
SampleNet: Differentiable Point Cloud Sampling

Itai Lang

Tel Aviv University

itailang@mail.tau.ac.il

Asaf Manor

Tel Aviv University

asafmanor@mail.tau.ac.il

Shai Avidan

Tel Aviv University

avidan@eng.tau.ac.il

Abstract

There is a growing number of tasks that work directly on

point clouds. As the size of the point cloud grows, so do

the computational demands of these tasks. A possible so-

lution is to sample the point cloud first. Classic sampling

approaches, such as farthest point sampling (FPS), do not

consider the downstream task. A recent work showed that

learning a task-specific sampling can improve results sig-

nificantly. However, the proposed technique did not deal

with the non-differentiability of the sampling operation and

offered a workaround instead.

We introduce a novel differentiable relaxation for point

cloud sampling that approximates sampled points as a mix-

ture of points in the primary input cloud. Our approxima-

tion scheme leads to consistently good results on classifi-

cation and geometry reconstruction applications. We also

show that the proposed sampling method can be used as a

front to a point cloud registration network. This is a chal-

lenging task since sampling must be consistent across two

different point clouds for a shared downstream task. In all

cases, our approach outperforms existing non-learned and

learned sampling alternatives. Our code is publicly avail-

able1.

1. Introduction

The popularity of 3D sensing devices increased in recent

years. These devices usually capture data in the form of a

point cloud - a set of points representing the visual scene.

A variety of applications, such as classification, registration

and shape reconstruction, consume the raw point cloud data.

These applications can digest large point clouds, though it

is desirable to reduce the size of the point cloud (Figure 1)

to improve computational efficiency and reduce communi-

cation costs.

This is often done by sampling the data before running

the downstream task [8, 11, 12]. Since sampling preserves

the data structure (i.e., both input and output are point

1https://github.com/itailang/SampleNet

SampleNet

A	CAR!

Classification

SampleNet

Registration

SampleNet

Reconstruction

Figure 1. Applications of SampleNet. Our method learns to sam-

ple a point cloud for a subsequent task. It employs a differen-

tiable relaxation of the selection of points from the input point

cloud. SampleNet lets various tasks, such as classification, regis-

tration, and reconstruction, to operate on a small fraction of the

input points with minimal degradation in performance.

clouds), it can be used natively in a process pipeline. Also,

sampling preserves data fidelity and retains the data in an

interpretable representation.

An emerging question is how to select the data points.

A widely used method is farthest point sampling (FPS) [30,

52, 18, 27]. FPS starts from a point in the set, and iteratively

selects the farthest point from the points already selected [7,

23]. It aims to achieve a maximal coverage of the input.

FPS is task agnostic. It minimizes a geometric error and

does not take into account the subsequent processing of the

sampled point cloud. A recent work by Dovrat et al. [6]

presented a task-specific sampling method. Their key idea

was to simplify and then sample the point cloud. In the

first step, they used a neural network to produce a small

set of simplified points in the ambient space, optimized for

the task. This set is not guaranteed to be a subset of the

7578



input. Thus, in a post-processing step, they matched each

simplified point to its nearest neighbor in the input point

cloud, which yielded a subset of the input.

This learned sampling approach improved application

performance with sampled point clouds, in comparison to

non-learned methods, such as FPS and random sampling.

However, the matching step is a non-differentiable opera-

tion and can not propagate gradients through a neural net-

work. This substantially compromises the performance

with sampled points in comparison to the simplified set,

since matching was not introduced at the training phase.

We extend the work of Dovrat et al. [6] by introducing

a differentiable relaxation to the matching step, i.e., nearest

neighbor selection, during training (Figure 2). This opera-

tion, which we call soft projection, replaces each point in the

simplified set with a weighted average of its nearest neigh-

bors from the input. During training, the weights are opti-

mized to approximate the nearest neighbor selection, which

is done at inference time.

The soft projection operation makes a change in repre-

sentation. Instead of absolute coordinates in the free space,

the projected points are represented in weight coordinates

of their local neighborhood in the initial point cloud. The

operation is governed by a temperature parameter, which is

minimized during the training process to create an anneal-

ing schedule [38]. The representation change renders the

optimization goal as multiple localized classification prob-

lems, where each simplified point should be assigned to an

optimal input point for the subsequent task.

Our method, termed SampleNet, is applied to a variety

of tasks, as demonstrated in Figure 1. Extensive experi-

ments show that we outperform the work of Dovrat et al.

consistently. Additionally, we examine a new application -

registration with sampled point clouds and show the advan-

tage of our method for this application as well. Registration

introduces a new challenge: the sampling algorithm is re-

quired to sample consistent points across two different point

clouds for a common downstream task. To summarize, our

key contributions are threefold:

• A novel differentiable approximation of point cloud

sampling;

• Improved performance with sampled point clouds for

classification and reconstruction tasks, in comparison

to non-learned and learned sampling alternatives;

• Employment of our method for point cloud registra-

tion.

2. Related Work

Deep learning on point clouds Early research on deep

learning for 3D point sets focused on regular representa-

tions of the data, in the form of 2D multi-views [29, 35]

or 3D voxels [44, 29]. These representations enabled the

natural extension of successful neural processing paradigms

�

�

1

�

4

Input Simplified

�

1

� → 0

Find	local
neighbors

�

2

�

1

�

3

�

4

�

�

2

�

2

�

3

�

4

= softmax(�; ��

�

)

�

�

3

Project					onto	local
neighborhood	

�

�

1

�

3

�

4

�

Softly	Projected

�

2

Figure 2. Illustration of the sampling approximation. We pro-

pose a learned sampling approach for point clouds that employs

a differentiable relaxation to nearest neighbor selection. A query

point q (in Red) is projected onto its local neighborhood from the

input point cloud (in Blue). A weighted average of the neighbors

form a softly projected point r (in Magenta). During training the

weights are optimized to approximated nearest neighbor sampling

(p2 in this example), which occurs at inference time.

from the 2D image domain to 3D data. However, point

clouds are irregular and sparse. Regular representations

come with the cost of high computational load and quan-

tization errors.

PointNet [28] pioneered the direct processing of raw

point clouds. It includes per point multi-layer perceptrons

(MLPs) that lift each point from the coordinate space to a

high dimensional feature space. A global pooling operation

aggregates the information to a representative feature vec-

tor, which is mapped by fully connected (FC) layers to the

object class of the input point cloud.

The variety of deep learning applications for point clouds

expanded substantially in the last few years. Today, appli-

cations include point cloud classification [30, 18, 36, 43],

part segmentation [15, 34, 21, 42], instance segmenta-

tion [40, 19, 41], semantic segmentation [13, 25, 39], and

object detection in point clouds [27, 33]. Additional ap-

plications include point cloud autoencoders [1, 48, 10, 54],

point set completion [53, 5, 31] and registration [2, 22, 32],

adversarial point cloud generation [14, 46], and adversarial

attacks [20, 45]. Several recent works studied the topic of

point cloud consolidation [52, 51, 16, 49]. Nevertheless, lit-

tle attention was given to sampling strategies for point sets.

Nearest neighbor selection Nearest neighbor (NN)

methods have been widely used in the literature for infor-

mation fusion [9, 30, 26, 42]. A notable drawback of us-

ing nearest neighbors, in the context of neural networks, is

that the selection rule is non-differentiable. Goldberger et

al. [9] suggested a stochastic relaxation of the nearest neigh-

bor rule. They defined a categorical distribution over the set

of candidate neighbors, where the 1-NN rule is a limit case

of the distribution.

Later on, Plötz and Roth [26] generalized the work of

Goldberger et al., by presenting a deterministic relaxation

of the k nearest neighbor (KNN) selection rule. They pro-

7579



posed a neural network layer, dubbed neural nearest neigh-

bors block, that employs their KNN relaxation. In this layer,

a weighted average of neighbors in the features space is

used for information propagation. The neighbor weights are

scaled with a temperature coefficient that controls the uni-

formity of the weight distribution. In our work, we employ

the relaxed nearest neighbor selection as a way to approx-

imate point cloud sampling. While the temperature coef-

ficient is unconstrained in the work of Plötz and Roth, we

promote a small temperature value during training, to ap-

proximate the nearest neighbor selection.

Sampling methods for points clouds in neural networks

Farthest point sampling (FPS) has been widely used as

a pooling operation in point cloud neural processing sys-

tems [30, 27, 50]. However, FPS does not take into ac-

count the further processing of the sampled points and may

result in sub-optimal performance. Recently, alternative

sub-sampling methods have been proposed [17, 24, 47].

Nezhadarya et al. [24] introduced a critical points layer,

which passes on points with the most active features to the

next network layer. Yang et al. [47] used Gumbel subset

sampling during the training of a classification network in-

stead of FPS, to improve its accuracy. The settings of our

problem are different though. Given an application, we

sample the input point cloud and apply the task on the sam-

pled data.

Dovrat et al. [6] proposed a learned task-oriented simpli-

fication of point clouds, which led to a performance gap be-

tween train and inference phases. We mitigate this problem

by approximating the sampling operation during training,

via a differentiable nearest neighbor approximation.

3. Method

An overview of our sampling method, SampleNet, is de-

picted in Figure 3. First, a task network is pre-trained on

complete point clouds of n points and frozen. Then, Sam-

pleNet takes a complete input P and simplifies it via a neu-

ral network to a smaller set Q of m points [6]. Q is soft

projected onto P by a differentiable relaxation of nearest

neighbor selection. Finally, the output of SampleNet, R, is

fed to the task.

SampleNet is trained with three loss terms:

Lsamp
total = Ltask(R) + αLsimplify(Q,P )

+ λLproject.
(1)

The first term, Ltask(R), optimizes the approximated sam-

pled set R to the task. It is meant to preserve the task per-

formance with sampled point clouds. Lsimplify(Q,P ) en-

courages the simplified set to be close to the input. That is,

each point in Q should have a close point in P and vice-

versa. The last term, Lproject is used to approximate the

MLP Pool		 FC

Simplify

Soft	Projection

�

�×3

�

�×3

SampleNet

Task

Projection	Loss Task	LossSimplification	Loss

�

�×3

t

Figure 3. Training of the proposed sampling method. The task

network trained on complete input point clouds P and kept fixed

during the training of our sampling network SampleNet. P is

simplified with a neural network to a smaller set Q. Then, Q

is softly projected onto P to obtain R, and R is fed to the task

network. Subject to the denoted losses, SampleNet is trained to

sample points from P that are optimal for the task at hand.

P
g

KNN {pi}
Softmax {wi} r

Soft	Projectiont

Figure 4. The soft projection operation. The operation gets as

input the point cloud P and the simplified point cloud Q. Each

point q ∈ Q is projected onto its k nearest neighbors in P , denoted

as {pi}. The neighbors {pi} are weighted by {wi}, according to

their distance from q and a temperature coefficient t, to obtain a

point r in the soft projected point set R.

sampling of points from the input point cloud by the soft

projection operation.

Our method builds on and extends the sampling ap-

proach proposed by Dovrat et al. [6]. For clarity, we briefly

review their method in section 3.1. Then, we describe our

extension in section 3.2.

3.1. Simplify

Given a point cloud of n 3D coordinates P ∈ R
n×3,

the goal is to find a subset of m points R∗ ∈ R
m×3, such

that the sampled point cloud R∗ is optimized to a task T .

Denoting the objective function of T as F, R∗ is given by:

R∗ = argmin
R

F(T (R)), R ⊆ P, |R| = m ≤ n. (2)

This optimization problem poses a challenge due to the

non-differentiability of the sampling operation. Dovrat et

al. [6] suggested a simplification network that produces Q
from P , where Q is optimal for the task and its points are

close to those of P . In order to encourage the second prop-

erty, a simplification loss is utilized. Denoting average near-

est neighbor loss as:

La(X,Y ) =
1

|X|

∑

x∈X

min
y∈Y

||x− y||22, (3)

7580



and maximal nearest neighbor loss as:

Lm(X,Y ) = max
x∈X

min
y∈Y

||x− y||22, (4)

the simplification loss is given by:

Lsimplify(Q,P ) = La(Q,P ) + βLm(Q,P )

+(γ + δ|Q|)La(P,Q).
(5)

In order to optimize the point set Q to the task, the task

loss is added to the optimization objective. The total loss of

the simplification network is:

Ls(Q,P ) = Ltask(Q) + αLsimplify(Q,P ). (6)

The simplification network described above is trained for

a specific sample size m. Dovrat et al. [6] also proposed

a progressive sampling network. This network orders the

simplified points according to their importance for the task

and can output any sample size. It outputs n points and

trained with simplification loss on nested subsets of its out-

put:

Lprog(Q,P ) =
∑

c∈Cs

Ls(Qc, P ), (7)

where Cs are control sizes.

3.2. Project

Instead of optimizing the simplified point cloud for the

task, we add the soft projection operation. The operation is

depicted in Figure 4. Each point q ∈ Q is softly projected

onto its neighborhood, defined by its k nearest neighbors

in the complete point cloud P , to obtain a projected point

r ∈ R. The point r is a weighted average of original points

form P :

r =
∑

i∈NP (q)

wipi, (8)

where NP (q) contains the indices of the k nearest neigh-

bors of q in P . The weights {wi} are determined according

to the distance between q and its neighbors, scaled by a

learnable temperature coefficient t:

wi =
e−d2

i /t
2

∑
j∈NP (q) e

−d2

j
/t2

, (9)

The distance is given by di = ||q− pi||2.

The neighborhood size k = |NP (q)| plays a role in

the choice of sampled points. Through the distance terms,

the network can adapt a simplified point’s location such

that it will approach a different input point in its local re-

gion. While a small neighborhood size demotes explo-

ration, choosing an excessive size may result in loss of local

context.

The weights {wi} can be viewed as a probability distri-

bution function over the points {pi}, where r is the expec-

tation value. The temperature coefficient controls the shape

of this distribution. In the limit of t → 0, the distribution

converges to a Kronecker delta function, located at the near-

est neighbor point.

Given these observations, we would like the point r

to approximate nearest neighbor sampling from the local

neighborhood in P . To achieve this we add a projection

loss, given by:

Lproject = t2. (10)

This loss promotes a small temperature value.

In our sampling approach, the task network is fed with

the projected point set R rather than simplified set Q. Since

each point in R estimates the selection of a point from P ,

our network is trained to sample the input point cloud rather

than simplify it.

Our sampling method can be easily extended to the pro-

gressive sampling settings (Equation 7). In this case, the

loss function takes the form:

Lprog
total =

∑

c∈Cs

(Ltask(Rc) + αLsimplify(Qc, P ))

+ λLproject,

(11)

where Rc is the point set obtained by applying the soft pro-

jection operation on Qc (Equation 8).

At inference time we replace the soft projection with

sampling, to obtain a sampled point cloud R∗. Like in a

classification problem, for each point r∗ ∈ R∗, we select

the point pi with the highest projection weight:

r
∗ = pi∗ , i∗ = argmax

i∈NP (q)

wi. (12)

Similar to Dovrat et al. [6], if more than one point r∗

corresponds the same point pi∗ , we take the unique set of

sampled points, complete it using FPS up to m points and

evaluate the task performance.

Soft projection as an idempotent operation Strictly

speaking, the soft projection operation (Equation 8) is not

idempotent [37] and thus does not constitute a mathemati-

cal projection. However, when the temperature coefficient

in Equation 9 goes to zero, the idempotent sampling oper-

ation is obtained (Equation 12). Furthermore, the nearest

neighbor selection can be viewed as a variation of projec-

tion under the Bregman divergence [4]. The derivation is

given in the supplementary.

4. Results

In this section, we present the results of our sampling

approach for various applications: point cloud classifica-

tion, registration, and reconstruction. The performance with

7581



point clouds sampled by our method is contrasted with the

commonly used FPS and the learned sampling method, S-

NET, proposed by Dovrat et al. [6].

Classification and registration are benchmarked on Mod-

elNet40 [44]. We use point clouds of 1024 points that were

uniformly sampled from the dataset models. The official

train-test split [28] is used for training and evaluation.

The reconstruction task is evaluated with point sets of

2048 points, sampled from ShapeNet Core55 database [3].

We use four shape classes with the largest number of exam-

ples: Table, Car, Chair, and Airplane. Each class is split to

85%/5%/10% for train/validation/test sets.

Our network SampleNet is based on PointNet architec-

ture. It operates directly on point clouds and is invariant

to permutations of the points. SampleNet applies MLPs to

the input points, followed by a global max pooling. Then, a

simplified point cloud is computed from the pooled feature

vector and projected onto the input point cloud. The com-

plete experimental settings are detailed in the supplemental.

4.1. Classification

Following the experiment of Dovrat et al. [6], we use

PointNet [28] as the task network for classification. Point-

Net is trained on point clouds of 1024 points. Then, instance

classification accuracy is evaluated on sampled point clouds

from the official test split. The sampling ratio is defined as

1024/m, where m is the number of sampled points.

SampleNet Figure 5 compares the classification perfor-

mance for several sampling methods. FPS is agnostic to the

task, thus leads to substantial accuracy degradation as the

sampling ratio increases. S-NET improves over FPS. How-

ever, S-NET is trained to simplify the point cloud, while at

inference time, sampled points are used. Our SampleNet is

trained directly to sample the point cloud, thus, outperforms

the competing approaches by a large margin.

For example, at sampling ratio 32 (approximately 3% of

the original points), it achieves 80.1% accuracy, which is

20% improvement over S-NET’s result and only 9% below

the accuracy when using the complete input point set. Sam-

pleNet also achieves performance gains with respect to FPS

and S-NET in progressive sampling settings (Equation 7).

Results are given in the supplementary material.

Simplified, softly projected and sampled points We

evaluated the classification accuracy with simplified, softly

projected, and sampled points of SampleNet for progressive

sampling (denoted as SampleNet-Progressive). Results are

reported in Figure 6. For sampling ratios up to 16, the accu-

racy with simplified points is considerably lower than that

of the sampled points. For higher ratios, it is the other way

around. On the other hand, the accuracy with softly pro-

jected points is very close to that of the sampled ones. This

indicates that our network learned to select optimal points

1 2 4 8 16 32 64 128
Sampling ratio (log2 scale)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

FPS
S-NET
SampleNet

Figure 5. Classification accuracy with SampleNet. PointNet is

used as the task network and was pre-trained on complete point

clouds with 1024 points. The instance classification accuracy is

evaluated on sampled point clouds from the test split of Model-

Net40. Our sampling method SampleNet outperforms the other

sampling alternatives with a large gap.

1 2 4 8 16 32 64 128
Sampling ratio (log2 scale)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

SampleNet-Progressive simplified points
SampleNet-Progressive softly projected points
SampleNet-Progressive sampled points

Figure 6. Classification accuracy with simplified, softly pro-

jected, and sampled points. The instance classification accuracy

over the test set of ModelNet40 is measured with simplified, softly

projected, and sampled points of SampleNet-Progressive. The ac-

curacy with simplified points is either lower (up to ratio 16) or

higher (from ratio 16) than that of the sampled points. On the con-

trary, the softly projected points closely approximate the accuracy

achieved by the sampled points.

for the task from the input point cloud, by approximating

sampling with the differentiable soft projection operation.

Weight evolution We examine the evolution of projec-

tion weights over time to gain insight into the behavior

of the soft projection operation. We train SampleNet for

Ne ∈ {1, 10, 100, 150, 200, . . . , 500} epochs and apply it

each time on the test set of ModelNet40. The projection

weights are computed for each point and averaged over all

the point clouds of the test set.

Figure 7 shows the average projection weights for Sam-

pleNet trained to sample 64 points. At the first epoch, the

weights are close to a uniform distribution, with a maximal

and minimal weight of 0.19 and 0.11, respectively. Dur-

ing training, the first nearest neighbor’s weight increases,

while the weights of the third to the seventh neighbor de-

7582



crease. The weight of the first and last neighbor converges

to 0.43 and 0.03, respectively. Thus, the approximation of

the nearest neighbor point by the soft projection operation

is improved during training.

Interestingly, the weight distribution does not converge

to a delta function at the first nearest neighbor. We recall

that the goal of our learned sampling is to seek optimal

points for a subsequent task. As depicted in Figure 6, sim-

ilar performance is achieved with the softly projected and

the sampled points. Thus, the approximation of the nearest

neighbor, as done by our method, suffices.

To further investigate this subject, we trained SampleNet

with additional loss term: a cross-entropy loss between the

projection weight vector and a 1-hot vector, representing the

nearest neighbor index. We also tried an entropy loss on the

projection weights. In these cases, the weights do converge

to a delta function. However, we found out that this is an

over constraint, which hinders the exploration capability of

SampleNet. Details are reported in the supplemental.

Nearest neighbor index

1 2 3 4 5 6 7
Epoch

0
100

200
300

400
500

Ne
ig

hb
or

 w
ei

gh
t

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Figure 7. Evolution of the soft projection weights. SampleNet

is trained to sample 64 points. During training, it is applied to

the test split of ModelNet40. The soft projection weights are com-

puted with k = 7 neighbors (Equation 9) and averaged over all the

examples of the test set. Higher bar with warmer color represents

higher weight. As the training progresses, the weight distribution

becomes more centered at the close neighbors.

Temperature profile The behavior of the squared tem-

perature coefficient (t2 in Equation 9) during training is re-

garded as temperature profile. We study the influence of the

temperature profile on the inference classification accuracy.

Instead of using a learned profile via the projection loss in

Equation 11, we set λ = 0 and use a pre-determined profile.

Several profiles are examined: linear rectified, exponen-

tial, and constant. The first one represents slow conver-

gence; the exponential one simulates convergence to a lower

value than that of the learned profile; the constant profile is

set to 1, as the initial temperature.

0 100 200 300 400 500
Epoch

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Sq
ua

re
d 

te
m

pe
ra

tu
re

 (t
2 )

Learned profile
Linear rectified profile
Exponential profile

Figure 8. Temperature profile. Several temperature profiles are

used for the training of SampleNet-Progressive: a learned profile;

a linear rectified profile, representing slow convergence; and an ex-

ponential profile, converging to a lower value than the learned one.

The classification accuracy for SampleNet-Progressive, trained

with different profiles, is reported in Table 1.

SR 2 4 8 16 32 64 128

FPS 85.6 81.2 68.1 49.4 29.7 16.3 8.6

Con 85.5 75.8 49.6 32.7 17.1 7.0 4.7

Lin 86.7 86.0 85.0 83.1 73.7 50.9 20.5

Exp 86.6 85.9 85.6 82.0 74.2 55.6 21.4

Lrn 86.8 86.2 85.3 82.2 74.6 57.6 19.4

Table 1. Classification accuracy with different temperature

profiles. SR stands for sampling ratio. Third to last rows corre-

spond to SampleNet-Progressive trained with constant (Con), lin-

ear rectified (Lin), exponential (Exp), and learned (Lrn) tempera-

ture profile, respectively. SampleNet-Progressive is robust to the

decay behavior of the profile. However, if the temperature remains

constant, the classification accuracy degrades substantially.

The first two profiles and the learned profile are pre-

sented in Figure 8. Table 1 shows the classification accu-

racy with sampled points of SampleNet-Progressive, which

was trained with different profiles. Both linear rectified

and exponential profiles result in similar performance of the

learned profile, with a slight advantage to the latter. How-

ever, a constant temperature causes substantial performance

degradation, which is even worse than that of FPS. It indi-

cates that a decaying profile is required for the success of

SampleNet. Yet, is it robust to the decay behavior.

Time, space, and performance SampleNet offers a

trade-off between time, space, and performance. For exam-

ple, employing SampleNet for sampling 32 points before

PointNet saves about 90% of the inference time, with re-

spect to applying PointNet on the original point clouds. It

requires only an additional 6% memory space and results

in less than 10% drop in the classification accuracy. The

computation is detailed in the supplementary.

7583



4.2. Registration

We follow the work of Sarode et al. [32] and their pro-

posed PCRNet to construct a point cloud registration net-

work. Point sets with 1024 points of the Car category in

ModelNet40 are used. For training, we generate 4925 pairs

of source and template point clouds from examples of the

train set. The template is rotated by three random Euler

angles in the range of [−45◦, 45◦] to obtain the source.

An additional 100 source-template pairs are generated from

the test split for performance evaluation. Experiments with

other shape categories appear in the supplemental.

PCRNet is trained on complete point clouds with two su-

pervision signals: the ground truth rotation and the Cham-

fer distance [1] between the registered source and template

point clouds. To train SampleNet, we freeze PCRNet and

apply the same sampler to both the source and template.

The registration performance is measured in mean rotation

error (MRE) between the estimated and the ground truth

rotation in angle-axis representation. More details regard-

ing the loss terms and the evaluation metric are given in the

supplementary material.

The sampling method of Dovrat et al. [6] was not ap-

plied for the registration task, and much work is needed for

its adaption. Thus, for this application, we utilize FPS and

random sampling as baselines. Figure 9 presents the MRE

for different sampling methods. The MRE with our pro-

posed sampling remains low, while for the other methods, it

is increased with the sampling ratio. For example, for a ratio

of 32, the MRE with SampleNet is 5.94◦, while FPS results

in a MRE of 13.46◦, more than twice than SampleNet.

Figure 9. Rotation error with SampleNet. PCRNet is used as

the task network for registration. It was trained on complete point

clouds of 1024 points from the Car category in ModelNet40. Mean

rotation error (MRE) between registered source and template point

cloud pairs is measured on the test split for different sampling

methods. Our SampleNet achieves the lowest MRE for all ratios.

A registration example is visualized in Figure 10. FPS

points are taken uniformly, while SampleNet points are lo-

cated at semantic features of the shape. Using FPS does

not enable to align the sampled points, as they are sampled

at different parts of the original point cloud. In contrast,

SampleNet learns to sample similar points from different

source and template clouds. Thus, registration with its sam-

pled sets is possible. Quantitative measure of this sampling

consistency is presented in the supplementary.

In conclusion, SampleNet proves to be an efficient sam-

pling method for the registration task, overcoming the chal-

lenge of sampling two different point clouds. We attribute

this success to the permutation invariance of SampleNet, as

opposed to FPS and random sampling. That, together with

the task-specific optimization, gives SampleNet the ability

to achieve low registration error.

FPS SampleNet
Figure 10. Registration with sampled points. Top row: unregis-

tered source with 1024 points in Blue overlaid on the mesh model.

Sampled sets of 32 points from the template and source are illus-

trated in Orange and Magenta, respectively. Bottom row: the reg-

istered source cloud is overlaid on the mesh. SampleNet enables

us to perform registration of point clouds from their samples.

4.3. Reconstruction

SampleNet is applied to the reconstruction of points

clouds from sampled points. The task network, in this case,

is the autoencoder of Achlioptas et al. [1] that was trained

on point clouds with 2048 points. The sampling ratio is de-

fined as 2048/m, where m is the sample size.

We evaluate the reconstruction performance by normal-

ized reconstruction error (NRE) [6]. The reconstruction

error is the Chamfer distance [1] between a reconstructed

point cloud and the complete input set. The NRE is the er-

ror when reconstructing from a sampled set divided by the

error of reconstruction from the complete input.

Figure 11 reports the average NRE for the test split of the

shape classes we use from ShapeNet database. Up to sam-

pling ratio of 8, all the methods result in similar reconstruc-

tion performance. However, for higher ratios, SampleNet

outperforms the other alternatives, with an increasing mar-

gin. For example, for a sampling ratio of 32, the NRE for

S-NET is 1.57 versus 1.33 for SampleNet - a reduction of

7584










