outperforms

methods that were trained on multiple datasets and utilized

the WildDash validation set during training. In compari-

son to the best prior model that (like ours) did not leverage

WildDash data during training, our model improves accu-

racy by 9.3 percentage points: a 24% relative improvement.

Algorithms for learning from multiple domains. We

evaluate the effectiveness of algorithmic approaches for

Table 2: Semantic segmentation accuracy (mIoU) on MSeg test

datasets. (Zero-shot cross-dataset generalization.) Top: perfor-

mance of models trained on individual training datasets. Middle:

the same model trained on MSeg (our result). Bottom: for refer-

ence, performance of ‘oracle’ models trained on the test datasets.

Numbers within 1% of the best are in bold. The rightmost column

is a summary measure: harmonic mean across datasets.

Train/Test VOC Context CamVid WildDash KITTI ScanNet h. mean

COCO 73.7 43.1 56.6 38.9 48.2 33.9 46.0
ADE20K 34.6 24.0 53.5 37.0 44.3 43.8 37.1
Mapillary 22.0 13.5 82.5 55.2 68.5 2.1 9.2
IDD 14.5 6.3 70.5 40.6 50.7 1.6 6.5
BDD 13.5 6.9 71.0 52.1 55.0 1.4 6.1
Cityscapes 12.1 6.5 65.3 30.1 58.1 1.7 6.7
SUN RGBD 10.2 4.3 0.1 1.4 0.7 42.2 0.3

MSeg 70.8 42.9 83.1 63.1 63.7 48.4 59.0

Oracle 77.0 46.0 79.1 – 57.5 62.2 –

Table 3: Semantic segmentation accuracy (mIoU) on MSeg train-

ing datasets. (Evaluated on validation sets.) Top: performance of

models trained on individual datasets. Bottom: the same model

trained on MSeg (our result). Numbers within 1% of the best are

in bold. The rightmost column is harmonic mean across datasets.

Train/Test COCO ADE20K Mapillary IDD BDD Cityscapes SUN h. mean

COCO 52.6 19.6 26.7 31.0 44.1 46.2 29.4 32.1
ADE20K 14.5 45.3 24.3 27.0 41.5 44.3 35.3 28.7
Mapillary 6.7 6.2 53.2 48.2 60.2 69.7 0.2 1.4
IDD 3.1 3.1 24.3 64.8 43.7 50.2 0.6 2.8
BDD 3.7 4.1 24.0 33.9 63.2 60.9 0.2 1.5
Cityscapes 3.1 3.1 22.4 31.3 45.0 77.6 0.2 1.2
SUN RGBD 3.3 7.1 1.1 1.0 2.2 2.6 43.9 2.2

MSeg 48.6 42.8 51.9 61.8 63.5 76.3 46.1 53.9

Table 4: Results from the WildDash leaderboard at the time of

submission. Our model, transferred zero-shot, ranks 1st and out-

performs models that utilized WildDash data during training.

Meta AVG mIoU Seen WildDash data?

MSeg-1080 (Ours) 48.3 ✗

LDN BIN-768 [1] 46.9 ✓

LDN OE [1] 42.7 ✓

DN169-CAT-DUAL 41.0 ✓

AHiSS [22] 39.0 ✗

multi-domain learning, specifically domain generalization

and multi-task learning. We use a state-of-the-art multi-

task learning algorithm [31] and a Domain Generalization

(DG) algorithm [23]. The multi-task learning algorithm,

MGDA [31], finds a Pareto optimal solution that trades off

the losses over the different datasets. The DG baseline,

Classification and Contrastive Semantic Alignment (CCSA)

[23], enforces representation invariance across datasets.

We compare MGDA and CCSA with our simple strat-

egy of evenly mixing data in Table 5. For this experiment,

we used only COCO, Mapillary, and ADE20K, at a re-

duced resolution (roughly QVGA, shorter image side is 240

px). (We provide the high-resolution result on all 7 training

datasets in the supplement.) We find that on the majority of

test datasets, multi-task learning slightly hurts the zero-shot

transfer performance compared with plain mixing of data

from different datasets in a batch. The DG algorithm ap-

pears to hurt performance significantly. Additional details

are provided in the supplement.

Table 5: Comparison of a domain generalization algorithm

(CCSA) and a multi-task learning algorithm (MGDA) with a plain

mixing strategy.

VOC WildDash CamVid ScanNet h. mean

CCSA [23] 48.9 36.0 52.4 27.0 39.7
MGDA [31] 69.4 39.9 57.5 33.5 46.1
Plain mix 69.2 43.1 63.9 34.6 48.7

Qualitative results. Figure 5 provides qualitative results

on images from different test datasets. Unlike the base-

lines, the MSeg model is successful in all domains. On

ScanNet, our model provides more accurate predictions for

chairs than even the provided ground truth. In comparison,

ADE20K models are blind to tables and Mapillary-trained

models completely fail in ScanNet’s indoor regime. On

CamVid, the Mapillary- and COCO-trained models incor-

rectly predict sidewalk on the road surface; ADE20K- and

COCO-trained models have no notion of rider and mistake

bicyclists for pedestrians. On Pascal VOC, our model is

the only one to correctly identify a person standing on an

airplane’s mobile staircase; an ADE20K-trained model er-

roneously predicts a boat, and a Mapillary model sees a car.

On another Pascal image, ADE20K has no horse class, and

the corresponding model cannot identify it.

Ablation study. Table 6 reports a controlled evaluation
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Input image Ground truth ADE20K model Mapillary model COCO model MSeg model

Figure 5: Qualitative results on images from MSeg test datasets. Zero-shot transfer. From top to bottom: ScanNet-20 (top two rows),

WildDash, CamVid, and Pascal VOC (bottom two rows).

of two of our contributions: the unified taxonomy (Sec-

tion 3.1) and the compatible relabeling (Section 3.2). The

‘Naive merge’ baseline is a model trained on a compos-

ite dataset that uses a naively merged taxonomy in which

the classes are a union of all training classes, and each

test class is only mapped to an universal class if they

share the same name. The ‘MSeg (w/o relabeling)’ base-

line uses the unified MSeg taxonomy, but does not use the

manually-relabeled data for split classes (Section 3.2). The

model trained on the presented composite dataset (‘MSeg’)

achieves better performance than the baselines.

Table 6: Controlled evaluation of unified taxonomy and mask re-

labeling. Zero-shot transfer to MSeg test datasets. Both contribu-

tions make a positive impact on generalization accuracy.

Train/Test VOC Context CamVid WildDash KITTI ScanNet h. mean

Naive merge 51.9 23.8 56.2 59.7 62.6 43.4 44.5
MSeg w/o relabeling 70.9 42.9 83.5 64.5 62.6 44.2 58.0
MSeg 70.8 42.9 83.1 63.1 63.7 48.4 59.0

5. Conclusion

We presented a composite dataset for multi-domain se-

mantic segmentation. To construct the composite dataset,

we reconciled the taxonomies of seven semantic segmenta-

tion datasets. In cases where categories needed to be split,

we performed large-scale mask relabeling via the Mechan-

ical Turk platform. We showed that the resulting compos-

ite dataset enables training a unified semantic segmentation

model that delivers consistently high performance across

domains. The trained model generalizes to previously un-

seen datasets and is currently ranked first on the WildDash

leaderboard for robust semantic segmentation, with no ex-

posure to WildDash data during training. We see the pre-

sented work as a step towards broader deployment of ro-

bust computer vision systems and hope that it will support

future work on zero-shot generalization. Code, data, and

trained models are available at https://github.com/

mseg-dataset.
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