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Figure 1: Given a target image (a), users are allowed to modify masks of the target images in (c) according to the source images (b) so that we can obtain

manipulation results (d). The left shows illustrative examples from “neutral” to “smiling”, while the right shows style copy such as makeup, hair, expression,

skin color, etc.

Abstract

Facial image manipulation has achieved great progress

in recent years. However, previous methods either operate

on a predefined set of face attributes or leave users little

freedom to interactively manipulate images. To overcome

these drawbacks, we propose a novel framework termed

MaskGAN, enabling diverse and interactive face manip-

ulation. Our key insight is that semantic masks serve

as a suitable intermediate representation for flexible face

manipulation with fidelity preservation. MaskGAN has two

main components: 1) Dense Mapping Network (DMN) and

2) Editing Behavior Simulated Training (EBST). Specif-

ically, DMN learns style mapping between a free-form

user modified mask and a target image, enabling diverse

generation results. EBST models the user editing behav-

ior on the source mask, making the overall framework

more robust to various manipulated inputs. Specifically,

it introduces dual-editing consistency as the auxiliary

supervision signal. To facilitate extensive studies, we

construct a large-scale high-resolution face dataset with

fine-grained mask annotations named CelebAMask-HQ.

MaskGAN is comprehensively evaluated on two challenging

tasks: attribute transfer and style copy, demonstrating

superior performance over other state-of-the-art meth-

ods. The code, models, and dataset are available at

https://github.com/switchablenorms/CelebAMask-HQ.

1. Introduction

Facial image manipulation is an important task in com-

puter vision and computer graphic, enabling lots of applica-

tions such as automatic facial expressions and styles (e.g.

hairstyle, skin color) transfer. This task can be roughly

categorized into two types: semantic-level manipulation

[2, 24, 29, 19, 22] and geometry-level manipulation [40,

38, 41, 44]. However, these methods either operate on a

pre-defined set of attributes or leave users little freedom to

interactively manipulate the face images.

To overcome the aforementioned drawbacks, we propose

a novel framework termed MaskGAN, which aims to enable

diverse and interactive face manipulation. Our key insight

is that semantic masks serve as a suitable intermediate

representation for flexible face manipulation with fidelity

preservation. Instead of directly transforming images in

the pixel space, MaskGAN learns the face manipulation

process as traversing on the mask manifold [25], thus

producing more diverse results with respect to facial com-

ponents, shapes, and poses. An additional advantage of

MaskGAN is that it provides users an intuitive way to

specify the shape, location, and facial component categories

for interactive editing.

MaskGAN has two main components including 1) Dense

Mapping Network and 2) Editing Behavior Simulated
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Figure 2: Overall training pipeline. Editing Behavior Simulated Training can be divided into two stage. After loading the pre-trained model of Dense

Mapping Network and MaskVAE, we iteratively update these two stages until model converging.

Training. The former learns the mapping between the

semantic mask and the rendered image, while the latter

learns to model the user editing behavior when manipulat-

ing masks. Specifically, Dense Mapping Network consists

of an Image Generation Backbone and a Spatial-Aware

Style Encoder. The Spatial-Aware Style Encoder takes both

the target image and its corresponding semantic label mask

as inputs; it produces spatial-aware style features to the

Image Generation Backbone. After receiving a source mask

with user modification, the Image Generation Backbone

learns to synthesize faces according to the spatial-aware

style features. In this way, our Dense Mapping Network is

capable of learning the fine-grained style mapping between

a user modified mask and a target image.

Editing behavior simulated training is a training strategy

to model the user editing behavior on the source mask,

which introduces the dual-editing consistency as the aux-

iliary supervision signal Its training pipeline comprises an

obtained Dense Mapping Network, a pre-trained MaskVAE,

and an alpha blender sub-network. The core idea is that

the generation results of two locally-perturbed input masks

(by traversing on the mask manifold learned by MaskVAE)

blending together should retain the subject’s appearance

and identity information. Specifically, the MaskVAE with

encoder-decoder architecture is responsible for modeling

the manifold of geometrical structure priors. The alpha

blender sub-network learns to perform alpha blending [30]

as image composition, which helps maintain the manip-

ulation consistency. After training with editing behavior

simulation, Dense Mapping Network is more robust to the

various changes of the user-input mask during inference.

MaskGAN is comprehensively evaluated on two chal-

lenging tasks, including attribute transfer and style copy,

showing superior performance compared to other state-of-

the-art methods. To facilitate large-scale studies, we con-

struct a large-scale high-resolution face dataset with fine-

grained mask labels named CelebAMask-HQ. Specifically,

CelebAMask-HQ consists of over 30,000 face images of

512×512 resolution, where each image is annotated with

a semantic mask of 19 facial component categories, e.g. eye

region, nose region, mouth region.

To summarize, our contributions are three-fold: 1) We

present MaskGAN for diverse and interactive face manipu-

lation. Within the MaskGAN framework, Dense Mapping

Network is further proposed to provide users an interactive

way for manipulating face using its semantic label mask.

2) We introduce a novel training strategy termed Editing

Behavior Simulated Training, which enhances the robust-

ness of Dense Mapping Network to the shape variations

of the user-input mask during inference. 3) We contribute

CelebAMask-HQ, a large-scale high-resolution face dataset

with mask annotations. We believe this geometry-oriented

dataset would open new research directions for the face

editing and manipulation community.

2. Related Work

Generative Adversarial Network. GAN [7] generally

consists of a generator and a discriminator that compete

with each other. Because GAN can generate realistic

images, it enjoys pervasive applications on tasks such as

image-to-image translation [14, 45, 24, 36, 28], image

inpainting [23, 42, 43, 15], and virtual try-on [39, 9, 3, 35].

Semantic-level Face Manipulation. Deep semantic-level

face editing has been studied for a few years. Many

works including [2, 24, 29, 19, 22, 21] achieved impressive

results. IcGAN [29] introduced an encoder to learn the

inverse mappings of conditional GAN. DIAT [22] utilized

adversarial loss to transfer attributes and learn to blend

predicted face and original face. Fader Network [19] lever-
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aged adversarial training to disentangle attribute related

features from the latent space. StarGAN [2] was proposed

to perform multi-domain image translation using a single

network conditioned on the target domain label. However,

these methods cannot generate images by exemplars.

Geometry-level Face Manipulation. Some recent stud-

ies [40, 38, 41, 8] start to discuss the possibility of trans-

ferring facial attributes at instance level from exemplars.

For example, ELEGANT [38] was proposed to exchange

attribute between two faces by exchanging the latent codes

of two faces. However, ELEGANT [38] cannot transfer

the attributes (e.g. ‘smiling’) from exemplars accurately.

For 3D-based face manipulation, though 3D-based methods

[1, 27, 6] achieve promising results on normal poses, they

are often computationally expensive and their performance

may degrade with large and extreme poses.

3. Our Approach

Overall Framework. Our goal is to realize structural

conditioned face manipulation using MaskGAN, given an

target image It ∈ R
H×W×3 , a semantic label mask of

target image M t ∈ R
H×W×C and a source semantic label

mask Msrc ∈ R
H×W×C (user modified mask). When

users manipulating the structure of Msrc, our model can

synthesis a manipulated face Iout ∈ R
H×W×3 where C is

the category number of the semantic label.

Training Pipeline. As shown in Fig. 2, MaskGAN

composes of three key elements: Dense Mapping Network

(DMN), MaskVAE, and Alpha Blender which are trained

by Editing Behavior Simulated Training (EBST). DMN

(See Sec. 3.1) provides users an interface for manipulating

face toward semantic label mask which can learn a style

mapping between It and Msrc. MaskVAE is responsible

for modeling the manifold of structure priors (See Sec. 3.2).

Alpha Blender is responsible for maintaining manipulation

consistency (See Sec. 3.2). To make DMN more robust to

the changing of the user-defined mask Msrc in the inference

time, we propose a novel training strategy called EBST

(See Sec. 3.2) which can model the user editing behavior

on the Msrc. This training method needs a well trained

DMN, a MaskVAE trained until low reconstruction error,

and an Alpha Blender trained from scratch. The training

pipeline can be divided into two stages. In training stage, we

replace Msrc with M t as input. In Stage-I, we update DMN

with M t and It firstly. In Stage-II, we used MaskVAE

to generate two new mask M inter and Mouter with small

different from M t and generate two faces Iinter and Iouter.

Then, Alpha Blender blends these two faces to Iblend for

maintaining manipulation consistency. After EBST, DMN

would be more robust to the change of Msrc in the inference

stage. The details of the objective functions are shown in

Sec. 3.3.

Inference Pipeline. We only need DMN in testing. In Fig.
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Figure 3: Architecture of Dense Mapping Network which is composed

of a Spatial-Aware Style Encoder and a Image Generation Backbone.

3, different from training stage, we simply replace the input

of Image Generation Backbone with Msrc where Msrc can

be defined by the user.

3.1. Dense Mapping Network

Dense Mapping Network adopts the architecture of

Pix2PixHD as a backbone and we extend it with an external

encoder Encstyle which will receive It and M t as inputs.

The detailed architecture is shown in Fig. 3.

Spatial-Aware Style Encoder. We propose a Spatial-

Aware Style Encoder network Encstyle which receives

style information It and its corresponding spatial informa-

tion M t at the same time. To fuse these two domains, we

utilize Spatial Feature Transform (SFT) in SFT-GAN [37].

The SFT layer learns a mapping function M : Ψ 7→ (γ, β)
where affine transformation parameters (γ, β) is obtained

by prior condition Ψ as (γ, β) = M(Ψ). After obtaining γ

and β, the SFT layer both perform feature-wise and spatial-

wise modulation on feature map F as SFT (F |γ, β) =
γ ⊙ F + β where the dimension of F is the same as γ

and β, and ⊙ is referred to element-wise product. Here we

obtain the prior condition Ψ from the features of M t and

feature map F from It. Therefore, we can condition spatial

information M t on style information It and generate xi, yi
as following:

xi, yi = Encstyle(I
t
i ,M

t
i ), (1)

where xi, yi are affine parameters which contain spatial-

aware style information. To transfer the spatial-aware style

information to target mask input, we leverage adaptive

instance normalization [12] (AdaIN) on residual blocks zi
in the DMN. The AdaIN operation which is a state-of-the-

art method in style transfer is defined as:

AdaIN(zi, xi, yi) = xi(
zi − µ(zi)

σ(zi)
) + yi, (2)

which is similar to Instance Normalization [34], but re-

places the affine parameters from IN with conditional style
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Figure 4: Samples of linear interpolation between two masks (between

the red block and the orange block). MaskVAE can perform smooth

transition on masks.

information.

DMN is a generator defined as GA where Iout =
GA(Encstyle(I

t,M t),M t)). With the Spatial-Aware Style

Encoder, DMN learns the style mapping between It and

Msrc according to the spatial information provided by M t.

Therefore, styles (e.g. hairstyle and skin style) in It are

transitioned to the corresponding position on Msrc so that

DMN can synthesis final manipulated face Iout.

3.2. Editing Behavior Simulated Training

Editing Behavior Simulated Training can model the user

editing behavior on the Msrc in training time. This training

method needs a well trained Dense Mapping Network

GA, a MaskVAE trained until low reconstruction error,

and an Alpha Blender trained from scratch. MaskVAE

composed of EncVAE and DecVAE, which is responsible

for modeling the manifold of structure priors. Alpha

Blender B is responsible for maintaining manipulation con-

sistency. We define GB as another generator which utilize

MaskVAE, DMN, and Alpha Blender as GB where GB ≡
B(GA(I

t,M t,M inter), GA(I
t,M t,Mouter)). The over-

all training pipeline is shown in Fig. 2 and the detailed

algorithm is shown in Algo. 1. Our training pipeline can be

divided into two stages. Firstly, we need to load pretrained

model of GA, EncVAE and DecVAE. In stage-I, we update

GA once. In stage-II, given M t, we obtain two new masks

M inter and Mouter with small structure interpolation and

extrapolation from the original one by adding two parallel

vectors with reverse direction on the latent space of the

mask. These vectors are obtained by ± zref−zt

λinter
where zref

is latent representation of a random selected mask Mref

and λinter is set to 2.5 for appropriate blending. After

generating two faces by DMN, Alpha Blender learns to

blend two images toward the target image where keeping

the consistency with the original one. Then, we iteratively

update the GA and GB (Stage−I and Stage−II in Fig. 2)

until model converging. After EBST, DMN would be more

robust to the change of the user-modified mask in inference

time.

Structural Priors by MaskVAE. Similar to Variational

Algorithm 1 Editing Behavior Simulated Training

Initialization: Pre-trained GA, EncVAE, DecVAE models

Input: It,M t,Mref

Output: Iout, Iblend

1: while iteration not converge do

2: Choose one minibatch of N mask and image pairs
{

Mt
i ,M

ref
i , Iti

}

, i = 1, ..., N .

3: zt = EncVAE(M
t)

4: zref = EncVAE(M
ref )

5: zinter, zouter = zt ± zref−zt

λinter

6: M inter = DecVAE(z
inter)

7: Mouter = DecVAE(z
outer)

8: Update GA(It,Mt) with Eq. 6

9: Update GB(It,Mt,M inter,Mouter) with Eq. 6

10: end while

Autoencoder [18], the objective function for learning a

MaskVAE consists of two parts: (i) Lreconstruct, which

controls the pixel-wise semantic label difference, (ii) LKL,

which controls the smoothness in the latent space. The

overall objective is to minimize the following loss function:

LMaskV AE = Lreconstruct + λKLLKL, (3)

where λKL is set to 1e−5 which is obtained through cross

validation. The encoder network EncVAE(M
t) outputs the

mean µ and covariance σ of the latent vector. We use KL

divergence loss to minimize the gap between the prior P (z)
and the learned distribution, i.e.

LKL =
1

2
(µµT +

J∑

j−1

(exp(σ)− σ − 1)), (4)

where denotes the j− th element of vector σ. Then, we can

sample latent vector by z = µ+ r ⊙ exp(σ) in the training

phase, where r ∼ N(0, I) is a random vector and ⊙ denotes

element-wise multiplication.

The decoder network DecVAE(z) outputs the reconstruct

semantic label and calculates pixel-wise cross-entropy loss

as follow:

Lreconstruct = −Ez∼P (z)[log(P (M t|z))]. (5)

Fig. 4 shows samples of linear interpolation between two

masks. MaskVAE can perform smooth transition on masks

and EBST relies on a smooth latent space to operate.

Manipulation Consistency by Alpha Blender. To main-

tain the consistency of manipulation between Iblend and It,

we realize alpha blending [30] used in image composition

by a deep neural network based Alpha Blender B which

learn the alpha blending weight α with two input images

: Iinter and Iouter as α = B(Iinter, Iouter). After

learning appropriated α, Alpha Blender blend Iinter and

Iouter according Iblend = α × Iinter + (1 − α) × Iouter.

As shown in the Stage − II of Fig. 2, Alpha Blender is

jointly optimized with two share weighted Dense Mapping

Networks. The group of models is defined as GB .
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Target  Image Our SPADE* Pix2PixHD-­m

Source  Image

ELEGANT ELEGANT* StarGAN*StarGAN

Figure 5: Zoom in the performance for a specific attribute: Smiling on

facial attribute transfer. * indicates the model is trained by images with

a size of 256 × 256. Both SPADE [28] and Pix2PixHD-m [36] cannot

preserve attributes (e.g. beard) correctly. Besides, ELEGANT [38] has

poor performance on transferring Smiling from the source image with the

mouth very opening. Also, StarGAN [2] has limited performance when

training on large images (e.g. 512 × 512).

3.3. Multi­Objective Learning

The objective function for learning both GA and GB

consists of three parts: (i) Ladv , which is the conditional

adversarial loss that makes generated images more realistic

and corrects the generation structure according to the con-

ditional mask M t, (ii) Lfeat, which encourages generator

to produce natural statistic at multiple scales, (iii) Lpercept,

which improves content generation from low-frequency to

high-frequency details in perceptually toward deep features

in VGG-19 [33] trained by ImageNet [4]. To improve the

synthesis quality of a high-resolution image, we leverage

multi-scale discriminator [36] to increase the receptive field

and decrease repeated patterns appearing in the generated

image. We used two discriminators which refer to D1,2

with identical network structure to operate at two different

scales. The overall objective is to minimize the following

loss function.

LGA,GB
= Ladv(G,D1,2)

+λfeatLfeat(G,D1,2)

+λperceptLpercept(G),

(6)

where λfeat and λpercept are set to 10 which are obtained

through cross validation.

Ladv is the conditional adversarial loss defined by

Ladv = E[log(D1,2(I
t,M t))] + E[1− log(D1,2(I

out,M t)].
(7)

Lfeat is the feature matching loss [36] which computes

the L1 distance between the real and generated image using

the intermediate features from discriminator by

Lfeat = E

∑

i=1

‖D
(i)
1,2(I

t,M t)−D
(i)
1,2(I

out,M t)‖1. (8)

Lpercept is the perceptual loss [16] which computes the

L1 distance between the real and generated image using the

intermediate features from a fixed VGG-19 [33] model by

Lpercept =
∑

i=1

1

Mi

[‖φ(i)(It)− φ(i)(Iout)‖1]. (9)

Source   Image Target   Image Our SPADE* Pix2PixHD-­m

Figure 6: Zoom in the performance of style copy. Both SPADE [28]

and Pix2PixHD-m [36] cannot preserve the attributes - heavy makeup and

beard accurately.

Table 1: Dataset statistics comparisons with an existing dataset.

CelebAMask-HQ has superior scales on the number of images and also

category annotations.

Helen [20] CelebAMask-HQ

# of Images 2.33K 30K

Mask size 400 × 600 512 × 512

# of Categories 11 19

4. CelebAMask-HQ Dataset

We built a large-scale face semantic label dataset named

CelebAMask-HQ, which was labeled according to CelebA-

HQ [17] that contains 30,000 high-resolution face images

from CelebA [26]. It has several appealing properties:

• Comprehensive Annotations. CelebAMask-HQ was

precisely hand-annotated with the size of 512 × 512

and 19 classes including all facial components and

accessories such as ‘skin’, ‘nose’, ‘eyes’, ‘eyebrows’,

‘ears’, ‘mouth’, ‘lip’, ‘hair’, ‘hat’, ‘eyeglass’, ‘earring’,

‘necklace’, ‘neck’, and ‘cloth’.

• Label Size Selection. The size of images in CelebA-

HQ [17] were 1024 × 1024. However, we chose the size

of 512 × 512 because the cost of the labeling would be

quite high for labeling the face at 1024 × 1024. Besides,

we could easily extend the labels from 512 × 512 to

1024 × 1024 by nearest-neighbor interpolation without

introducing noticeable artifacts.

• Quality Control. After manual labeling, we had a

quality control check on every single segmentation mask.

Furthermore, we asked annotaters to refine all masks with

several rounds of iterations.

• Amodal Handling. For occlusion handling, if the facial

component was partly occluded, we asked annotators to

label the occluded parts of the components by human

inferring. On the other hand, we skipped the annotations

for those components that are totally occluded.

Table 1 compares the dataset statistics of CelebAMask-HQ

with Helen dataset [20].

5. Experiments

We comprehensively evaluated our approach by showing

quantitative and visual quality on different benchmarks.
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Table 2: Evaluation on geometry-level facial attribute transfer. Quantitative comparison with other methods for the specific attribute - Smiling. * indicates

the model is trained by images with a size of 256 × 256. † indicates the model is trained with Editing Behavior Simulated Training. StarGAN and

ELEGANT have better FID scores, but lower attribute classification accuracy. Pix2PixHD-m obtains the best classification accuracy but has inferior FID

scores than others. Although MaskGAN cannot achieve the best FID score, it has relatively higher classification accuracy and segmentation accuracy.

Metric Attribute cls. accuracy(%) Segmentation(%) FID score Human eval.(%)

StarGAN* [2] 92.5 - 40.61 -

StarGAN [2] 88.0 - 30.17 7

ELEGANT* [38] 72.8 - 55.43 -

ELEGANT [38] 66.5 - 35.89 34

Pix2PixHD-m [36] 78.5 93.82 54.68 13

SPADE* [28] 73.8 94.11 56.21 5

MaskGAN 72.3 93.23 46.67 -

MaskGAN† 77.3 93.86 46.84 41

GT 92.3 92.11 - -

Target  Image Source  Image Our Pix2PixHD-­m ELEGANT ELEGANT* StarGAN*StarGAN

Geometry-­level  manipulation  (with  source  image) Semantic-­level  manipulation

SPADE*

Figure 7: Visual comparison with other methods for a specific attribute: Smiling on facial attribute transfer. * means the model is trained by images

with a size of 256 × 256. The first two columns are target and source pairs. The middle five columns show the results of geometry-level manipulation

(our MaskGAN, SPADE [28], Pix2PixHD-m [36], and ELEGANT [38]) which utilize source images as exemplars. The last two columns show the results

based on semantic-level manipulation (e.g. StarGAN [2]). StarGAN fails in the region of smiling. ELEGANT has plausible results but sometimes cannot

transfer smiling from the source image accurately. Pix2PixHD-m has lower perceptual quality than others. SPADE has poor attribute keeping ability. Our

MaskGAN has plausible visual quality and relatively better geometry-level smiling transferring ability.

5.1. Datasets

CelebA-HQ. [17] is a high quality facial image dataset that

consists of 30000 images picked from CelebA dataset [26].

These images are processed with quality improvement to

the size of 1024×1024. We resize all images to the size of

512×512 for our experiments.

CelebAMask-HQ. Based on CelebA-HQ, we propose a

new dataset named CelebAMask-HQ which has 30000

semantic segmentation labels with a size of 512 × 512.

Each label in the dataset has 19 classes.

5.2. Implementation Details

Network Architectures. Image Generation Backbone in

Dense Mapping Network follows the design of Pix2PixHD

[36] with 4 residual blocks. Alpha Blender also follows

the design of Pix2PixHD but only downsampling 3 times

and using 3 residual blocks. The architecture of MaskVAE

is similar to UNet [31] without skip-connection. Spatial-

Aware Style Encoder in DMN does not use any Instance

Normalization [34] layers which will remove style infor-

mation. All the other convolutional layers in DMN, Alpha

Blender, and Discriminator are followed by IN layers.

MaskVAE utilizes Batch Normalization [13] in all layers.

Comparison Methods. We choose state-of-the-art Star-

GAN [2], ELEGANT [38], Pix2PixHD [36], SPADE [28]

as our baselines. StarGAN performs semantic-level facial

attribute manipulation. ELEGANT performs geometry-

level facial attribute manipulation. Pix2PixHD performs

photo-realistic image synthesis from the semantic mask.

We simply remove the branch for receiving M t in Spatial-

Aware Style Encoder of Dense Mapping Network as a

baseline called Pix2PixHD-m. SPADE performs structure-

conditional image manipulation on natural images.

5.3. Evaluation Metrics

Semantic-level Evaluation. To evaluate a method of ma-

nipulating a target attribute, we examined the classification

accuracy of synthesized images. We trained binary facial

attribute classifiers for specific attributes on the CelebA

dataset by using ResNet-18 [10] architecture.

Geometry-level Evaluation. To measure the quality of
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Table 3: Evaluation on geometry-level style copy. Quantitative comparison with other methods. † indicates the model is trained with Editing Behavior

Simulated Training. * indicates the model is trained by images with a size of 256 × 256. Attribute types in attribute classification accuracy from left

to right are Male, Heavy Makeup, and No Beard. MaskGAN has relatively high attribute classification accuracy than Pix2PixHD-m. Editing Behavior

Simulated Training further improves the robustness of attribute keeping ability so that MaskGAN† has higher attribute classification accuracy and human

evaluation score than MaskGAN.

Metric Attribute cls. accuracy(%) Segmentation(%) FID score Human eval.(%)

Pix2PixHD-m [36] 56.6 55.1 78.9 91.46 39.65 18

SPADE* [28] 54.5 51.0 71.9 94.60 46.17 10

MaskGAN 68.1 72.1 88.4 92.34 37.55 28

MaskGAN† 71.7 73.3 89.5 92.31 37.14 44

GT 96.1 88.5 95.1 92.71 - -

Our Our OurPix2PixHD-­m Pix2PixHD-­m Pix2PixHD-­m

Target  Image  1 Target  Image  2 Target  Image  3

Source  Image Our Pix2PixHD-­m

Target  Image  4

SPADE* SPADE* SPADE* SPADE*

Figure 8: Visual comparison with other methods on style copy. * indicates the model is trained by images with a size of 256 × 256. All the columns

show the results of the proposed method, SPADE [28] and Pix2PixHD-m [36] for four different target images. MaskGAN shows a better ability to transfer

style like makeup and gender than SPADE and Pix2PixHD-m. SPADE gets better accuracy on segmentation results.

mask-conditional image generation, we applied a pre-

trained a face parsing model with U-Net [31] architecture to

the generated images and measure the consistency between

the input layout and the predicted parsing results in terms

of pixel-wise accuracy.

Distribution-level Evaluation. To measure the quality

of generated images from different models, we used the

Fréchet Inception Distance [11] (FID) to measure the qual-

ity and diversity of generated images.

Human Perception Evaluation. We performed a user

survey to evaluate perceptual generation quality. Given

a target image (and a source image in the experiment of

style copy), the user was required to choose the best-

generated image based on two criteria: 1) quality of transfer

in attributes and style 2) perceptual realism. The options

were randomly shuffled images generated from different

methods.

Identity Preserving Evaluation. To further evaluate the

identity preservation ability, we conducted an additional

face verification experiment by ArcFace [5] (99.52% on

LFW). In the experimental setting, we selected 400 pairs

of faces from testing set in CelebA-HQ, and each pair

contained a modified face (Smiling) and an unmodified

face. Besides, in the testing stage, each face was resized

to 112 × 112.

5.4. Comparisons with Prior Works

The comparison is performed w.r.t. three aspects, includ-

ing semantic-level evaluation, geometry-level evaluation,

and distributed-level evaluation. We denote our approach as

MaskGAN and MaskGAN† for reference, where † indicates

the model is equipped with Editing Behavior Simulated

Training. For Pix2PixHD [36] with modification, we name

it as Pix2PixHD-m for reference.

Evaluation on Attribute Transfer. We choose Smiling

to compare which is the most challenging attribute type to

transfer in previous works. To be more specific, smiling

would influence the whole expressing of a face and smiling

has large geometry variety. To generate the user-modified

mask as input, we conducted head pose estimation on

the testing set by using the HopeNet [32]. With the

angle information of roll, pitch, and yaw, we selected

400 source and target pairs with a similar pose from the

testing set. Then, we directly replaced the mask of mouth,

upper lip and lower lip from target mask to source mask.

Fig. 7, Fig. 5 and Table 2 show the visual results and

quantitative results on MaskGAN and state-of-the-art. For a

fair comparison, StarGAN* and ELEGANT* mean model

trained by images with a size of 256 × 256. StarGAN has

the best classification accuracy and FID scores but fails in

the region of smiling for the reason that the performance of

StarGAN may be influenced by the size of the training data
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Table 4: Evaluation on identity preserving. Quantitative comparison

with other methods. * indicates the model is trained by images with a size

of 256 × 256. MaskGAN is superior to other state-of-the-art mask-to-

image methods for identity preserving.

Metric Face verification accuracy(%)

Pix2PixHD-m [36] 58.46

SPADE* [28] 70.77

MaskGAN† 76.41

and network design. ELEGANT has plausible results but

sometimes cannot transfer smiling from the source image

accurately because it exchanges attributes from source

image in latent space. SPADE gets the best segmentation

accuracy but has an inferior reconstruction ability than

others. As long as the target image does not have spatial

information to learn a better mapping with the user-defined

mask. MaskGAN has plausible visual quality and relative

high classification accuracy and segmentation accuracy.

Evaluation on Style Copy. To illustrate the robustness

of our model, we test MaskGAN on a more difficult task:

geometry-level style copy. Style copy can also be seen as

manipulating a face structure to another face. We selected

1000 target images from the testing set and the source

images were selected from the target images with a different

order. For this setting, about half of the pairs are a different

gender. Fig. 8, Fig. 6 and Table 3 show the visual results

and quantitative results on MaskGAN and state-of-the-art.

From the visual results and attribute classification accuracy

(from left to right: Male, Heavy Makeup, and No Beard),

SPADE obtains the best accuracy on segmentation by using

Spatially-Adaptive Normalization, but it fails on keeping

attributes (e.g. gender and beard). MaskGAN shows better

ability to transfer style like makeup and gender than SPADE

and Pix2PixHD-m since it introduces spatial information to

the style features and simulates the user editing behavior via

dual-editing consistency during training.

Evaluation on identity preserving. As the experimental

results shown in Table 4, our MaskGAN is superior to

other state-of-the-art mask-to-image methods for identity

preserving. Actually, we have explored adding face iden-

tification loss. However, the performance gain is limited.

Therefore, we removed the loss in our final framework.

5.5. Ablation Study

In the ablation study, we consider two variants of our

model: (i) MaskGAN and (ii) MaskGAN†.

Dense Mapping Network. In Fig. 5, we observe that

Pix2PixHD-m is influenced by the prior information con-

tained in the user-modified mask. For example, if the

user modifies the mask to be a female while the target

image looks like a male, the predicted image tends to a

female with makeup and no beard. Besides, Pix2PixHD-

m cannot transition the style from the target image to the

(a)  Target  Image (c)  Result(b)  Modification  on  the  mask(a)  Target  Image (c)  Result(b)  Modification  on  the  mask

Figure 9: Visual results of interactive face editing. The first row shows

examples of adding accessories like eyeglasses. The second row shows

examples of editing the shape of face and nose. The third row shows

examples of adding hair. The red block shows a fail case where the strength

of hair color decreases when adding hair to a short hair woman.

user-modified mask accurately. With Spatial-Aware Style

Encoder, MaskGAN not only prevents generated results

influenced by prior knowledge in the user-modified mask,

but also accurately transfers the style of the target image.

Editing Behavior Simulated Training. Table 2 and Table

3 show that simulating editing behavior in training can

prevent content generation in the inference stage from

being influenced by structure changing on the user-modified

mask. It improves the robustness of attribute keeping ability

so that MaskGAN demonstrates better evaluation scores.

5.6. Interactive Face Editing

Our MaskGAN allows users to interactively edit the

shape, location, and category of facial components at

geometry-level through a semantic mask interface. The

interactive face editing results are illustrated in Fig. 8.

The first row shows examples of adding accessories like

eyeglasses, earrings, and hats. The second row shows

examples of editing face shape and nose shape. The third

row shows examples of adding hair. More results are in the

supplementary materials.

6. Conclusions

In this work, we have proposed a novel geometry-

oriented face manipulation framework, MaskGAN, with

two carefully designed components: 1) Dense Mapping

Network and 2) Editing Behavior Simulated Training. Our

key insight is that semantic masks serve as a suitable

intermediate representation for flexible face manipulation

with fidelity preservation. MaskGAN is comprehensively

evaluated on two challenging tasks: attribute transfer and

style copy, showing superior performance over other state-

of-the-art methods. We further contribute a large-scale

high-resolution face dataset with fine-grained mask an-

notations, named CelebAMask-HQ. Future work includes

combining MaskGAN with image completion techniques

to further preserve details on the regions without editing.
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