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Abstract

Real-time RGB-D scanning technique has become

widely used to progressively scan objects with a hand-held

sensor. Existing online methods restore color information

per voxel, and thus their quality is often limited by the trade-

off between spatial resolution and time performance. Also,

such methods often suffer from blurred artifacts in the cap-

tured texture. Traditional offline texture mapping methods

with non-rigid warping assume that the reconstructed ge-

ometry and all input views are obtained in advance, and

the optimization takes a long time to compute mesh param-

eterization and warp parameters, which prevents them from

being used in real-time applications. In this work, we pro-

pose a progressive texture-fusion method specially designed

for real-time RGB-D scanning. To this end, we first de-

vise a novel texture-tile voxel grid, where texture tiles are

embedded in the voxel grid of the signed distance func-

tion, allowing for high-resolution texture mapping on the

low-resolution geometry volume. Instead of using expensive

mesh parameterization, we associate vertices of implicit ge-

ometry directly with texture coordinates. Second, we in-

troduce real-time texture warping that applies a spatially-

varying perspective mapping to input images so that texture

warping efficiently mitigates the mismatch between the in-

termediate geometry and the current input view. It allows us

to enhance the quality of texture over time while updating

the geometry in real-time. The results demonstrate that the

quality of our real-time texture mapping is highly compet-

itive to that of exhaustive offline texture warping methods.

Our method is also capable of being integrated into existing

RGB-D scanning frameworks.

1. Introduction

Real-time RGB-D 3D scanning has become widely used

to progressively scan objects or scenes with a hand-held

RGB-D camera, such as Kinect. The depth stream from the

∗Part of work was done during an internship in MSRA.

(a) Voxel representation

(c) Global optimization only

(b) Texture representation

without optimization

(d) Spatially-varying

perspective optimization

Figure 1: We compare per-voxel color representation (a)

with conventional texture representation without optimiza-

tion (b). Compared with global optimization only (c), our

texture fusion (d) can achieve high-quality color texture

in real-time RGB-D scanning. Refer to the supplemental

video for a real-time demo.

camera is used to determine the camera pose and is accu-

mulated to a voxel grid that contains surface distance. The

truncated depth values in the grid become a surface rep-

resentation through a marching cube algorithm [24]. The

color stream, in general, is accumulated to the voxel to scan

color representation in a similar manner that captures depth.

However, the current color representation in real-time RGB-

D scanning remains suboptimal due to the following chal-

lenges: first, since the color information is stored in each

voxel in the grid, there is an inevitable tradeoff between

spatial resolution and time performance [6, 13, 25, 24]. For

instance, when we decrease the spatial resolution of the grid
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for fast performance, we need to scarify the spatial resolu-

tion of color information. See Figure 1(a) for an example.

Second, the imperfection of the RGB-D camera introduces

several artifacts: depth noise, distortion in both depth and

color images, and asynchronization between the depth and

color frames [31, 3, 10, 14, 9]. They lead to inaccurate

estimation of imperfect geometry, color camera pose, and

the mismatch between the geometry and color images (Fig-

ures 1a and 1b).

These challenges could be mitigated by applying a tex-

ture mapping method that includes global/local warping of

texture to geometry. The traditional texture mapping meth-

ods assume that the reconstructed geometry and all input

views are known for mesh parameterization that builds a

texture atlas [18, 27, 30]. Moreover, the existing texture op-

timization methods calculate local texture warping to regis-

ter texture and geometry accurately [10, 14, 9, 31, 3]. How-

ever, these methods also require long computational time

for optimization and are not suitable for real-time RGB-D

scanning. For example, a state-of-the-art texture optimiza-

tion method [31] takes five to six minutes to calculate non-

rigid warp parameters of 30 images for a given 3D model.

It is inapplicable for real-time 3D imaging applications.

In this work, we propose a progressive texture fusion

method, specially designed for real-time RGB-D scanning.

To this end, we first develop a novel texture-tile voxel grid,

where texture tiles are embedded in the structure of the

signed distance function. We integrate input color views

as warped texture tiles into the texture-tile voxel grid. Do-

ing so allows us to establish and update the relationship be-

tween geometry and texture information in real-time with-

out computing a high-resolution texture atlas. Instead of us-

ing expensive mesh parameterization, we associate vertices

of implicit geometry directly with texture coordinates. Sec-

ond, we introduce an efficient texture warping method that

applies the spatially-varying perspective mapping of each

camera view to the current geometry. This mitigates the

mismatch between geometry and texture effectively, achiev-

ing a good tradeoff between quality and performance in

texture mapping. Our local perspective warping allows us

to register each color frame to the canonical texture space

precisely and seamlessly so that it can enhance the quality

of texture over time (Figures 1d). The quality of our real-

time texture fusion is highly competitive to exhaustive of-

fline texture warping methods. In addition, the proposed

method can be easily adapted to existing RGB-D scan-

ning frameworks. All codes and demo are published on-

line to ensure reproducibility (https://github.com/

KAIST-VCLAB/texturefusion.git).

2. Related Work

In this section, we provide a brief overview of color re-

construction methods in RGB-D scanning.

2.1. Online Color Per Voxel

Existing real-time RGB-D scanning methods [24, 23,

6, 11, 12] reconstruct surface geometry by accumulating

the depth stream into a voxel grid of the truncated surface

distance function (TSDF) [5], where the camera pose for

each frame is estimated by the iterative closest point (ICP)

method [26] simultaneously. To obtain the color informa-

tion together, existing methods inherit the data structure of

TSDF, restoring a color vector to each voxel in the volu-

metric grid. While this approach can be integrated easily

into the existing real-time geometry reconstruction work-

flow, the quality of color information is often limited by

the long-lasting tradeoff between spatial resolution and time

performance. In addition, with the objective of real-time

performance, neither global nor local registration of texture

has been considered in real-time RGB-D scanning. Due

to the imperfectness of the RGB-D camera, these real-time

methods often suffer from blurred artifacts in the captured

color information. In contrast, we perform real-time texture

optimization to register texture to geometry progressively.

To the best of our knowledge, our method is the first work

that enables the non-rigid texture optimization for real-time

RGB-D scanning.

2.2. Offline Texture Optimization

The mismatch between texture and geometry is a long-

lasting problem, which has triggered a multitude of studies.

First, to avoid the mismatch problem of multi-view input

images, an image segmentation approach was introduced to

divide surface geometry into small segments and map them

to the best input view [17, 28, 10, 9, 19]. However, the ini-

tial segmentation introduces seam artifacts over surface seg-

ment boundaries, requiring an additional optimization step

to relax the misalignment. They optimize small textures

on each surface unit by accounting for photometric consis-

tency [10, 9], or estimating a flow field from the boundaries

to the inner regions on each surface unit [19]. However, the

image segmentation per surface unit easily loses the low-

frequency base image structure. It often requires additional

global optimization over all the multi-view images after the

scanning completes, making online scanning of these im-

ages infeasible. Also, this process cannot be applied to the

progressive optimization of real-time RGB-D scanning. In

contrast, our spatially-varying perspective warping method

is capable of being applied to online scanning, allowing for

seamless local warping of input images without misalign-

ment artifacts.

Second, a warping approach was proposed to transform

input images to mitigate the misalignment between geome-

try and texture by proposing local warp optimization. Aganj

et al. [1] leverage SIFT image features to estimate a warp

field. The sparse field is then interpolated through thin plate

geometry. Dellepiane et al. [8] make use of hierarchical
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Figure 2: Overview. Our workflow consists of two main

steps: Once a new depth map and color image are acquired,

the camera parameters and geometry information are up-

dated. After that, the correspondence between new geom-

etry and texture is computed. Finally, the new image is

blended to the texture space via perspective warping.

optical flow to achieve non-local registration of multi-view

input. However, the former is less accurate in the interpo-

lated region on the flow field; the later requires complex

flow interpolation. Then, computational cost increases ac-

cordingly.

Recently, the global optimization of multi-view input

was proposed to achieve high-quality texture mapping by

not only optimizing the local mismatch of texture but also

adjusting the global alignment of multi-view input. Zhou et

al. [31] optimize the camera pose and apply affine-based

warp fields to align them to the surface geometry. Bi

et al. [3] synthesize novel intermediate views with photo-

metric consistency by backprojecting neighboring views.

Again, they also require global optimization over all the

multi-view images after the scanning completes in order to

estimate optical flow, making them incapable of being ap-

plied to online scanning. In contrast, we devise a spatially-

varying projective warping method that is more efficient

than the flow-based approaches, enabling real-time texture

fusion. Our non-rigid warping field aligns per-frame color

information to the texture-voxel grid progressively, result-

ing in high-quality texture mapping competitive to offline

warping optimization.

3. Online Texture Fusion

Our online texture fusion method is enabled by two

main contributions: a novel texture-tile voxel grid (Sec-

tion 3.1) and an efficient, non-rigid texture optimization

method (Section 3.3).

Overview. Our real-time RGB-D scanning iteratively re-

peats two main steps for geometry and texture to progres-

sively accumulate both pieces of information in a canonical

space. The geometric reconstruction part is based on an

existing real-time 3D scanning method [25], and our tex-

ture reconstruction part consists of three main sub-steps:

(1) finding the texture-geometry correspondence after up-

dating geometry in the canonical space, (2) calculating the

spatially-varying perspective warping of the current view,

and (3) blending the warped view with texture in the canon-

ical space. Figure 2 provides an overview of our workflow.

Texture-voxel grid

Cell A

Cell B

Tile space Tile pixel

Cell A

Cell B

Figure 3: Our texture-tile data structure is integrated to the

grid of the SDF. For every zero-crossing cell, we assign a

2D regular texture tile. To associate surface and texture, the

texture tile is projected along the orthogonal axis direction.

3.1. TextureTile Voxel Grid

The first challenge for real-time texture fusion is that

both geometry and texture need to be updated progressively

every frame, and thus the existing mesh parameterization

and texture atlas are not suitable for real-time scanning.

In previous studies, the tile-shaped texture architecture

has been proposed to achieve the optimal compactness of a

texture atlas, often using a tree structure for rendering with

texture [16, 7, 2]. One benefit is that no mesh parameteri-

zation is required. With the objective of real-time scanning,

we are inspired to combine the concept of texture tiles with

the voxel grid of the signed distance function (SDF). By

doing so, the relationship between an implicit surface and a

texture tile within a voxel can be maintained through ortho-

graphic projection, rather than relying on expensive mesh-

ing and mesh parameterization. This key idea allows us

to update the texture information progressively in real-time

scanning.

We introduce a novel texture-tile voxel grid that consists

of a regular lattice grid in 3D, where each grid point has an

SDF value and the index of a texture tile. A cell, a basic

unit of surface reconstruction, includes eight adjacent grid

points. An implicit surface in the cell is defined by con-

necting a set of zero-crossing points through the trilinear

interpolation of SDF values. We assign a fixed size of tex-

ture patches, so-called texture tiles, to zero-crossing cells.

A pixel of texture tiles contains three properties: a weight,

color and depth. We update these properties of each tile

dynamically over time.

The mapping between texture and geometry is per-

formed by orthogonal projection. To minimize the sampling

loss, we select one of the axis directions, where the projec-

tion area is the maximum. We assume that the size of a cell

is small so that only, at most, only one facet exists and is

associated with one texture tile in a cell. This holds because

our texture cell shares the same resolution as the SDF that

contains the reconstructed geometry. Figure 3 depicts the

data structure of the texture-tile grid and the orthographic

projection.
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Figure 4: We first update geometry S with input depth D,

yielding new geometry S′. By computing new texture cor-

respondences, we update Q to yield the intermediate tex-

ture Q̃. We warps input image I via non-rigid texture opti-

mization and then integrate it to new texture Q′.

3.2. TextureGeometry Correspondence

Updating both geometry and texture is a chicken-and-

egg problem because the texture correspondence no longer

holds anymore when either of them changes. This is also

the reason why all the texture optimization methods choose

a global optimization manner; however, this makes them

offline. We, therefore, propose a workflow to update both

pieces of information progressively. See Figure 4 for an

overview.

Suppose we estimate the current camera pose C through

ICP using the current depth values D. We first update sur-

face geometry from S to S′ by integrating the current depth

values D in the texture-tile voxel grid. In consequence, the

correspondence between the current texture Q and new ge-

ometry S′ is no longer valid. There is no ground truth nor

any certain prior in searching for the new correspondences.

Therefore, we find out new texture correspondences by ex-

haustively searching corresponding points on previous ge-

ometry S (associated with texture Q) from the new surface

geometry S′ along its normal directions, yielding a new in-

termediate texture space Q̃ that corresponds to S′.

3.3. Efficient Texture Optimization

The second challenge for high-quality texture fusion is

that the perfect geometric correspondence between geom-

etry and multi-view input does not hold in real RGB-D

scanning. First, the depth and color camera modules in

conventional RGB-D cameras, such as Kinect, PrimeSense,

and Xtion, are not fully synchronized, i.e., the depth and

color frames are captured at different times [31, 3]. The

global non-synchronization of color and depth can be eas-

ily fixed by a global perspective warp. Second, the rolling

shutter artifacts often occur, and input frames are spatially

warped [15]. This means that asynchronous time offset

could exist in different regions; therefore, a local perspec-

tive warp can mitigate this problem. Lastly, some geometry

errors in 3D scanning, especially with low frequency, can be

fixed by a perspective warp. Of course, all those mismatch

Geometry S′ and Texture Q̃ Image I

x

y

Figure 5: To register the current camera image I and the

rendered image (using the current texture Q̃ and new geom-

etry S′), we first estimate a camera motion field of pixel x to

increase the photo-consistency of the local window (yellow

box). We then integrate the warped I to the texture in the

canonical space using the inverse motion field.

problems can be fixed by a free-form warp. We realized that

these solutions essentially become perspective warp, and,

thus, we devise a novel, efficient texture optimization based

on spatially-varying perspective warping.

Spatially-varying perspective warp. To address local er-

rors after the global registration, many free-form warping,

such as optical flow or affine transformation, have been pro-

posed [8, 31, 3]. Patch-based optical flow is powerful but

relatively slow, and the affine transformation often intro-

duces local errors. There is an inevitable tradeoff between

quality and performance in local texture optimization. We

therefore propose an alternative approach of 2D perspective

warp, estimating the camera motions of local perspective

windows, inspired by the moving direct linear transforma-

tion (DLT) [29].

The camera pose C allows us to register the current cam-

era image to the canonical space of the texture-tile voxel

grid in a certain direction. When the color camera captures

a part of the scene from the camera pose C, the partial ge-

ometry information S′ can be presented as a point cloud P̃ .

The current camera view of the new geometry can be ex-

pressed as I(π(CP̃ )), where π() is the perspective projec-

tion function with known camera intrinsics. See Figure 5.

To address local warping, we assume that the current

color frame (captured by the RGB camera) consists of local

windows ν (the yellow boxes about pixel x on the 2D grid

in Figure 5) and that each local window ν(x) is captured by

each virtual sub-camera with minor different pose T(x). We

approximate the minor camera motion in 3D as T(x) in the

form of linearized 6-DOF transformation using twist repre-

sentation [22]. This minor transformation T(x) can be mul-

tiplied to C to account for the local motion of sub-windows.

Our main objective is to register the current camera view

to the texture information with respect to the newly updated

geometry in the canonical space. We first render1 an im-

1For every pixel, we cast a ray to find an intersection point with the

newly updated implicit surface S′. We find a corresponding cell that con-
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age Ĩ at current camera pose C using the newly updated ge-

ometry S′ with the intermediate texture Q̃. Now we want to

enforce the photometric consistency of the current image to

the texture map through the local window ν by formulating

the following objective function:

E(T(x)) =
∑

y∈ν(x)

(

w (y)
(

I
(

π
(

T(x)CP̃ (y)
))

− Ĩ (y)
))2

, (1)

where y is a neighbor pixel within the local window ν(x)
(see Figure 5), w(y) is a Gaussian weight of the distance as

exp (−‖y − x‖
2
/σ2) with a spatial coefficient σ. The win-

dow size ν and spatial coefficient σ controls the regularity

of the estimated camera motion. If the spatial coefficient is

higher and the window size becomes larger, the estimated

camera motion reduces gradually to global camera motion.

To optimize a camera motion field from global cam-

era motion to local camera motion seamlessly, we compute

them in a hierarchical manner. We build multi-scale pyra-

mids of I , Ĩ , and P̃ and then estimate a motion field from

the coarse to the fine level. To initialize the next level, we

conduct bilinear sampling from the current level of the es-

timated motion field. For the online performance, instead

of estimating camera motions for every pixel, we estimate

camera motions T(x) of points of a regular lattice grid at

each level and then interpolate them for every pixel. We

empirically found that three levels are sufficient and that

the width between grid points is set as 64 pixels.

Different from the original moving DLT, we estimate lo-

cal camera motion as a twist matrix (with six unknown pa-

rameters), later converted to SE(3), instead of estimating

the homography matrix (with eight unknown parameters),

because we already know the 3D coordinates of the corre-

sponding geometry. In terms of optimization, it is benefi-

cial to reduce the number of unknowns by two. In addition,

our perspective warp can provide more accurate local warp-

ing with more efficient computation. Particularly, it is more

powerful when the surface geometry of the scene consists

of various surface orientations, thanks to the benefits of per-

spective warp (see Figure 1 for an example).

3.4. Online Texture Blending

Once we know the texture correspondences and the warp

transformation for the input image with respect to the latest

surface geometry, we are ready to blend the image into the

current texture in the canonical space. For each texel, we

evaluate each image pixel by spatial resolution and registra-

tion certainty.

Resolution sensitivity. We estimate the projected areas of

correspondent image pixels and compute blending weights,

tains the intersection point and sample color in the texture tile using bilin-

ear interpolation.

following Buehler et al. [4]. The size of the projected area is

related to the depth and the angle between the view direction

and the normal direction, i.e., the projected area is inversely

proportional to depth squared and proportional to the cosine

value of the view angle. We compute the area weight factor,

based on the factor ρ with the minimum threshold γarea:

warea (p) = max(e−((1−ρ)/σarea)
2

, γarea), (2)

where ρ =
(

zmin

z

)2
n · p−c

|p−c| . Here zmin is the minimum

depth of scanning, p is a 3D point corresponding to each

texel, n is the surface normal of p, and c is the camera cen-

ter.

Registration certainty. The registration certainty between

the image and the geometry is crucial w.r.t. the texture ac-

curacy. The texture inaccuracy, caused by the imperfect ge-

ometry, is crucial for two types of surface areas: skewed

surface and near-occlusion surface. When the angle be-

tween the view direction and the surface normal becomes

large, the displacement error greatly increases. Also, near

the occlusion edges, the inaccurate object boundaries of ob-

jects causes severe artifacts, such as texture bleeding to for-

ward/backward objects. To attenuate these artifacts, we first

estimate occlusion edges and evaluate the soft-occlusion

weight wocc(p) at point p that corresponds to the camera

pixel x = π(Cp), by eroding occlusion edges with a dis-

crete box kernel and a Gaussian kernel. We evaluate the

angle weight factor as:

wangle (p) = max(e−((1−n· p−c

|p−c| )/σangle)
2

, γangle). (3)

Finally, our total blending weight for a given camera is

computed as

w (p) = warea (p) · wocc (p) · wangle (p) . (4)

We update weights and colors of texture Q in an inte-

grated manner. The previous texture Q̃ and the image I
are blended as

Q(p) =
W (p)Q̃(p)+w(p)I(x′)

W (p)+w(p) ,

W (p) = min(W (p) + w(p), ψ),
(5)

where ψ is a weight upper bound.

4. Results

Experimental Setup. We implemented our method by in-

tegrating our texture fusion algorithm on an existing real-

time 3D scanning method [25]. We used a desktop machine

equipped with Intel Core i7-7700K 4.20 GHz and a graph-

ics card of NVIDIA Titan V. We used a commercial RGB-D

camera, an Asus Xtion Pro Live, which provides imperfect

synchronization of color and depth frames in the VGA res-

olution (640×480) in 30 Hz.
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(b) Maillot et al. [21]

(texture but no texture optimization)

(c) Zhou et al. [31]

(global perspective + affine warp)

(d) Ours

(spatially-varying perspective warp)

(a) Nießner et al. [25]

(per-voxel representation)

Figure 6: We compare our online method (d) with three existing RGB-D scanning methods: (a) the online voxel representa-

tion method [25], (b) the offline traditional texture mapping method [21], and (c) the offline texture optimization method [31].

Our method achieves high-quality texture representation without sacrificing scanning performance thanks to our spatially-

varying perspective warping and the texture-tile voxel grid. Two scenes from the top are our captures, where 8×8 texture tile

per 10mm voxel is used. The last reference scene is obtained from [31], where a 4×4 texture tile per 4mm voxel is used.

Comparison with Other RGB-D Scanning We compare

the texture quality of our method with three other methods.

See Figure 6. The first column shows scanning results by

an online RGB-D scanning method [25] that uses per-voxel

color representation in their implementation. The voxel-

based representation in the online method suffers from the

tradeoff between quality and performance. The second col-

umn presents results by a traditional offline texture mapping

method [21], where no texture optimization is conducted.

Owing to the correspondence mismatch between geome-

try and texture, the image structures are blurred severely.

The third column shows an offline texture optimization

method [31] that includes global warping of the color cam-

era motion and local affine transformation. We experi-

mented with our implementation of [31] on a GPU for this

experiment. The results of the offline texture optimiza-

tion still present misalignments in local regions despite long

computation time. The last column shows the results of

our online texture optimization method. Thanks to the ef-

ficient spatially-varying perspective warp, we can achieve

both high-quality texture and real-time performance.
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(c) Scene image

(a) Zhou et al. [31] (low-res)

(d) Ours

(b) Zhou et al. [31] (high-res)

Figure 7: Comparison of our online texture optimization

against an offline texture optimization method [31].

Geometry

Texture map

Implementation details. For the

backward compatibility of our

method, we implement a conver-

sion from our texture model to

a conventional texture atlas, as-

sociated with an ordinary surface

model. We first create mesh rep-

resentation by the marching cube

algorithm [20] and then create

a lattice-shaped texture atlas by

finding out zero-crossing cells in

the SDF to pack texture tiles of each cell into the texture at-

las. By computing the local 3D coordinates within the cell

and projecting them in the selected axis direction, we com-

pute local 2D texture coordinates of the vertices of facets.

The local texture coordinates converted to the global tex-

ture coordinates associated with the generated texture map.

Note that the origin of the local texture coordinates is de-

termined by the new tile index. To avoid texture bleed-

ing on the boundary among discrete tiles, we add one-pixel

padding for every tile. See the inset figure on the right for

an example of a converted 3D model and its texture atlas

(the scene model shown in Figure 1).

Comparison with other offline optimization. We com-

pared our online method with an offline texture optimiza-

tion method [31]. For this experiment, we used the authors’

implementation [32]. See Figure 7. For the fairness of com-

parison, we share the same geometry model. Our method

used the voxel size of 4 mm in each dimension with a 4×4

texture tile in each cell, and since Zhou’s method calculates

the final output color per vertex, we increased the spatial

resolution of the 3D model, where each vertex distance is

around 1 – 2 mm. Even though Zhou’s method has two to

four-times higher spatial resolution than ours, the spatial

resolution of texture information of our method is signifi-

cantly higher, given the same input images.

Reconstruction result

Voxel 4mmVoxel 10mm
4
×

4
tex

tu
re

8
×

8
tex

tu
re

V
o

x
el

Zoom

Figure 8: Impacts of resolution parameters. Our method can

achieve high-resolution texture even with a low-resolution

voxel grid. The texture quality of our method is signifi-

cantly higher than that of existing voxel representation.

Texture tile,

voxel unit

Geometry

integration

Texture

correspondence

Texture

optimization

Texture

blending

Total time

per frame

4×4 tile, 4mm 3.7 ms 4.1 ms 30.5 ms 2.3 ms 40.6 ms

8×8 tile, 4mm 3.8 ms 4.0 ms 40.6 ms 2.4 ms 50.7 ms

4×4 tile, 10mm 3.7 ms 2.3 ms 25.8 ms 1.4 ms 33.3 ms

8×8 tile, 10mm 3.7 ms 2.3 ms 27.1 ms 1.5 ms 34.6 ms

Table 1: Per-function performance measures of our method

with different resolutions. We mainly use the first row con-

figuration of a 4×4 tile and 4mm voxel size.

Impacts of resolution. Figure 8 shows the impact of the

resolution parameter (the resolutions of the voxel grid and

the texture tile) in our method on the texture quality. In our

method, the configuration of 8×8 and 4mm does not in-

crease texture quality any further. We empirically choose

the configuration of 4×4 tile and 4mm voxel size. Ta-

ble 1 provides averaged per-function performance measures

of our method with different resolutions. Even including

texture optimization for every frame, we achieve 25 frames-

per-second (fps) in runtime. We found that texture opti-

mization does not need to be computed every frame in gen-

eral scanning, and thus we computed the optimization pro-

cess every fourth frame so that we achieved 25–35 fps in

our video results. As the texture resolution increases, it in-

creases the rendering time so optimization time increases.

Those numbers are trade-offs based on the scene, RGB-D

sensor and GPU computation. Our method is not limited to

a specific camera, VGA input, etc., but is flexible to extend

to other devices as well.

Comparison of warping methods. Figure 9 compares our

perspective warping method with different warping meth-

ods in terms of the accuracy. For fair comparison, we use

hyperparameters, such as the same cell width and hierar-

chical levels. The local affine warping cannot correct the

pose error due to the model limitation. The global perspec-

tive warping method reduces the misalignment globally, but

local errors still remain. The spatially-varying perspective

warping model robustly corrects local errors of registration,

1278



Global perspective warp

+ affine warp

Spatially varying

perspective warp
Global perspective warpAffine warp onlyNo correction

Figure 9: Comparison of different warping methods. Different warp methods are tested with the same parameters, such as the

number of pyramid levels, the width of lattices, and others as possible. The affine-based warp method often fails to correct

global camera motion. While even the combination of affine warp and global perspective warp still has errors, our perspective

warp method reduces the ghosting artifact significantly.
4mm10mm

Ground-truthVoxel Ours Voxel Ours

Figure 10: Comparison of quantization errors between volumetric representation and our textile representation (4×4 texture

tile). We unproject an image on each representation and render it to compare quantization errors. In our experiment, 4×4

patch size with a 4mm voxel size is sufficient in terms of image quality.

while the combination of global perspective warp and local

affine warp cannot correct perfectly.

Comparison of quantization error. Figure 10 compares

quantization errors with different configurations. We back-

project an image on the texture space and then render the

texture in the same image space. For the VGA image reso-

lution, a 4×4 texture tile in a 4mm voxel unit is sufficient

to project high-frequency information on the texture space.

5. Discussion

The proposed method is not free from limitations, which

can lead to interesting future work. Our method evalu-

ates the photometric consistency of the texture and input

images. View-dependent appearance or severe exposure

change might degrade the quality of texture reconstruction.

Particularly, the new geometry scanning with blunt change

of exposure could cause a problem in the texture-to-image

registration step. In addition, we just capture objects’ color

directly as texture. There is no separation process of inci-

dent color to diffuse color and scene illumination. Captur-

ing diffuse color as texture is interesting future work.

We found that our method is particularly effective when

the captured scene is large and includes various surface ori-

entations. Capturing even larger scale scenes would be wor-

thy to explore as future work.

6. Conclusions

We have presented a high-quality texture acquisition

method for real-time RGB-D scanning. We have proposed

two main contributions: First, our novel texture-tile voxel

grid combines the texture space and the signed distance

function together, allowing for high-resolution texture map-

ping on the low-resolution geometry volume. Second, our

spatially-varying perspective mapping efficiently mitigates

the mismatch between geometry and texture. While updat-

ing the geometry in real-time, it allows us to enhance the

quality of texture over time. Our results demonstrated that

the quality of our real-time texture mapping is highly com-

petitive to that of existing offline texture warping methods.

We anticipate that our method could be used broadly as our

method is capable of being integrated into existing RGB-D

scanning frameworks.
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