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Abstract

Deciding the amount of neurons during the design of a

deep neural network to maximize performance is not intu-

itive. In this work, we attempt to search for the neuron

(filter) configuration of a fixed network architecture that

maximizes accuracy. Using iterative pruning methods as

a proxy, we parameterize the change of the neuron (filter)

number of each layer with respect to the change in pa-

rameters, allowing us to efficiently scale an architecture

across arbitrary sizes. We also introduce architecture de-

scent which iteratively refines the parameterized function

used for model scaling. The combination of both proposed

methods is coined as NeuralScale. To prove the efficiency

of NeuralScale in terms of parameters, we show empir-

ical simulations on VGG11, MobileNetV2 and ResNet18

using CIFAR10, CIFAR100 and TinyImageNet as bench-

mark datasets. Our results show an increase in accuracy

of 3.04%, 8.56% and 3.41% for VGG11, MobileNetV2 and

ResNet18 on CIFAR10, CIFAR100 and TinyImageNet re-

spectively under a parameter-constrained setting (output

neurons (filters) of default configuration with scaling fac-

tor of 0.25).

1. Introduction

The human brain contains around 100 billion of neurons

[21] that are structured in such a way that they are utilized

in an efficient manner. As the design of deep neural network

(DNN) is inspired by the human brain, there’s one key in-

gredient that is missing from the current design of DNNs:

the efficient utilization of resources (parameters).

The success of DNN is a composition of many factors.

On an architectural level, various architectures have been

proposed to increase the accuracy of DNNs targeting ef-

ficiency in computational cost (FLOPs) and size (param-

eters). In a modern DNN architectures, hyperparameters

like width (neurons/filters), depth, skip-connections and ac-
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Figure 1: The input is represented as a green slab on the left,

the output layer is the yellow bar on the right and intermedi-

ate layers are represented by 3D blocks with the width as its

neuron (filter) number. The purple blocks are the final con-

figuration of the neurons (filters). (a) shows our proposed

method that non-linearly scales neurons (filters) across dif-

ferent layers to maximize performance. (b) is a uniform

scaling method that is shown to be effective in [12].

tivation functions [38, 42] are the building blocks. No-

table architectures that are constructed using those build-

ing blocks are: VGGNet [44], ResNet [18], DenseNet [24],

GoogLeNet [45] and MobileNets [23, 43, 22]. Apart from

the advances in architecture design, initialization of weights

also helps in improving the accuracy of a DNN [11, 17].

We focus on optimizing the configuration of convolu-

tional neural networks (CNNs) and shed light on the selec-

tion of the number of filters for each layer given a fixed ar-

chitecture and depth. Our approach is complementary to the
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modern variants of CNNs (VGGNet, ResNet, MobileNet,

etc.) through the introduction of a guided approach in tun-

ing its width instead of just blindly stacking additional lay-

ers to boost accuracy. Our approach also investigates the

conventional wisdom on filter selection stating that as we

go deeper into the network, more filters are required to cap-

ture high-level information embedded in the features and to

compensate with the gradual reduction in the spatial dimen-

sion which has efficiency in FLOPs as a byproduct.

Intuitively speaking, the design of traditional CNNs is

ad-hoc and introduces redundancy [29, 4]. This redun-

dancy gives the opportunity for filter pruning techniques

[15, 13, 29, 32] to strive, by conserving or improving ac-

curacy using a lower parameter count. Current advances

in pruning has led to a recent work by Liu et al. [33] that

studies pruning in a new perspective. They show that prun-

ing can be viewed as an architecture search method instead

of just for removing redundancy. We incorporated this per-

spective along with the recent findings of EfficientNet [47]

stating that through the search of an optimal ratio between

the width, depth and resolution of a given architecture and

dataset, the accuracy of a network can improve if scaled

accordingly. Both these works led us to think that instead

of finding the scale or ratio among the width, depth and

resolution, we can scale the width of a CNN across sev-

eral layers independently using global iterative pruning as

a proxy. We hypothesize that if we are given a DNN with

minimal redundant parameters, through the modeling of the

change of neurons (filters) in each layer of the DNN with re-

spect to the change in the total parameters of the DNN, we

are able to scale the DNN across various sizes efficiently.

Our approach can also be viewed as a variant of neural ar-

chitecture search (NAS) where the search is on finding the

optimal configuration of neurons (filters) across layers in-

stead of searching for the optimal structure involving skip-

connections or filter types [54, 30, 41, 50, 1, 31]. Our ap-

proach is comparatively light-weight as the only resource

intensive task lies on the pruning of network. The gist of

our proposed method is shown in Figure 1a.

The rest of the paper is structured as follows. We first

show related work on available pruning techniques and the

role of pruning for neural architecture search in Section 2.

We then show the details of our approach in Section 3. Ex-

tensive experiments on our proposed method is shown in

Section 4. We finally conclude our paper in Section 5.

2. Related Work

Pruning of Deep Neural Network. Pruning of neural

networks has been studied for decades with the goal of

parameter reduction [27, 16]. Parameter reduction is im-

portant if a DNN needs to be deployed to targeted de-

vices with limited storage capacity and computational re-

sources. There are two ways to prune a network: structured

pruning [32, 20, 39, 28, 34, 52] and unstructured pruning

[13, 14, 15, 9]. For structured pruning, entire filters or neu-

rons are removed from a layer of a network. Such pruning

method can be deployed directly to a general computing ar-

chitecture, e.g. GPU, to see improvement in speed. For un-

structured pruning, individual weights are pruned, resulting

in a sparse architecture. A dedicated hardware is required to

exploit the speed-up contributed by the sparsity of weights.

To prune a network, there are various criteria that have

been studied. The most intuitive approach is to prune the

weights based on its magnitude [15, 13, 29]. It was be-

lieved that the importance of weights is related to its mag-

nitude. Although this approach is widely used in other

works [9, 29, 19, 51], it is also shown on several works

[35, 20, 27, 16] that magnitude pruning does not result in

an architecture with the best performance. Pruning based on

magnitude is adopted because of its simplicity when com-

pared to more complicated pruning techniques, e.g. [16, 27]

requires the computation of Hessian for pruning. A study

proposed the use of geometric median [20] as a replace-

ment of magnitude pruning for the criteria of network prun-

ing. [35, 37] has also challenged the reliability of magni-

tude pruning and proposed the use of Taylor expansions to

approximate the contribution of a filter to the final loss. An-

other intuitive way of pruning is through the addition of a

regularizer to the loss function to force redundant weights

to zero during training [15]. It has also been discovered that

the scaling parameter used in Batch Normalization (BN)

[25] can be used for structured pruning and yields perfor-

mance better than pruning using magnitude [32]. A follow-

up work that takes the shift term of BN into consideration

for pruning is proposed in [52].

Neural Architecture Search via Pruning. There’s a

tremendous surge of efforts placed into the research of neu-

ral architecture search (NAS) techniques in the recent years

on coming up with the most efficient architecture possible

for a given task [54, 30, 41, 46, 3, 31]. NAS techniques are

usually computationally expensive, limiting its applicability

to research or corporate environment with limited comput-

ing resources. The search space of NAS is very broad and

is defined distinctively across different works. Most of the

search space involves the search of a suitable set of opera-

tions to be placed in a cell. The connections between dif-

ferent operations is also considered in the search space [2].

These cells are then stacked to increase network depth.

In our work, we focus on the decision of the number of

neurons (filters) required for each layer in a DNN. We use

existing pruning techniques as a proxy to tackle this prob-

lem. The idea of using pruning as an architecture search

method is not novel and has been discussed in [33, 9, 10, 7]

where its applicability can be seen in MorphNet [12]. Liu et

al. [33] show that through pruning, we are removing redun-
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dancy from a network and the resulting network is efficient

in terms of parameters. They also show that training the

pruned architecture from scratch has comparable, if not bet-

ter, accuracy than fine-tuned networks, indicating that the

accuracy gain is from the resulting efficient architecture ob-

tained via pruning. For the case of unstructured pruning,

it is studied in [9, 10, 53] that a Lottery Ticket (LT) can be

found via iterative unstructured pruning. A LT is a sparse ar-

chitecture that is the result of unstructured pruning and has

accuracy better than the original network (usually found at

a parameter count of an order less than the parameter count

of the original network). This finding indicates that pruning

does introduce inductive bias [5] and adds evidence on the

suitability of using pruning as an architecture search tech-

nique. This idea is proven in MorphNet [12] where a pruned

architecture is scaled uniformly to meet the targeted param-

eter count and is repeated for several iterations. A single

iteration of [12] is illustrated in Figure 1b.

3. Method

3.1. Parameter Tracking via Iterative Pruning

To efficiently allocate neurons (filters) across different

layers of a DNN that results in optimal accuracy given a

parameter constraint, we model the change of neurons (fil-

ters) across layers with respect to the change of parameters.

First, we need to begin with a network with minimal re-

dundant parameters. To do so, a structured pruning method

proposed by Molchanov et al. [35] that prunes iteratively

is adopted. They proposed a pruning method that prunes

neurons based on its importance. The importance of a pa-

rameter can be measured as the loss induced when it’s re-

moved from the network. They proposed the use of Taylor

approximation as an efficient way to find parameters that are

of less importance. A comprehensive comparison between

their approach and an oracle (full combinatorial search over

all parameters that results in minimum increase in loss) is

done, proving its reliability. Here, we will give a brief in-

troduction of their parameter pruning technique borrowed

from their paper. The importance of a parameter is quanti-

fied by the error induced when it is removed from the net-

work:

Im = (E(D,W )− E(D,W |wm = 0))2. (1)

Here, W = {w0, w1, ..., wM} are the set of parame-

ters of a neural network supported by a dataset D =
{(x0, y0), (x1, y1), ..., (xK , yK)} of K independent sam-

ples composed of inputs xk and outputs yk. (1) can be ap-

proximated by the second-order Taylor expansion as:

I(2)m (W ) = (gmwm −
1

2
wmHmW )2. (2)

H is the Hessian matrix where Hm is the m-th row of it

and gm = ∂E
∂wm

. (2) can be further approximated using the

first-order expansion:

I(1)m (W ) = (gmwm)2. (3)

To minimize computational cost, (3) will be used since it

is shown in [35] that the performance is on par with the

second-order expansion and the first-order Taylor expansion

is often used to estimate the importance of DNN compo-

nents (weights, kernels or filters) [48, 36, 8]. Consistent

with their work, a gate zm is placed after batch normal-

ization layers [25] where the importance approximation is

defined as:

I(1)m (z) = (
∂E

∂zm

)2 = (
∑

s∈Sm

gmwm)2, (4)

where Sm corresponds to the set of weights W s∈Sm
before

the gate.

For a network composed of L layers, we define the the

set of neurons (filters) for the entire network as {φl}
L
l=1. φl

is the number of neurons (filters) of layer l. We then de-

fine the total number of parameters in a network as τ . As

we are using an iterative pruning method, on every pruning

iteration, we will obtain a set of τ ’s and φl’s for the l-th

layer which can be represented as ξl = {τ, φl}. After prun-

ing for N iterations, we obtain ξl = {{τ
(n), φ

(n)
l }

N
n=1}. In

our implementation, we start feeding ξl’s into ξl when all

layers in a network is pruned by at least a single param-

eter. We conjecture that when all layers are pruned by at

least a single parameter, most redundancy is removed and

the residual parameters compose an efficient configuration.

We stop pruning once the number of neurons (filters) is less

than ǫ (we pick ǫ as 5% of the total neurons (filters) of the

network in our implementation). Upon the completion of

pruning, we have ξ ∈ R
2×N×L. The entire pruning pro-

cess begins once we have trained our network for P epochs

(commonly known as network pre-training; we use the term

pre-training epochs in our context instead) using a learning

rate µ. The choice of P is studied and the conventional wis-

dom on the requirement of pre-training a network to con-

vergence before pruning is investigated in the Supp. Section

6.3. The pruning algorithm is summarized in Algorithm 1.

3.2. Efficient Scaling of Parameters

The goal of this work is to scale the neurons (filters) of

a network across different layers to satisfy the targeted to-

tal parameter size denoted as τ̂ . For parameter scaling to

match the targeted size, uniform scaling is used in Mor-

phNet [12] and MobileNets [23] where all layers are scaled

with a constant width multiplier. It is intuitive that the scale

applied to neurons (filters) of different layers should be

layer-dependent to maximize performance. In this work, we

propose an efficient method to scale the number of neurons

(filters) across different layers to maximize performance.
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Algorithm 1 Iterative Prune

1: procedure ITERATIVEPRUNE(f,D)

2: for P epochs do

3: Update f using learning rate µ

4: while
∑L

l=1 |zl|1 > ǫ do

5: Train f for Q iterations

6: ξ′ ← Prune f using criteria (4)

7: if all layers pruned at least once then

8: ξ ← {ξ, ξ′} ⊲ Record parameters

9: return ξ
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Figure 2: Growth in number of filters of different layers

across various network sizes. Each color represents inde-

pendent layers of the convolutional filters of VGG11. Solid

line is the residual filters obtained using an iterative pruning

method and dashed line represents our approach on curve

fitting. It can be observed that there’s a pattern in the change

of filters w.r.t. parameters which is dataset dependent.

By using iterative pruning as a proxy, we parameterize the

change of neurons (filters) across different layers with re-

spect to the total parameters or simply put as ∂φl

∂τ
.

Modeling Parameter Growth. As discussed in the pre-

vious subsection, ξl collected for each layer resembles the

efficient set of neurons (filters) for each layer at a given size

constraint. We can use this as a proxy to model ∂φl

∂τ
. We first

observe how the distribution of the residual neurons (filters)

obtained using pruning scale across different τ ’s, e.g. we

use VGG11 as our network and CIFAR10/100 as our dataset

to show the parameter growth across various sizes in Fig-

ure 2. We can observe that parameters across different lay-

ers don’t scale linearly across different sizes, implying that

uniform scaling is not an efficient scaling method. Figure 2

also shows us that the growth of the parameters resembles a

power function that is monotonic. To fit the curves, we use:

φl(τ |αl, βl) = αlτ
βl , (5)

where every layer is paramterized independently by αl and

βl. To obtain these parameters, we can linearize the prob-

lem by taking ln on both sides of (5), giving us:

lnφl(τ |αl, βl) = lnαl + βl ln τ. (6)

Since we pruned the network iteratively for N iterations,

we obtain a set of linear equations which can be formulated

into a matrix of the form:







1 ln τ (1)

1 ln τ (2)

...
...

1 ln τ (N)








︸ ︷︷ ︸

T

[
lnα1 lnα2 . . . lnαL

β1 β2 . . . βL

]

︸ ︷︷ ︸

Θ

= (7)










lnφ
(1)
1 lnφ

(1)
2 . . . lnφ

(1)
L

lnφ
(2)
1

. . .

...

lnφ
(N)
1 lnφ

(N)
L










︸ ︷︷ ︸

Φ

.

We can solve for Θ in (7) using the least-squares approach

or by taking the pseudoinverse of T and multiply it with Φ:

Θ = (T TT )−1T TΦ. (8)

By using this method, we are able to fit the curves or ξl’s ob-

tained using iterative pruning of a network where the fitted

results are shown in Figure 2. Our approach is a cost ef-

fective way of neural architecture parametrization and only

takes two parameters (α and β) per layer to parameterize

the non-linear growth of the neuron (filter) count across var-

ious parameter sizes or ∂φl

∂τ
. The simplicity of our approach

also prevents the overfitting of noise embedded in the sam-

ples obtained via pruning. The search of parameters for ef-

ficient scaling is summarized in Algorithm 2.

Algorithm 2 Search Parameters

1: procedure SEARCHPARAMS(ξ)

2: T ,Φ← ξ ⊲ Convert to matrix form

3: Θ← (T TT )−1T TΦ
4: return Θ

Meeting Parameter Constraints. Since our approach

fully parameterizes the independent scaling of network

width across various sizes, we can meet tight parameter

constraints during deployment of a DNN to devices with

limited resource budget. For approaches like uniform scal-

ing [12, 33, 23], only the number of output neurons (filters)

can be scaled while the network size is a function of the

input and output neurons (filters), hence meeting parameter

constraints can only be done by performing an iterative grid

search on the number of output neurons (filters) required.

For our approach, parameter scaling is intuitive as we

can apply gradient descent on Φ w.r.t. τ . To do so, we define

a DNN as f(x|W ,Φ(τ |Θ)) where f is a DNN architec-

ture, x is its input, W are the weights of the DNN, and the
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additional condition Φ(τ |Θ) is introduced to parameterize

the number of neurons (filters) required for each layer of a

DNN. We then define a function h that computes the num-

ber of parameters of a DNN. h is architecture dependent.

Given a parameter constraint τ̂ that needs to be met, we

can generate an architecture having total parameters close

to τ̂ by performing stochastic gradient descent (SGD) on

Φ(τ,Θ) w.r.t. τ . Like other gradient descent problems, pa-

rameter initialization is important and the best way to do so

is to fit τ̂ into (5) giving us:

φl(τ̂ |αl, βl) = αlτ̂
βl . (9)

This gives us a good initial point, however there will still be

a discrepancy between h(f(x|W ,Φ(τ̂ |Θ))) and τ̂ which

can be fixed by applying SGD on 1
2 (φl(τ |αl, βl)− τ̂)2 w.r.t.

to τ where the update of τ is given as:

τi = τi−1 −∆τi−1 (10)

= τi−1 − η(h(f(x|W ,Φ(τi−1|Θ)))− τ̂)

L∑

l=1

βlαlτ
βl−1
i−1 .

(11)

Here, the subscript of τ corresponds to the SGD itera-

tion and the full proof of (11) is given in Supp. Section

6.1. Since the number of parameters of an architecture is

a monotonic function of Φ, this problem is convex and con-

verges easily. If the learning rate η is set carefully, we are

able to obtain an architecture with total parameters close to

τ̂ . We summarize this procedure in Algorithm 3.

Algorithm 3 Generate Network Using Searched Parameters

1: procedure GENERATENET(Θ, f, τ̂ )

2: τ ← τ̂ ⊲ Initialize parameter

3: while not converged do

4: τ ← τ −∆τ ⊲ Update using SGD as in (11)

5: for l← 1 to L do ⊲ Layer-wise architecture update

6: fl ← set output neurons (filters) as φl(τ |Θl) (5)

7: return f

3.3. Architecture Descent for Model Refinement

Like any gradient descent algorithm, initialization plays

an important role and affects the convergence of an algo-

rithm. Our approach is similar in way where we attempt to

search for the configuration of an architecture given an ini-

tial configuration, e.g. VGGNet [44] and ResNet [18] con-

sist of a set of predefined filter numbers for different config-

urations. As our approach behaves similarly to gradient de-

scent, we coin it architecture descent as there is no gradient

involved and it is descending in the loss surface by making

iterative changes to the architecture’s configuration.

We define an iteration of architecture descent as a sin-

gle run of Algorithm 1, 2 and 3 that corresponds to itera-

tive pruning, parameter searching and network generation.

Upon the completion of iterative pruning and parameter

searching, we obtain a set of parameters that scales our net-

work in a more efficient manner. We can then use this set of

parameters to scale-up our network as shown in Algorithm 3

for further pruning. We then proceed with several iterations

of architecture descent until the changes in the architecture

configuration is minuscule, indicating convergence. By ap-

plying architecture descent, we are descending on the loss

surface that is parameterized by Θ instead of a loss surface

parameterized by its weights W performed in gradient de-

scent. Architecture descent is summarized in Algorithm 4.

NeuralScale is a composition of all algorithms we proposed

as illustrated in Figure 1a.

Algorithm 4 Architecture Descent

1: procedure ARCHITECTUREDESCENT(f,D, τ )

2: while not converged do

3: ξ ← ITERATIVEPRUNE(f,D)⊲ Taylor FO [35]

4: Θ← SEARCHPARAMS(ξ)

5: f ← GENERATENET(Θ, f, τ )

6: return f ⊲ Network with scaled parameters

4. Experiments

In this section, we show experiments illustrating the im-

portance of architecture descent. We then proceed with the

benchmarking of our approach using public datasets, e.g.

CIFAR10/100 [26] and TinyImageNet (subset of ImageNet

[6] with images downsampled to 64×64 and consists of 200

classes having 500 training and 50 validation samples for

each class) on commonly used architectures, e.g. VGG11

[44], MobileNetV2 [43] and ResNet18 [18]. All experi-

ments are run on a single GTX1080Ti GPU using PyTorch

[40] as our deep learning framework. We use SGD as our

optimizer with an initial learning rate of 0.1, momentum

set to 0.5 and a weight decay factor of 5−4. Training of

network that uses CIFAR10 and CIFAR100 are run for 300

epochs using a step decay of learning rate by at factor of 10

at epochs 100, 200 and 250 whereas network trained using

TinyImageNet are run for 150 epochs with a decay in learn-

ing rate by a factor of 10 at epochs 50 and 100. For iterative

pruning, we first train our network for P = 10 epochs us-

ing a learning rate of 0.1 and is decayed by a factor of 10

every 10 epochs. Source code is made available at https:

//github.com/eugenelet/NeuralScale.

4.1. Importance of Architecture Descent

For all experiments, we run architecture descent for 15

iterations. We show configurations with total parameters
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matching total parameters of network with its default set

of filters uniformly scaled to a ratio, r. r = 0.25, 2 for

CIFAR10 and CIFAR100. r = 0.25, 1 for TinyImageNet.

VGG11. Using a relatively shallow network, we demon-

strate the application of architecture descent using CI-

FAR10 and CIFAR100 as shown in Figure 3. By observing

the resulting architecture configuration, we can make two

conjectures. First, we show that conventional wisdom on

network design that gradually increases the number of fil-

ters as we go deeper in a convolutional network does not

guarantee optimal performance. It can be observed that the

conventional wisdom on network design holds up to some

level (layer 4) and bottlenecking of parameters can be ob-

served up to the penultimate layer which is followed by a

final layer which is comparatively larger. Second, the scal-

ing of network should not be done linearly as was done in

[23] and should follow a non-linear rule that we attempt to

approximate using a power function. If we look closely,

by applying architecture descent on datasets of higher com-

plexity generates network with configuration that has more

filters allocated toward the end. Our conjecture is that more

resources are needed to capture the higher level features

when the task is more difficult whereas for simple classi-

fication problem like CIFAR10, more resource is allocated

to earlier layers to generate more useful features. These ob-

servations give us a better understanding on how resource

should be allocated in DNNs and can be used as a guide-

line for deep learning practitioners in designing DNNs. A

single iteration of architecture descent for VGG11 on CI-

FAR10/100 is approximately 20 minutes.

MobileNetV2. We show the application of architecture

descent on a more sophisticated architecture known as Mo-

bileNetV2 using CIFAR100 and TinyImageNet in Figure 3.

Here, we only apply our search algorithm on deciding the

size of the bottleneck layers while the size of the expansion

layer follows the same expansion rule found in [43] where

an expansion factor of 6× is used. The resulting configu-

ration closely resembles the one found using a feedforward

network like VGG. It can also be observed that resources are

allocated toward the output for a more sophisticated dataset.

A single iteration of architecture descent for MobileNetV2

on CIFAR100 and TinyImageNet is approximately 50 min-

utes and 1.2 hour respectively.

ResNet18. The application of architecture descent on

ResNet18 using CIFAR100 and TinyImageNet is shown in

Figure 3. We observe a different pattern of architecture con-

figuration when compared to a simple feed forward network

like VGG. This is an interesting observation as it agrees

with the interpretation of residual networks as an ensem-

ble of many paths of different lengths shown in [49]. An-
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Figure 3: Shows the number of filters for each layer by

running architecture descent for 15 iterations on various

architecture-dataset pair. Vertical and horizontal axis of

each plot corresponds to the filter number and architecture

descent iteration respectively. r is the uniform scaling ratio

applied to the default configuration. Best viewed in color.

other observation is that if we look only at a single layer of

every residual block (each block consists of two layers), the

searched configuration for ResNet follows the pattern found

in VGG where there’s a smooth gradient of filter progres-

sion across layers. A single iteration of architecture descent

for ResNet18 on CIFAR100 and TinyImageNet is approxi-

mately 50 minutes and 45 minutes respectively.

4.2. Benchmarking of NeuralScale

Here, we compare the accuracy of NeuralScale with the

first (Iteration=1, to compare with MorphNet [12]) and last

(Iteration=15) iteration of architecture descent with a uni-

form scaling (baseline) method and a method where a net-

work is first pruned using Taylor-FO [35] until it has 50%

1483



of filters left and then scaled uniformly (resembling the

first iteration of MorphNet [12] and the use of [35] is to

match our pruning method for a fair comparison), named

as MorphNet (Taylor-FO) in our comparison tables and

plots. The accuracy is obtained by averaging across the

maximum test accuracy of 5 independent simulations. For

the accuracy plots in Figure 4 and 5, the output filters of

the original network are scaled to the ratios from 0.25 to

2 with an increment of 0.25 for CIFAR10/100 along with

0.25, 0.5, 0.75 and 1 for TinyImageNet. For the compari-

son tables, only the ratios 0.25, 0.75, 2 for CIFAR10/100

and 0.25, 0.75 for TinyImageNet are reported. Compar-

isons are also made with a structured magnitude pruning

method [29] where we first pre-train our network using the

same prescription for other methods and proceed with 40

and 20 epochs of fine-tuning for CIFAR10/100 and Tiny-

ImageNet respectively, using a learning rate of 0.001. We

only show results for VGG11-CIFAR10, MobileNetV2-

CIFAR100 and ResNet18-TinyImageNet in Table 1 and the

rest are deferred to Supp. Section 6.2. Note that all meth-

ods are trained from scratch and only [29] is trained us-

ing the pretrain-prune-finetuning pipeline. Results show

that the hypothesis in [33] holds (training from scratch per-

forms better). As our approach is designed for platforms

with structured parallel computing capability like GPUs, we

report the latency of different methods instead of FLOPs.

Note that our approach isn’t optimized for latency. Here,

latency is defined as the time required for an input to prop-

agate to the output. All latencies reported in Table 1 are

based on a batch size of 100 where 20 batches are first fed

for warm-up of cache and is proceeded with 80 batches

which are averaged to give the final latencies. As a com-

parison of latency based solely on the scale of parameter in

Table 1 is unintuitive, we show a plot comparing accuracy

of different methods against latency in Figure 5.

VGG11. By observing the comparison plot shown in Fig-

ure 4a and 4b, our approach compares favourably in terms

of parameter efficiency for CIFAR10 and CIFAR100. As

shown in Table 1, at the lowest parameter count, an accu-

racy gain of 3.04% is obtained for CIFAR10. Efficiency in

latency of our approach is also comparable with the base-

line approach as shown in Figure 5a and 5b. Diminishing

returns are observed when the network increases in size. We

conjecture that as the network grows larger, more subspaces

are covered, hence the network can still adapt to the sub-

optimal configuration by suppressing redundant parameters.

Another observation is that the performance gain is more

substantial on a more complicated dataset which is intuitive

as inductive bias is introduced in an architectural level.

MobileNetV2. The application to MobileNetV2 is to

show the extensibility of our approach to a delicately hand-
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(e) ResNet18 on CIFAR100.
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(f) ResNet18 on TinyImageNet.

Figure 4: All plots are organized such that each row cor-

responds to a single architecture, e.g. (a),(b) corresponds

to VGG11, (c),(d) corresponds to MobileNetV2 and (e),(f)

corresponds to ResNet18. Each plot consists of the accu-

racy comparison of different scaling methods (applied on

the width), plotted against different parameter scales. The

shaded region of each line corresponds to the maximum and

minimum accuracy across 5 independent simulations.

crafted architecture. Our approach is superior in parameter

efficiency (most cases) when compared to other methods as

shown in Figure 4c and 4d. As shown in Table 1, an ac-

curacy gain of 8.56% for CIFAR100 relative to baseline is

observed at a scaling ratio of 0.25. Our approach is also ef-

ficient in latency as shown in Figure 5c. An unintuitive ob-

servation can be seen on the experiment for TinyImageNet

where the accuracy at iteration 1 outperforms iteration 15

for NeuralScale at ratio 0.25. The accuracy is below the

baseline when more parameters are used. As the default

configuration of MobileNetV2 has consistent filters, the de-

fault shortcut connections are identity mappings. We hy-

pothesize that the switch from identity mapping to a convo-

lutional mapping for the shortcut connection is the culprit.

Empirical study is done in Supp. Section 6.4 with results

supporting our hypothesis and explaining the observations.
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Figure 5: The layout of these plots are structured as shown

in Figure 4. The only difference is that the accuracies of

different methods are plotted against latencies.

ResNet18. As shown from the accuracy comparison plot

in Figure 4e and 4f, substantial accuracy gain under differ-

ent parameter scales is observed. From Table 1, an accuracy

gain of 3.41% is observed for TinyImageNet at a scale of

0.25. Accuracy gain using architecture descent is also more

pronounced here. The accuracy gain here is in contradic-

tory with the results in [33] (no gain in accuracy observed)

probably due to the better pruning technique we use [35].

In Figure 5e and 5f our approach is comparable and in most

cases better than the baseline configuration in latency.

5. Conclusion

In this work, we propose a method to efficiently scale

the neuron (filter) number of an architecture. We hypothe-

size that the scaling of network should follow a non-linear

rule and is shown empirically that through our approach,

networks efficient in parameters across different scales can

be generated using this rule. Our empirical results on ar-

chitecture descent also shed light on the efficient allocation

of parameters in a deep neural network. As our approach

is computationally-efficient and is complementary to most

Table 1: Comparison of various network-dataset pairs.

Method Params Latency Accuracy (%)

VGG11 CIFAR10

Uniform Scale

(Baseline)

0.58M 1.29ms 88.18 ± 0.16

5.20M 4.31ms 91.64 ± 0.10

36.89M 18.86ms 92.96 ± 0.09

Li et al. [29]† 5.20M 4.75ms 91.12 ± 0.02

MorphNet [12]

(Taylor-FO [35])

0.58M 2.07ms 90.60 ± 0.11

5.22M 8.43ms 92.60 ± 0.09

36.72M 48.52ms 93.18 ± 0.11

NeuralScale

(Iteration = 1)

0.58M 2.56ms 91.13 ± 0.07

5.20M 8.89ms 92.61 ± 0.15

36.88M 37.39ms 93.31 ± 0.05

NeuralScale

(Iteration = 15)

0.58M 2.94ms 91.22 ± 0.15

5.20M 12.52ms 92.63 ± 0.12

36.90M 53.35ms 93.29 ± 0.09

MobileNetV2 CIFAR100

Uniform Scale

(Baseline)

0.20M 5.37ms 57.80 ± 0.31

1.42M 7.46ms 67.85 ± 0.38

9.30M 19.69ms 72.40 ± 0.22

Li et al. [29]† 1.42M 7.71ms 67.12 ± 0.08

MorphNet [12]

(Taylor-FO [35])

0.20M 6.14ms 57.51 ± 0.36

1.42M 10.95ms 67.51 ± 0.48

9.30M 26.53ms 72.29 ± 0.28

NeuralScale

(Iteration = 1)

0.19M 5.69ms 66.00 ± 0.12

1.40M 11.73ms 70.23 ± 0.25

9.21M 21.32ms 72.37 ± 0.12

NeuralScale

(Iteration = 15)

0.19M 7.84ms 66.36 ± 0.28

1.41M 17.89ms 71.94 ± 0.45

9.27M 40.48ms 74.73 ± 0.26

ResNet18 TinyImageNet

Uniform Scale

(Baseline)

0.73M 3.02ms 50.54 ± 0.37

6.36M 11.56ms 56.68 ± 0.28

Li et al. [29]† 6.36M 11.93ms 54.72 ± 0.24

MorphNet [12]

(Taylor-FO [35])

0.72M 3.80ms 50.79 ± 0.38

6.39M 14.83ms 56.78 ± 0.85

NeuralScale

(Iteration = 1)

0.72M 5.96ms 51.66 ± 0.80

6.42M 14.58ms 57.89 ± 0.28

NeuralScale

(Iteration = 15)

0.72M 6.42ms 53.95 ± 0.53

6.40M 17.52ms 58.40 ± 0.54

† Fine-tuned using pre-trained network (not trained from scratch).

techniques and architectures, the inclusion to existing deep

learning framework is cost-effective and results in a model

of higher accuracy under the same parameter constraint.
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