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Abstract

Video frame interpolation is one of the most challenging

tasks in video processing research. Recently, many studies

based on deep learning have been suggested. Most of these

methods focus on finding locations with useful information

to estimate each output pixel using their own frame warp-

ing operations. However, many of them have Degrees of

Freedom (DoF) limitations and fail to deal with the com-

plex motions found in real world videos. To solve this

problem, we propose a new warping module named Adap-

tive Collaboration of Flows (AdaCoF). Our method esti-

mates both kernel weights and offset vectors for each tar-

get pixel to synthesize the output frame. AdaCoF is one of

the most generalized warping modules compared to other

approaches, and covers most of them as special cases of

it. Therefore, it can deal with a significantly wide domain

of complex motions. To further improve our framework

and synthesize more realistic outputs, we introduce dual-

frame adversarial loss which is applicable only to video

frame interpolation tasks. The experimental results show

that our method outperforms the state-of-the-art methods

for both fixed training set environments and the Middlebury

benchmark. Our source code is available at https://

github.com/HyeongminLEE/AdaCoF-pytorch.

1. Introduction

Synthesizing the intermediate frame when consecutive

frames have been provided is one of the main research top-

ics in the video processing area. Using a frame interpola-

tion algorithm, we can obtain slow-motion videos from or-

dinary videos without using professional high-speed cam-

eras. In addition, we can freely convert the frame rates of

the videos so it can be applied to the video coding system.

To interpolate the intermediate frame of a video requires an

understanding of motion, unlike image pixel interpolation.

Unfortunately, real world videos contain not only simple

motions, but also large and complex ones, making the task
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Figure 1: Overall description of the main streams and our

method. The blue parts of each figure represent the refer-

ence points for generating the target pixel.

significantly more difficult.

Most of the approaches define video frame interpolation

as a problem of finding reference locations in input frames

which include information for estimating each output pixel

value. This can be seen as a motion estimation process, be-

cause the task involves tracking the path of the target pixel.

Therefore, each algorithm covers its own motion domain,

and this area is directly related to the performance. To han-

dle motion in real world videos, we need a generalized op-

eration that can refer to any number of pixels in any lo-

cation in the input frames. However, most of the existing

approaches have a variety of limitations in Degrees of Free-

dom (DoF).

One is the kernel-based approach (Figure 1 (a)) [34, 35],

which adaptively estimates the large-sized kernel for each

pixel and synthesizes the intermediate frame by convolving

the kernels with the input. This approach finds the proper

reference location by assigning large weights to the pixels
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of interest. However, it does not refer to any location, as it

cannot deal with large motions beyond the kernel size. It is

not efficient to keep the large size of the kernel even though

the motion is small. The second approach is the flow-based

approach (Figure 1 (b)) [20, 27], which estimates the flow

vector directly pointing to the reference location for each

output pixel. However, it cannot refer to any number of

pixels because only one location is referred to in each in-

put frame. Therefore, it is not suitable for complex mo-

tions and the result may suffer from lack of information

when the input frame is of low-quality. Recently, methods

of combining kernel-based and flow-based approaches are

proposed to compensate for each other’s limitations (Fig-

ure 1 (c)) [49, 3]. They multiply the kernels with the lo-

cation pointed to by the flow vector. Therefore, they can

refer to any location plus some additional neighboring pix-

els. However, this approach is not much different from the

flow based approach as it uses significantly fewer reference

points than the kernel-based one. In addition, there is room

for improvement in terms of DoF because the shape of the

kernel is a fixed square.

In this paper, we propose an operation that refers to any

number of pixels and any location called Adaptive Collab-

oration of Flows (AdaCoF). To synthesize a target pixel, we

estimate multiple flows, called offset vectors, pointing to

the reference locations and sample them. Then the target

pixel is obtained by linearly combining the sampled values.

Our method is inspired by deformable convolution (Def-

Conv) [8], but AdaCoF is significantly different from it in

some points. First, DefConv has a shared weight for all

positions, and it is not suitable for video because there are

various motions in each position of a frame. Therefore, we

allow the weights to be spatially adaptive. Second, AdaCoF

is used as an independent module for frame warping, not

for feature extraction as DefConv. Therefore, we obtain the

weights as the outputs of a neural network, instead of train-

ing them as learnable parameters. Third, we add dilation for

the starting point of the offset vectors to enforce the them to

search a wider area. Lastly, we add an occlusion mask to

utilize only one of the two input frames when one of the

reference pixels is occluded. As shown in Figure 1 (d), it

can refer to any number within any location in the input

frames, because the sizes and shapes of the kernels are not

fixed. Therefore, our method has the highest DoF compared

to most of the other competitive algorithms, and therefore

can deal with various complex motions in real world videos.

To make the synthesized frames more realistic, we further

train a discriminator to detect the generated frame given the

output and one of the input frames. Then we train the gen-

erator to maximize the entropy of the discriminator using

dual-frame adversarial loss. Experimental results on vari-

ous benchmarks show the effectiveness of AdaCoF over the

latest state-of-the-art approaches.

2. Related Work

Most of the classic video frame interpolation meth-

ods estimate the dense flow maps using optical flow algo-

rithms [12, 19, 44, 46] and warp the input frames [1, 4,

47, 50]. Therefore, the performance of these approaches

largely depends on optical flow algorithms. Also, optical

flow based approaches have limitations in many cases, such

as occlusions, large motion, and brightness changes. Al-

though there are some approaches without using external

optical flow modules [25, 29], they still have difficulty in

dealing with these problems. Meyer et al. [32] regard video

frames as linear combinations of wavelets with different di-

rections and frequencies. This approach interpolates each

wavelet’s phase and magnitude. This method makes notable

progress in both performance and running time. Their re-

cent work also applies deep learning to this approach [31].

However, it still has limitations for large motions of high

frequency components.

Recent work has demonstrated the success of applying

deep learning in the field of computer vision [10, 14, 18,

21, 23, 41], which, in turn, inspires various deep learn-

ing based frame interpolation methods. As all we require

for training neural networks are three consecutive video

frames, learning based approaches are appropriate for this

task. Long et al. [28] propose a CNN architecture that

uses two input frames and directly estimates the interme-

diate frame. However, this type of approach often leads to

blurry results. Some other methods focus on where to find

the output pixel from the input frames, instead of directly

estimating the image. This paradigm is based on the fact

that at least one input frame contains the output pixel, even

in the case of occlusion. Niklaus et al. [34] estimate a kernel

for each location and obtains the output pixel by convolv-

ing it over input patches. Each kernel samples the proper

input pixels by combining them selectively. However, this

requires a lot of memory and estimating large kernels for ev-

ery pixel is computationally expensive. Niklaus et al. [35]

solve this problem by estimating each kernel from the outer

product of two vectors. However, this approach cannot han-

dle motions larger than the kernel size and it is still wasteful

to estimate large kernels for small motions. Liu et al. [27]

estimate a flow map that consists of vectors directly point-

ing to reference locations. They sample the proper pixels

according to the flow map. However, as they assume that

the forward and backward flows are the same, it is difficult

to handle complex motions. Jiang et al. [20] propose a sim-

ilar algorithm, but they estimate the forward and backward

flows separately. They also improve the flow computation

stage by defining the warping loss. However, it could be

risky to get only one pixel value from each frame, espe-

cially when the input patches are of poor quality. To solve

these problems, Reda et al. [38] and Bao et al. [3] com-

bine kernel and flow map based approaches. They multiply
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small-sized kernels with the locations pointed by the flow

vectors. However, the reference points are still limited in a

small area because the kernels maintain their square shape,

which results in low DoF.

There are some approaches that use additional infor-

mation to solve problems in video frame interpolation.

Niklaus et al. [33] exploit the context informations ex-

tracted from ResNet-18 [18] to enable the informative in-

terpolation and succeed in obtaining high-quality results.

In addition, Bao et al. [2] use depth maps estimated from

hourglass architecture [6] to solve the occlusion problems.

Lastly, Liu et al. [26] obtain better performance with cy-

cle consistency loss and additional edge maps. These ap-

proaches can be independently applied to many other algo-

rithms, including our approach.

3. Proposed Approach

3.1. Video Frame Interpolation

Given consecutive video frames In and In+1, where n ∈
Z is a frame index, our goal is to find the intermediate frame

Iout. All the information required to produce Iout can be

obtained from In and In+1. Therefore, all we have to do is

find the relations between them. We regard the relation as

a warping operation T from In and In+1 to Iout. For the

forward and backward warping operations Tf and Tb, we

can consider Iout as a combination of Tf (In) and Tb(In+1)
as follows.

Iout = Tf (In) + Tb(In+1) (1)

The frame interpolation task results in a problem of how

the spatial transform T can be found. We employ a new op-

eration called Adaptive Collaboration of Flows (AdaCoF)

for T , which convolve the input image with adaptive kernel

weights and offset vectors for each output pixel.

Occlusion reasoning. Let both the input and output image

sizes be M × N . In the case of occlusion, the target pixel

will not be visible in one of the input images. Therefore we

define occlusion map V ∈ [0, 1]M×N and modify Equation

(1) as follows.

Iout = V ⊙ Tf (In) + (J − V )⊙ Tb(In+1), (2)

where ⊙ is a pixel-wise multiplication and J is an M ×
N matrix of ones. For the target pixel (i, j), V (i, j) = 1
implies that the pixel is visible only in In and V (i, j) = 0
implies that it is visible only in In+1.

(a) d = 0 (b) d = 1 (c) d = 2

Figure 2: Illustration of the offset vectors of AdaCoF under

various dilations.

3.2. Adaptive Collaboration of Flows

Let the frame warped from I be Î . When we define T as

a classic convolution, we can write Î as follows.

Î(i, j) =
F−1∑

k=0

F−1∑

l=0

Wk,lI(i+ k, j + l), (3)

where F is the kernel size and Wk,l are the kernel weights.

The input image I is considered to be padded so that the

original input and output size are equal. Deformable con-

volution [8] adds offset vectors ∆pk,l = (αk,l, βk,l) to the

classic convolution as follows.

Î(i, j) =

F−1∑

k=0

F−1∑

l=0

Wk,lI(i+ k + αk,l, j + l + βk,l) (4)

AdaCoF, unlike the classic deformable convolutions, does

not share the kernel weights over the different pixels. There-

fore the notation for the kernel weights Wk,l should be writ-

ten as follows.

Î(i, j) =

F−1∑

k=0

F−1∑

l=0

Wk,l(i, j)I(i+ k + αk,l, j + l + βk,l)

(5)

The offset values αk,l and βk,l may not be integer values. In

other words, (αk,l, βk,l) could point to an arbitrary location,

not only the grid point. Therefore, the pixel value of I for

any location has to be defined. We use bilinear interpolation

to obtain the values of non-grid location as DCNs [8]. It

also makes the module differentiable; therefore, the whole

network can be trained end-to-end.

Dilation. We found that dilating the starting point of the off-

set vectors helps AdaCoF to explore wider area as shown in

Figure 2. Therefore, we add dilation term d ∈ {0, 1, 2, ...}
to the operation as follows.

Î(i, j) =
F−1∑

k=0

F−1∑

l=0

Wk,l(i, j)I(i+ dk + αk,l, j + dl + βk,l)
(6)
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Figure 3: The neural network architecture. The model consists of three main parts: the U-Net, sub-networks, and Adaptive

Collaboration of Flows (AdaCoF). The U-Net architecture extracts features from the input image. Then the sub-networks

estimates the parameters needed for AdaCoF from the extracted features. The output’s height and width of each sub-network

are the same as that of the input. Each parameter group for an output pixel is obtained as a 1D vector along the channel axis.

The AdaCoF part synthesizes the intermediate frame using the input frames and parameters.

3.3. Network Architecture

We design a fully convolutional neural network

which estimates the kernel weights Wk,l, offset vectors

(αk,l, βk,l), and occlusion map V . Therefore, any video

frames size can be used as the input. Furthermore, because

each module of the neural network is differentiable, it is

end-to-end trainable. Our neural network starts with the U-

Net architecture, which consists of encoder, decoder, and

skip connections [39]. Each processing unit basically con-

tains 3 × 3 convolution and ReLU activation. For the en-

coder part, we use average pooling to extract the features.

And for the decoder part, we use bilinear interpolation for

the upsampling. After the U-Net architecture, the seven

sub-networks finally estimate the outputs (Wk,l, αk,l, βk,l

for each frame and V ). We use sigmoid activation for V to

satisfy V ∈ [0, 1]M×N . Moreover, as the weights Wk,l for

each pixel have to be non-negative and must add up to 1,

softmax layers are used for the constraints. More specific

architectures of the network are described in Figure 3.

3.4. Objective Functions

Loss Function. First, we have to reduce a difference be-

tween the model output Iout and ground truth Igt. We use

ℓ1 norm for the loss as follows.

L1 = ‖Iout − Igt‖1 (7)

The ℓ2 norm can be used, but it is known that the

ℓ2 norm-based optimization leads to blurry results in most

of the image synthesis tasks [16, 28, 30, 43]. Following

Liu et al. [27], we use the Charbonnier Function Φ(x) =
(x2 + ǫ2)1/2 for optimizing ℓ1 norm, where ǫ = 0.001.

Perceptual Loss. Perceptual loss has been found to be ef-

fective in producing visually more realistic outputs [11, 21,

51]. We add the perceptual loss with the feature extractor F
from conv4 3 of ImageNet pretrained VGG16 network.

Lvgg = ‖F(Iout)−F(Igt)‖2 (8)

Dual-Frame Adversarial Loss. It is known that training

the networks with adversarial loss [15] can lead to results

of higher quality and sharpness, instead of increasing mean

squared error [24, 5]. This could be applied to video frame

interpolation tasks. However, simply applying it to the sin-

gle output frame does not consider the temporal consistency

and leads to a disparate result compared to the input frames.

What we want is to make the synthesized frame appear nat-

ural among the adjacent frames, not the other real images.

Therefore, we concatenate the generated frame and one of

the input frames in the temporal order and train the discrim-

inator C to distinguish which of the two is the generated

frame with the following loss.

−LC = log(C([In, Iout]))+log(1−C([Iout, In+1])), (9)
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Middlebury UCF101 DAVIS

PSNR SSIM PSNR SSIM PSNR SSIM

Ours-fb 32.879 0.956 33.449 0.967 24.787 0.828

Ours-kb 34.762 0.972 34.689 0.973 25.802 0.854

Ours-ws 35.412 0.976 34.901 0.973 26.623 0.866

Ours-woocc 35.471 0.975 34.907 0.973 26.482 0.863

Ours-sdc 34.973 0.972 34.673 0.974 26.367 0.866

Ours-vgg 35.694 0.977 34.973 0.973 26.773 0.869

Ours 35.715 0.978 35.063 0.974 26.636 0.868

Table 1: Result of ablation study on warping operations.

where [·] is concatenation. Then we train the main network

to maximize the uncertainty, i.e., entropy, of the discrimi-

nator with the following loss. This idea is inspired by some

prior works [9, 13].

Ladv =C([In, Iout]) log(C([In, Iout]))

+ C([Iout, In+1]) log(C([Iout, In+1]))
(10)

Thus, the network is intended to generate an output that is

realistic compared to the adjacent input frames.

We finally combine above losses to compose two ver-

sions of objective function: distortion-oriented loss (Ld)

and perception-oriented loss (Lp) as follows.

Ld = L1, (11)

Lp = λ1L1 + λvggLvgg + λadvLadv, (12)

For the perception-oriented version, we first train the net-

work with Ld then fine-tune it with Lp.

4. Experiments

4.1. Experimental Settings

Learning Strategy. We train our neural network using

AdaMax optimizer [22], where β1 = 0.9, β2 = 0.999.

The learning rate is initially 0.001 and decays half every

20 epochs. The batch size is 4 and the network is trained

for 50 epochs.

Training Dataset. We use Vimeo90K [49] dataset for train-

ing. It contains 51,312 triplets of 256 × 448 video frames.

To augment the dataset, we randomly crop 256 × 256
patches from the original images. We also eliminate the

biases due to the priors by flipping horizontally, vertically

and swapping the order of frames for the probability 0.5.

Computational issue. Our approach is implemented us-

ing PyTorch [36]. To implement the AdaCoF layer, we

used CUDA and cuDNN [7] for the parallel processing.

We set the kernel size 5 × 5 and all the weights, off-

sets and occlusion map require 0.94 GB of memory for a

1080p video frame. It is about 70% demand compared to

Middlebury UCF101 DAVIS

PSNR SSIM PSNR SSIM PSNR SSIM

F = 1 32.879 0.956 33.449 0.967 24.787 0.828

F = 3 35.212 0.975 34.728 0.973 26.535 0.867

F = 5 35.715 0.978 35.063 0.974 26.636 0.868

F = 7 35.927 0.979 34.974 0.974 26.987 0.873

F = 9 36.019 0.980 35.012 0.973 27.029 0.875

F = 11 36.094 0.981 35.024 0.974 26.941 0.873

Table 2: Experimental result on kernel size F .

Middlebury UCF101 DAVIS

PSNR SSIM PSNR SSIM PSNR SSIM

d = 0 35.489 0.977 35.032 0.974 26.710 0.870

d = 1 35.715 0.978 35.063 0.974 26.636 0.868

d = 2 35.876 0.980 35.099 0.974 26.910 0.870

Table 3: Experimental result on dilation d.

Niklaus et al. [35]. Using RTX 2080 Ti GPU, it takes 0.21

seconds to synthesize a 1280× 720 frame.

Evaluation settings. The test datasets used for the ex-

periments are the Middlebury dataset [1], some randomly

sampled sequences from UCF101 [42] and the DAVIS

dataset [37]. We evaluate each algorithm by measuring

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural

Similarity) [45] for all test datasets. For all the tables in this

section, the red numbers mean the best performance and the

blue numbers mean the second best performance.

4.2. Ablation Study

We analyze the contributions of each module in terms of

five keywords: warping operation, perceptual loss, kernel

size, dilation and adversarial loss.

Warping Operation. To verify that higher DoF leads to

better performance, we fix the backbone network and re-

place AdaCoF with some other warping operations of lower

DoF. We train all versions of warping operation with Ld and

the kernel sizes are fixed to be 5 except for Ours-fb.

• Ours-fb: To compare AdaCoF with flow-based ap-

proaches, we set the kernel size to be 1.

• Ours-kb: SepConv [35] is one of the most represen-

tative kernel-based approaches. However, because it

does not contain an occlusion map, the comparison is

not fair. Therefore, we train a new network of SepConv

with an occlusion map.

• Ours-sdc: To compare our algorithm with kernel and

flow combined approaches, we exploit Spatially Dis-

placed Convolution (SDC) [38] instead of AdaCoF.

• Ours-ws: One of the differences between deformable

convolution and AdaCoF is that our algorithm does not

share the weights over all locations of images. There-

fore, we compare it with the weight shared version.
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AVERAGE Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

MDP-Flow2 [48] 5.83 0.87 2.89 0.59 3.47 0.62 3.66 1.24 5.20 0.94 10.20 0.98 6.13 1.09 7.36 0.70 7.75 0.78

DeepFlow [46] 5.97 0.86 2.98 0.62 3.88 0.74 3.62 0.86 5.39 0.99 11.00 1.04 5.91 1.02 7.14 0.63 7.80 0.96

SepConv [35] 5.61 0.83 2.52 0.54 3.56 0.67 4.17 1.07 5.41 1.03 10.20 0.99 5.47 0.96 6.88 0.68 6.63 0.70

SuperSlomo [20] 5.31 0.78 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69

CtxSyn [33] 5.28 0.82 2.24 0.50 2.96 0.55 4.32 1.42 4.21 0.87 9.59 0.95 5.22 0.94 7.02 0.68 6.66 0.67

CyclicGen [26] 4.20 0.73 2.26 0.64 3.19 0.67 2.76 0.72 4.97 0.95 8.00 0.91 3.36 0.87 4.55 0.53 4.48 0.52

TOF-M [49] 5.49 0.84 2.54 0.55 3.70 0.72 3.43 0.92 5.05 0.96 9.84 0.97 5.34 0.98 6.88 0.72 7.14 0.90

DAIN [2] 4.86 0.71 2.38 0.58 3.28 0.60 3.32 0.69 4.65 0.86 7.88 0.87 4.73 0.85 6.36 0.59 6.25 0.66

MEMC-Net [3] 5.00 0.74 2.39 0.59 3.36 0.64 3.37 0.80 4.84 0.88 8.55 0.88 4.70 0.85 6.40 0.64 6.37 0.63

AdaCoF (Ours) 4.75 0.73 2.41 0.60 3.10 0.59 3.48 0.84 4.84 0.92 8.68 0.90 4.13 0.84 5.77 0.58 5.60 0.57

Table 4: Evaluation results on the Middlebury benchmark.

Middlebury UCF101 DAVIS

PSNR SSIM PSNR SSIM PSNR SSIM

Overlapping 27.968 0.879 30.445 0.935 21.922 0.740

Phase Based [32] 31.117 0.933 32.454 0.953 23.465 0.800

MIND [28] 31.346 0.943 32.437 0.963 25.570 0.852

SepConv [35] 35.521 0.977 34.735 0.973 26.258 0.861

DVF [27] 34.340 0.971 34.465 0.972 25.880 0.858

SuperSlomo [20] 34.234 0.972 34.055 0.970 25.699 0.858

Ours 35.715 0.978 35.063 0.974 26.636 0.868

Ours + 36.139 0.981 35.048 0.974 27.070 0.874

Table 5: Evaluation result with fixed train dataset.

• Ours-woocc: AdaCoF without occlusion map. The in-

termediate frame is obtained by simply averaging the

outputs from the forward and backward warping.

As shown in Table 1, our warping operation outperforms the

other ones with lower DoFs. Especially, we can find that the

PSNR gap between Ours-sdc and Ours is larger than the gap

between Ours-kb and Ours-sdc. It means that breaking the

square-shaped kernels to be any shape is more crucial than

allowing the kernels to move freely.

Perceptual Loss. We add perceptual loss Lvgg introduced

in Section 3.4 without adversarial loss. We set λvgg = 0.01.

The row of Ours-vgg in Table 1 shows that the PSNR gener-

ally decreases and increases only for DAVIS datasets. This

implies that the perceptual loss improves the robustness for

hard sequences with large and complex motions.

Kernel Size. We train the network with various kernel sizes

F ∈ {1, 3, 5, 7, 9, 11} which means that F 2 offset vectors

are used. As shown in Table 2, the larger kernel size gen-

erally leads to better performance and the PSNR saturates

as F increases. Especially, the saturation is earlier for the

UCF101 dataset because it contains relatively small motion

and low-resolution sequences so that there is no room for

the performance increase.

Dilation. In Section 3.3, we add dilation to the AdaCoF

operation to enforce the offset vectors to start from a wider

area. We check the effect of dilation by training the network

(a) Ours-Ld (b) Ours-Lp

(c) WGAN-GP (d) TGAN

Figure 4: The result of adding adversarial losses.

with F = 5 and d ∈ {0, 1, 2}. d = 0 means that the offset

vectors start from the same location. Table 3 shows that the

larger dilation generally leads to better results. As we can

see from the 4th - 7th columns of Figure 6, the offset vectors

tend to spread more in the case of large motion. Therefore,

dilation provides the effect of better initialization for them.

Figure 6 will be covered in more detail in Section 4.5.

Adversarial Loss. For the visually more convincing re-

sults, we first train the network with Ld for 50 epochs and

fine-tune it for 10 epochs with Lp which is introduced in

Section 3.4. We set λ1 = 0.01, λvgg = 1, λadv = 0.005.

For the comparison, we train the version of changing Ladv

to be WGAN-GP loss [17] and TGAN loss [40]. Then we

visually compare them with the result of the proposed dual-

frame adversarial loss (Ours-Lp). According to Figure 4,

fine-tuning the network with adversarial losses increase the

sharpness of the results. However, WGAN-GP and TGAN

loss cause some artifacts to the output image, while our loss

preserves the structures of the frames.
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Ground Truth Overlap Phase Based MIND SepConv DVF SuperSlomo Ours-Ld Ours-Lp

Figure 5: Visual comparison of sample sequences with large motions (1st - 2nd row) and visual comparison of sample

sequences with occlusion (3rd - 4th row). There are occluded areas in the front and back of the car.

4.3. Quantitative Evaluation

We compare our method with simply overlapped

results and several competing algorithms including

Phase Based [32], MIND [28], SepConv [35], DVF [27],

and SuperSlomo [20]. We evaluate two versions of our

algorithm. One is the basic version of F = 5, d = 1 (Ours)

and the other is the version of F = 11, d = 2 (Ours +).

For a fair comparison, we fix the training environment. We

implement the competing algorithms and train them with

the train dataset introduced in Section 4.1 commonly for 50

epochs. We measure PSNR and SSIM of each algorithm for

the three test datasets. The results are shown in Table 5. Ac-

cording to the table the kernel-based approach (SepConv)

generally perform better than the flow-based ones (DVF,

SuperSlomo). Finally, our method outperforms the other

algorithms for all test datasets by a high margin. We

also upload our result to Middlebury Benchmark [1] and

compare it with the other recent state-of-the-art algorithms.

As reported in Table 4, AdaCoF ranks 2nd in both IE (Inter-

polation Error) and NIE (Normalized Interpolation Error)

among all published methods in Middlebury website. In

addition, CyclicGen [26], which ranks 1st in IE, uses

additional edge maps for sharper results and the cycle

consistency loss is orthogonally applicable to our method.

Also, DAIN [2], which ranks 1st in NIE, use pre-trained

optical flow estimator and depth maps while our method

does not require any additional information. Lastly, our

approach shows better performance for data with dynamic

motions such as Basketball, Dumptruck and Evergreen.

4.4. Visual Comparison

Because the video frame interpolation task does not have

a fixed answer, the evaluations based on PSNR and SSIM

are not perfect by themselves. Therefore we quantitatively

evaluate the methods by comparing each result. Especially,

we check how our method and other state-of-the-art algo-

rithms handle the two main obstacles which make motions

complex in real world videos: large motion and occlusion.

Large motion. When the reference point is located far

away, the search area has to be expanded accordingly.

Therefore the large motion problem is one of the most chal-

lenging obstacles in video frame interpolation research. The

first and second rows of Figure 5 show the estimated re-

sults of various approaches including our method. The re-

sults of MIND, SepConv tend to be blurry and DVF, Super-

Slomo suffer from some artifacts. Compared to the other

competing algorithms, our approach better synthesizes fast

moving objects. In addition, the perception-oriented Ada-

CoF (Ours-Lp) mitigate the motion blurs of the objects.

Occlusion. Most of the objects in the intermediate frame

appear in both adjacent frames. However, in case of occlu-

sion, the object does not appear in one of the frames. There-

fore, the appropriate frame has to be selected for each case,

which makes the problem more difficult. In the third and

fourth rows of Figure 5, a car causes occlusion in its front

and back. Comparing the estimated images on occluded ar-

eas, our method handles the occlusion problems better than

the other approaches.
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Frame1 Frame2 Occlusion map MeanFlow1 MeanFlow2 VarFlow1 VarFlow2

Figure 6: Various visualizations of the network outputs.

4.5. Offset Visualization

Our method estimates some parameters from the in-

put images: the kernel weights Wk,l, the offset vectors

(αk,l, βk,l), and the occlusion map V . To check whether

the parameters behave as intended, we visualize them in

various ways. Further, because the network is trained by

self-supervised learning, the visualizations can be obtained

without any supervision. Therefore, they can be used for

some other tasks in motion estimation research.

Occlusion map. The third column of Figure 6 shows the

occlusion map V . To handle occlusion, the proper frame

has to be selected in each case. For example, the pixels in

the red area cannot be found in the second frame. Therefore

the network decides to consider only the first frame, not the

second one. The blue area can be explained in the same way

for the second frame, and the green area means that there is

no occlusion.

Mean Flow map. The fourth and fifth columns of Figure 6

show the weighted sum of the backward and forward offset

vectors for each pixel. We call them Mean Flow Fm and

they can be calculated by the following equation.

∆pk,l = (αk,l, βk,l) (13)

Fm(i, j) =

F−1∑

k=0

F−1∑

l=0

Wk,l(i, j)∆pk,l (14)

This means the overall tendency of the offset vectors.

Therefore they might behave like a forward/backward op-

tical flow and the figures prove it. This can be used as dense

optical flow and can also be obtained from the other flow-

based algorithms such as DVF and SuperSlomo.

Variance Flow map. The sixth and seventh columns of

Figure 6 are the weighted variance of the backward and for-

ward offset vectors. We call them Variance Flow map Fv

and they can be calculated by the following equation.

Fv(i, j) =

F−1∑

k=0

F−1∑

l=0

Wk,l(i, j)(Fm(i, j)−∆pk,l)
2 (15)

The large value for this map means that the offset vectors

for the pixel are more spread out so that it can refer to more

pixels. According to the figure, more challenging locations

such as large motions and occluded areas have larger vari-

ance values. Therefore, it can be used as a kind of uncer-

tainty map for some motion estimation tasks. Unlike Mean

Flow map, it can only be obtained through our method.

5. Conclusion

In this paper, we point out that the DoF of the warp-

ing operation to deal with various complex motions is one

of the most critical factors in video frame interpolation.

Then we propose a new operation called Adaptive Collabo-

ration of Flows (AdaCoF). This method is the most general-

ized because all of the previous approaches are special ver-

sions of AdaCoF. The parameters needed for the AdaCoF

operation are obtained from a fully convolutional network

which is end-to-end trainable. Our experiments show that

our method outperforms most of the competing algorithms

even in several challenging cases such as those with large

motion and occlusion. We visualize the network outputs to

check whether they behave as intended and that the visu-

alized maps are meaningful, so they can be used for other

motion estimation tasks.
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