
Uncertainty-Aware Mesh Decoder for High Fidelity 3D Face Reconstruction

Gun-Hee Lee1, Seong-Whan Lee2

1Department of Computer and Radio Communications Engineering, Korea University, Seoul, South Korea
2Department of Artificial Intelligence, Korea University, Seoul, South Korea

{gunhlee, sw.lee}@korea.ac.kr

Figure 1: We propose an uncertainty-aware mesh decoder which reconstructs high quality 3D face. Our approach successfully

employs Graph CNN and GAN for mesh decoder along with an uncertainty-aware image encoder to reconstruct shape and

texture in high fidelity. Our 3D face reconstruction results are best viewed in color.

Abstract

3D Morphable Model (3DMM) is a statistical model of

facial shape and texture using a set of linear basis functions.

Most of the recent 3D face reconstruction methods aim to

embed the 3D morphable basis functions into Deep Con-

volutional Neural Network (DCNN). However, balancing

the requirements of strong regularization for global shape

and weak regularization for high level details is still ill-

posed. To address this problem, we properly control gener-

ality and specificity in terms of regularization by harnessing

the power of uncertainty. Additionally, we focus on the con-

cept of nonlinearity and find out that Graph Convolutional

Neural Network (Graph CNN) and Generative Adversarial

Network (GAN) are effective in reconstructing high qual-

ity 3D shapes and textures respectively. In this paper, we

propose to employ (i) an uncertainty-aware encoder that

presents face features as distributions and (ii) a fully non-

linear decoder model combining Graph CNN with GAN. We

demonstrate how our method builds excellent high quality

results and outperforms previous state-of-the-art methods

on 3D face reconstruction tasks for both constrained and

in-the-wild images.

1. Introduction

Reconstructing a high quality personalized 3D face can

be used for many applications, including face recogni-

tion [11, 21, 16, 14, 36], facial motion capture [9] or vir-

tual and augmented reality [34, 33]. However, estimating

3D geometry and texture from a single photograph is still a

challenging problem due to the limited 3D scan data and the

complex relationship of multiple physical dimensions such

as illumination, reflectance, and geometry. To address the

above difficulties, Blanz and Vetter [37] introduced 3DMM

which relies on additional prior assumption such as con-

straining faces to lie in a low dimensional subspace. Since

then, a lot of 3DMM based methods have been presented

and showed impressive results [10, 18, 31, 13, 19, 32].

However, these methods do not generalize well beyond the

restricted low dimensional subspace of the underlying lin-

ear statistical model.

Recently, many studies have been conducted to bring the

concept of DCNN to 3DMMs. This learns model directly

from 2D images to better capture in-the-wild variations and

increases the representation power. However, these models

are still not capable of modeling high fidelity shapes and

textures for in-the-wild images. The main reason is that the
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3D face reconstruction task still suffers from conflicting re-

quirements between strong regularization for global shape

and weak regularization for capturing high level details. We

found the fact that we can have special regularization effect

by making a change for the embedding step. Unlike recent

3D reconstruction models that use deterministic point repre-

sentation in the latent feature space, we propose to employ

an uncertainty-aware image encoder to inform the decoder

what features from the image are uncertain. Let’s take an

example. When a person describes a particular face from

an image, they describe only the facial characteristics of

which they are confident. If the eyes are occluded as shown

as Figure 2, a person will retain the characteristics of the

eyes as uncertain information. As an ideal model would

reconstruct confident features with high specificity and un-

certain features with high generality, the concept of uncer-

tainty [41, 40] becomes very important for 3D face recon-

struction in terms of regularization. These features are also

robust to a slight change in the input image (e.g. occlusion,

pose or lighting) which could drop the performance for 3D

face reconstruction.

Additionally, we focus on a fully nonlinear model and

find out that Graph CNN and GAN are effective in recon-

structing high quality 3D shapes and textures, respectively.

Graph CNN, which directly operates convolutions on non-

Euclidean structures such as graphs, manifolds, and meshes,

is effective for both obtaining important information from

edges and reducing computational complexity. Due to these

advantages, it has recently been applied to mesh datasets

[30, 29, 23] including 3D face datasets [6, 42]. Meanwhile,

as a texture decoder, GAN has recently been proven to be

able to represent high fidelity texture and create unobserved

views naturally [8]. However, they still have some problems

in representing satisfactory results.

In this paper, we propose an uncertainty-aware mesh de-

coder, which considers the distribution of the input face

features and generates a high quality shape and texture us-

ing a unified network of Graph CNN and GAN. Along the

process, we introduce a novel way to optimize the decod-

ing process using multi-view identity loss and uncertainty-

aware perceptual loss, which will further help the model to

reconstruct 3D face with high fidelity. The contributions of

the paper can be summarized as below:

• We propose to employ an uncertainty-aware image

encoder that considers distribution of the face fea-

tures rather than a deterministic point representation

for proper regularization effect.

• We present the unified decoder which combines a de-

tailed shape from Graph CNN with a high-quality tex-

ture map from GAN.

• We propose a novel loss function which involves

an uncertainty-aware perceptual loss and multi-view

Figure 2: The importance of concerning uncertainty in 3D

face reconstruction. Deterministic embeddings represent

face as a point estimate without considering uncertain fea-

tures.

identity loss with random projection to further improve

the performance of 3D face reconstruction.

2. Related Work

The history of monocular 3D face reconstruction is quite

vast where challenges in building and applying these mod-

els are still active research topics. We briefly review the

flow of monocular 3D face reconstruction studies from lin-

ear to nonlinear approach.

Linear 3DMM. The first concept of the 3DMM was built

by Blanz and Vetter [37] that used the Principal Component

Analysis (PCA) to represent 3D face shape and texture with

linear bases. Since then, there have been many efforts to

improve the 3DMM mechanism. Booth et al. [18] obtained

a richer PCA model with using 10,000 facial scans. Paysan

et al. [31] improved previous models with using better scan-

ning device and replaced the previous UV space alignment

by Nonrigid Iterative Closest Point for registration. Vlasic

et al. [13] used a multi-linear model of 3D face meshes that

separately parameterizes the space of geometric variations

due to different attributes. Booth et al. [19] used the aug-

mented model with an in-the-wild texture variations. Kop-

pen et al. [32] introduced a Gaussian Mixture 3DMM that

models the global population as a mixture of Gaussian sub-

space.

Nonlinear 3DMM. To overcome the aforementioned prob-

lem, recent methods focus on nonlinear decoders to

go beyond the standard 3DMMs for representation of

high quality shape and texture. While both previous

optimization-based and learning-based algorithms relied on

3D scan dataset to learn an image-to-parameter or image-

to-geometry mapping [4, 17, 27], Tewari et al. [7] and

Tran and Liu [24] proposed a method of learning 3DMM

from 2D images in a self-supervision scheme. As the non-

linear decoder pulled up the reconstruction performance to

a satisfying level, very recent studies now try to focus to

reconstruct with high details. Tran et al. [26] learned ad-

ditional proxies as means to side-step strong regularization

for higher fidelity in 3D reconstruction. Gecer et al. [8] used
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GAN to reconstruct facial texture with high fidelity. Never-

theless, the method estimates shape with PCA and the abil-

ity to represent texture needs to be improved further. Zhou

et al. [42] first proposed to employ Graph CNN for 3D face

reconstruction. However, the method still has some prob-

lems in representing satisfactory results.

In this paper, we propose an uncertainty-aware mesh de-

coder, which considers the distribution of the input face fea-

tures and generates a high quality shape and texture using a

unified network of Graph CNN and GAN.

3. Proposed Method

Our novel 3D face reconstruction approach mainly cov-

ers two challenging tasks: (i) balancing the term, generality

and specificity by imposing generality for uncertain features

and specificity for confident features and (ii) reconstructing

high fidelity 3D face with unified decoder of Graph CNN

and GAN.

3.1. Uncertainty Encoder

An ideal embedding vector z for neutral shape and

albedo should remain consistent for the same identity. How-

ever, given the possibility of other either external effect or

noises (e.g. pose, blur, occlusion, whitening, illumination)

in the input image x, it is not possible to regress the consis-

tent z for all images due to an inevitable shift of the uncer-

tain features. Inspired from the work of Shi et al. [41], we

propose to employ uncertainty-aware face encoder which

can inform the decoder what features from the image are

uncertain. This term of uncertainty can also have a special

regularization effect which a model is able reconstruct with

high fidelity for confident parts and high generality for un-

certain parts.

Uncertainty Embedding. In the embedding step, we esti-

mate a Gaussian distribution for p(z|xi) = N
(

z : µi, σ
2
i

)

to represent a person’s face shape and albedo, where µi is

the most likely shape feature for the ith input and σi is the

confidence associated with the corresponding feature. Let

us say that we know the µ and the σ for the features of an

image pair with same identity (xi, xj). Then, we can mea-

sure the likelihood of their sharing the same latent vector

(zi = zj , ∆z = 0) which implies that both the shape and

the albedo are equal for the same identity:

p (zi, zj) =

∫

p (zi|xi) p (zj |xj) δ (zi − zj) dzidzj , (1)

where zi and zj are the latent vector of the shape and the

albedo feature of the ith and jth input respectively and

the δ (zi − zj) is a Dirac delta function. We then use log-

likelihood which the solution is given:

log p (zi, zj) =

−
1

2

D
∑

l=1







(

µ
(l)
i − µ

(l)
j

)2

σ
2(l)
i + σ

2(l)
j

+ log
(

σ
2(l)
i + σ

2(l)
j

)







−
D

2
log 2π, (2)

where µ
(l)
i refers to the mean value of the lth feature, σ

2(l)
i

refers to the variance of the lth feature and D denotes the

dimensions of feature space. This function can be easily

inferred from which the mean value for the difference of

two Gaussian’s is µi − µj and the variance is σ2
i + σ2

j .

Based on this concept, we use this as a training loss to

estimate the uncertainty of shape and albedo. For the train-

ing process of estimating this uncertainty value, we use a

similar process as [41] proposed. We first fix the value µ,

which is earned by pretraining a deterministic 3D recon-

struction network without the uncertainty estimation. Then,

given a set of images with the same identity, we separately

train an additional network that estimates the uncertainty σ.

The uncertainty network is a branch network that shares the

same input with the bottleneck layer from the encoder. An

optimization criterion is used to maximize the above equa-

tion for all genuine pair (xi, xj), where xi and xj is the

paired image of equal identity. Formally, we use the loss

function to minimize

Luncertainty =
1

|P |

∑

(i,j)∈P

− log p (zi, zj) , (3)

where P is the number of all genuine pairs. By this process,

the network learns how to estimate the uncertainty σ. We

note that this special σ value can act as an attention value

for the features and be applied to the loss function.

Expression embedding. For expression embedding, we

use a linear blendshape model [12] that combines the facial

expression models. We fix this model which is not learned

from our work. The 80 blendshape parameters δ are directly

applied to the decoder.

3.2. Unified Decoder of Graph CNN and GAN

Mesh Decoder. We propose to employ a Chebyshev spec-

tral Graph CNN [28, 35], which acts directly on the 3D

mesh to estimate the face shape by regressing the 3D coor-

dinates of the mesh vertices. It works well with structured

graphs with predefined topology. A series of Graph CNN

layers operate as the following.

A 3D face mesh can be represented by an undirected

and connected graph G = (V, E), where V ∈ R
n×3 is

a set of n vertices, E is a set of edges and W ∈ R
n×n
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Figure 3: The framework of the proposed method. The model encodes the input image to a projection vector and distribution

of the features where the mean represents the most likely feature and the variance represents the confidence associated.

The mesh convolution based decoder use this information to reconstruct a 3D face in high-fidelity. We exploit pixel loss,

uncertainty-aware perceptual loss, multi-view identity loss, landmark loss, and reconstruction loss.

is an adjacency matrix encoding the connection status be-

tween vertices. The normalized graph Laplacian is L =
In − D−1/2WD−1/2 where D ∈ R

n×n is the diagonal

matrix with Dii =
∑

j Wij and In is the identity ma-

trix. The Laplacian L is diagonalized by the Fourier bases

U = [u0, . . . , un−1] ∈ R
n×n such that L = UΛUT where

Λ = diag ([λ0, . . . , λn−1]) ∈ R
n×n. The graph Fourier

transform of x ∈ R
n×3 is then defined as x̂ = UTx, and its

inverse as x = Ux̂. In Chebyshev Spectral Graph CNN, the

graph convolution operation is defined as

gθ(Λ) =
K−1
∑

k=0

θkTk(Λ̃), (4)

where θ ∈ R
K is a vector of Chebyshev coefficients and

Tk(Λ̃) ∈ R
n×n is the Chebyshev polynomial of order k

evaluated at a scaled Laplacian Λ̃ = 2Λ/λmax−In. Tk can

be recursively computed by Tk(x) = 2xTk−1(x)−Tk−2(x)
with T0 = 1 and T1 = x. The spectral convolution can be

defined as

yj =

Fin
∑

i=1

gθi,j (L)xi, (5)

where xi is the input feature map and yj is the output feature

map.

Based on this concept, we attach the 256-D feature vec-

tor extracted by the uncertainty-aware encoder to the 3D

coordinates of each vertex in the mean shape. From a high

level perspective, the Graph CNN estimates the 3D coordi-

nates of each vertex by using 3D coordinates as the input of

each vertex along with the input features.

Texture Decoder. We use a UV map as our texture repre-

sentation. Each 3D vertex is projected onto the UV space

using cylindrical unwrap. In 3D face reconstruction from

a single input image, it is important not only to capture

a high level of detail, but also to create an unobserved

view naturally. In particular, GAN trained with UV map

of real textures are shown to be effective in generating real-

istic UVs while simultaneously generalizing well to unseen

data. Gecer et al. [8] first proposed to employ GAN for

texture decoder. We designed our network using the gener-

ator structure suggested by BigGAN [3], which argued that

the training of GAN benefits dramatically from large batch

sizes. Our network can generate realistic texture map. Fig-

ure 4, 5 shows how realistic our texture decoder generates

texture maps compared to other methods.

3.3. Differentiable Renderer

To reconstruct a 2D face image from the estimated 3D

face, we employ a differentiable renderer [22] based on de-

ferred shading model. Per-vertex attributes such as colors

and normal are interpolated at the pixels using the barycen-

tric coordinates and triangle IDs. This approach allows ren-

dering with full perspective and any lighting model.

The 3D textured mesh is projected into a 2D image in the

Cartesian coordinates with a camera model. We employed

a pinhole camera model that utilizes a perspective transfor-
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mation model. The camera parameter can be defined as be-

low:

c = [xp, yp, zp, xo, yo, zo, f ]
⊤
, (6)

where [xp, yp, zp], [xo, yo, zo] denote 3D coordinates of

camera position, orientation respectively and f is the focal

length. Additionally, lighting parameter l is concatenated

together with camera parameter as rendering parameter that

will be estimated by the uncertainty-aware image encoder.

In summary, the rendering parameter fm =
[

c
T , lT

]T
, a

vector of size 18, is estimated by our uncertainty-aware im-

age encoder and frandom includes randomly taken camera

parameter.

3.4. Loss Functions

We propose a novel loss function by combining five

terms. It is formulated as below:

L = λpixLpix + λuncLunc + λviewLview

+λlanLlan + λrecLrec,
(7)

where we weight each of loss functions with λ parameters.

Our methodology allows us to reconstruct models that are

faithful to the input images, depending on the parameter set-

tings, and to reconstruct models that are robust to diverse

variations. We optimize all of our parameters so as to mini-

mize our loss function.

Pixel loss. We apply the primitive way of comparing the

images in the pixel space with l1 loss which can be defined

as following:

Lpix =
∥

∥I− I
R
∥

∥

1
, (8)

where I is the input image and I
R is the rendered image.

This pixel loss Lpix enforces the similarity between the in-

put image and the rendered image.

Uncertainty-aware perceptual loss. Simply optimizing

for similarity between the images with pixel values can fool

the network to produce faces that match closely in the pixel

space but look unnatural. The similarity between the iden-

tity features from facial recognition network of the input

image and the rendered image can help our method to be

robust to diverse variations. We use the uncertainty infor-

mation as weights to compare images in the feature space.

The loss gives higher concentration to the confident fea-

tures that helps reconstruct the corresponding features with

higher quality.

Lunc =
1

|D|

D
∑

l

||
σ
2(l)
i

∑

σ2
i

µ
(l)
i −

σ
2(l)
j

∑

σ2
j

µ
(l)
j ‖22. (9)

Multi-view identity loss. Learning to reconstruct 3D face

using a single view fits only the observed views. As a result,

the reconstructed face looks incorrect when viewed from the

different viewpoint with the input image. By adding identity

loss with random projection, our method becomes robust to

viewpoints. ÎR is the rendered image from randomly taken

view. F (I) denotes the uncertainty embedded features of

image I .

Lview = 1−
F (I) · F

(

Î
R

)

‖F (I)‖2

∥

∥

∥F
(

ÎR
)∥

∥

∥

2

. (10)

Landmark loss. We employ a deep face align network [2]

M(I) : RH×W×C → R
68×2 to detect landmark locations

of the input image and align the rendered mesh onto it by

updating the parameters. We apply l1 loss between the pro-

jected and ground truth landmark locations.

Llan =
∥

∥M (I)−M
(

I
R
)∥

∥

2
. (11)

Reconstruction loss. Reconstruction loss is applied to en-

forcing the shape reconstruction of the mesh. We apply a

per vertex l1 loss between the ground truth shape S and

predicted shape Ŝ. Empirically we found that using l1 loss

leads to more stable training and better performance than l2
loss.

Lrec =
∥

∥

∥S− Ŝ

∥

∥

∥

1
. (12)

4. Experimental Results

4.1. Datasets

For uncertainty-aware image encoder, we trained our

network using the CASIA-Webface dataset [15], which con-

tains 10,575 subjects with over 494k images. For train-

ing decoder, we used various datasets including COMA

dataset [6], which consists of about 20,000 meshes over 12

different subjects, 300W-LP dataset [38], which contains

approximately 60k large pose facial data and the CelebA

dataset [43] which is a large scale face attributes dataset

with more than 200k celebrity images. We trained texture

decoder, Biggan with UV maps from [20].

We perform and conduct qualitative experiments on

AFLW2000-3D [38], subset of Casia-Webface dataset, and

other various images. We also perform quantitative experi-

ments using the AFLW2000-3D dataset where comparison

of the 3D meshes is available for evaluation.

4.2. Ablation Study on Uncertainty

We conduct an experiment to study the effects of uncer-

tainty embedding compared to the most recent 3D face re-

construction methods, which use deterministic embedding.
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Input Tewari18 L. Tran19 Ours + UncertaintyFeng17

Figure 4: 3D face reconstruction comparison on samples from the AFLW2000-3D dataset [38] and the CelebA dataset [43].

Method Shape Texture

Linear [38] 0.0241 0.1287

Nonlinear [25] 0.0146 0.0427

Nonlinear + GL + Proxy [26] 0.0139 0.0363

Ours 0.0129 0.0317

Table 1: Quantitative comparison on shape and texture rep-

resentation power.

Method Linear [38] Nonlinear [25] PRNet [39] Ours

NME 5.42 4.12 3.62 2.81

Table 2: Face alignment comparison on the AFLW2000-3D

dataset [38].

As shown in Fig. 4, our uncertainty-aware method outper-

forms recent methods in terms of model’s power to repre-

sent facial texture. As expected, adding uncertainty to fea-

ture embedding has a special regularization effect, which

properly controls generality for global shape and specificity

for high level details.

4.3. Comparisons to the Stateoftheart

We show our model’s power to represent facial shape and

texture by comparing the results with other state-of-the-art

methods [8, 26, 7, 22, 5, 1] for texture and [39, 26, 7] for

shape. As shown in Figure 4, 5, our method outperforms

all other methods with high-quality monocular reconstruc-

tions of both geometry and texture. We briefly compare

the qualitative results of our approach with 8 state-of-the-art

methods in 3D face reconstruction task. For linear 3DMM

model, the method proposed by A. T. Tran et al. [5] es-

timates the 3DMM parameters using DCNN. However, as

the reconstruction subspace is still restricted to the linear

bases, the model lacks in representation power for varia-

tions in textures. Genova et al. [22] trains a regression net-

work from 2D image to 3DMM coordinates using only un-

labeled images and synthesized images. Their work pro-

poses three novel loss functions which further helps the re-

construction task in an unsupervised setting. The identity

loss for three randomly determined poses gave us the di-

rection for training the identity features which are robust to

diverse variations with decreasing the presence of occluded

regions of the mesh. However the model is still restricted to

the linear subspace which has limited power for represent-

ing in-the-wild texture. By contrast our work emphasize the

importance of nonlinearity, which further brings the model

to go beyond the standard 3DMMs with an ability to rep-

resent wide range of shape and texture variation. Jackson

et al. [1] tried to avoid using linear 3DMM priors by train-

ing a regression network from 2D image to voxel coordi-

nates using an hourglass structure with skip connections.

While this strategy had a larger potential for exploring the

solution space compared to the linear model, the surface is

not smooth and lacks in preserving details. Also volumet-

ric methods discards the relation of meshes which we on

the other hand, use Graph CNN to effectively handle face

meshes. However, small details of faces disappear as the

model estimates a UV position map from an image due to

the inevitable smoothing effect of map regression. Feng et
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Figure 5: Qualitative comparison with other state-of-the-art 3D face reconstruction methods. The figure shows our model’s

power to represent facial shape and texture.

al. [39] proposed a straightforward method that simultane-

ously reconstruct the 3D facial geometry by regressing a 2D

representation called UV position map. However, small de-

tails of faces disappear as the model estimates a UV position

map from an image due to the inevitable smoothing effect

of map regression. Again, our work use feature uncertain-

ties along with Graph CNN to have great power to balance

regularization on mesh domains which helps to reconstruct

shapes with high detail for the confident features.

A. Tewari et al. [7] adopts a self-supervision scheme

which breaks out from additional priors, such as statistical

face models learned from the limited 3D face data. The

3DMM basis functions are embedded into DCNN and the

advantage of 3DMM for regularization is combined with the

out-of-space generalization of a learned corrective space.

While this model can recover more details than existed

3DMM based methods, the process for model training is

attached with strong regularization, which limits their tex-

ture representation power for high level details of the face.

Our model effectively handles this regularization to create a

3D face model in high-fidelity.

The most related work to our proposed method is Tran
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Figure 6: Reconstruction results for CASIA-Webface. The

regression network is robust to changes in noise, blur, oc-

clusion and pose.

et al. [26] and Gecer et al. [8]. Tran et al. [26] presents

an approach to learn additional proxies as means to avoid

strong regularization, as well as, leverages to promote de-

tailed shape and albedo. This method improves the non-

linear 3D morphable model in both learning objective and

network architecture which efficiently captures high level

details. Our method, however, creates higher level details

for both shape and texture by using Graph CNNs which di-

rectly operate convolutions on graph based structures and

combining it with a GAN model. Also our model use uncer-

tainty information instead of learning additional proxies to

loosen regularizations. Gecer et al. [8] harness the power of

GAN in order to represent facial texture with high fidelity.

GANFIT utilizes GAN to train a very powerful generator

of facial texture in UV space. As our work also harness the

power of GAN model to create texture maps in high quality,

we integrate the textures to the meshes of Graph CNNs and

use feature uncertainties to balance the terms for generality

and specificity.

4.4. Additional Study on Results

Robust to blur and occlusion. To better understand the

power of uncertainty embedding, we additionally conduct

an experiment that reconstructs 3D face from ambiguous

images. We set the weight of the uncertainty-aware percep-

tual loss to be large so that our model is robust to diverse

variations. As shown in Figure 6, our network yields re-

sults that are robust to changes in noise, blur, occlusion,

and extreme poses. We show that considering uncertainty

brings robustness to varying conditions for a single subject

and displays consistent output.

Robust to viewpoint. We study the effects of identity loss

Figure 7: Reconstruction results for frontal/profile view

with multi-view identity loss. Our model is robust in recon-

structing all facial areas including the unobserved region.

according to viewpoint, which measures a distance between

the input image and the image rendered with a random pro-

jection vector. As shown in Figure 7, images from unob-

served viewpoints appear natural. Our method is robust in

reconstructing all facial areas including the unobserved re-

gion.

5. Conclusion

In this paper, we present an uncertainty-aware mesh de-

coder which uses uncertainty information to improve 3D

face reconstruction task. Our method ensures the decoders

to see the uncertain features that can further balance gen-

erality and specificity of each features. We also decode

shape directly on the mesh domain which is later combined

with the generated texture map, where this unified model

boost the performance and is suitable to reconstruct both

constrained and in the wild images with high details. Our

method outperforms previous state-of-the-art methods and

this work can be a step toward finding effective feature em-

bedding techniques for 3D face reconstruction.

Acknowledgment

This work was supported by Institute for Informa-

tion & communications Technology Planning & Evalua-

tion(IITP) grant funded by the Korea government (MSIT)

(No. 2019-0-00079, Artificial Intelligence Graduate School

Program(Korea University), No. 2019-0-01371, Develop-

ment of brain-inspired AI with human-like intelligence, No.

2014-0-00059, Development of Predictive Visual Intelli-

gence Technology).

6107



References

[1] Aaron S. Jackson, Adrian Bulat, Vasileios Argyriou, and

Georgios Tzimiropoulos. Large pose 3d face reconstruction

from a single image via direct volumetric cnn regression. In

ICCV, 2017. 6

[2] Adrian Bulat and Georgios Tzimiropoulos. How far are we

from solving the 2d & 3d face alignment problem? (and a

dataset of 230,000 3d facial landmarks). In ICCV, 2017. 5

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

In ICLR, 2019. 4

[4] Anh T. Tran, Tal Hassner, Iacopo Masi, and Gerard Medioni.

Regressing robust and discriminative 3d morphable models

with a very deep neural network. In CVPR, 2017. 2

[5] Anh T. Tran, Tal Hassner, Iacopo Masi, Eran Paz, Yuval

Nirkin, and Gerard Medioni. Extreme 3d face reconstruc-

tion: Looking past occlusions. In CVPR, 2018. 6

[6] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael

J. Black. Generating 3d faces using convolutional mesh au-

toencoders. In ECCV, 2018. 2, 5

[7] Ayush Tewari, Michael Zollhofer, Pablo Garrido, Florian

Bernard, Hyeongwoo Kim, Patrick Perez, and Christian

Theobalt. Self-supervised multi-level face model learning

for monocular reconstruction at over 250 hz. In CVPR, 2018.

2, 6, 7

[8] Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos

Zafeiriou. Ganfit: Generative adversarial network fitting for

high fidelity 3d face reconstruction. In CVPR, 2019. 2, 4, 6,

8

[9] Bindita Chaudhuri, Noranart Vesdapunt, and Baoyuan Wang.

Joint face detection and facial motion retargeting for multiple

faces. In CVPR, 2019. 1

[10] Bon-Woo Hwang, Volker Blanz, Thomas Vetter, and Seong-

Whan Lee. Face reconstruction from a small number of fea-

ture points. In ICPR, 2000. 1

[11] Brian Amberg, Reinhard Knothe, and Thomas Vetter. Ex-

pression invariant 3d face recognition with a morphable

model. In FG, 2008. 1

[12] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun

Zhou. Facewarehouse: A 3d facial expression database for

visual computing. In IEEE TVCG, 2014. 3

[13] Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan

Popovic. Face transfer with multilinear models. In ACM

Trans. Graph., 2005. 1, 2

[14] Dihua Xi, Igor T. Podolak, and Seong-Whan Lee. Facial

component extraction and face recognition with support vec-

tor machines. In AFGR, 2002. 1

[15] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning

face representation from scratch. In CoRR, 2014. 5

[16] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, 2015. 1

[17] Hyeongwoo Kim, Michael Zollhofer, Ayush Tewari, Justus

Thies, Christian Richardt, and Christian Theobalt. Inverse-

facenet: Deep monocular inverse face rendering. In CVPR,

2018. 2

[18] James Booth, Anastasios Roussos, Stefanos Zafeiriou, Allan

Ponniah, and David Dunaway. A 3d morphable model learnt

from 10,000 faces. In CVPR, 2016. 1, 2

[19] James Booth, Epameinondas Antonakos, Stylianos

Ploumpis, George Trigeorgis, Yannis Panagakis, and

Stefanos Zafeiriou. 3d face morphable models in-the-wild.

In CVPR, 2017. 1, 2

[20] Jiankang Deng, Shiyang Cheng, Niannan Xue, Yuxiang

Zhou, and Stefanos Zafeiriou. Uv-gan: Adversarial facial

uv map completion for pose-invariant face recognition. In

CVPR, 2018. 5

[21] Kaidi Cao, Yu Rong, Cheng Li, Xiaoou Tang, and Chen

Change Loy. Pose-robust face recognition via deep residual

equivariant mapping. In CVPR, 2018. 1

[22] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron

Sarna, Daniel Vlasic, and William T. Freeman. Unsuper-

vised training for 3d morphable model regression. In CVPR,

2018. 4, 6

[23] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying

Wang, Jianfei Cai, and Junsong Yuan. 3d hand shape and

pose estimation from a single rgb image. In CVPR, 2019. 2

[24] Luan Tran and Xiaoming Liu. Nonlinear 3d face morphable

model. In CVPR 2018. 2

[25] Luan Tran and Xiaoming Liu. On learning 3d face mor-

phable model from in-the-wild images. In TPAMI, 2019. 6

[26] Luan Tran, Feng Liu, and Xiaoming Liu. Towards high-

fidelity nonlinear 3d face morphable model. In CVPR, 2019.

2, 6, 8

[27] Matan Sela, Elad Richardson, and Ron Kimmel. Unre-

stricted facial geometry reconstruction using image-to-image

translation. In ICCV, 2017. 2

[28] Michael Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In NeuriPS, 2016. 3

[29] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei

Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh

models from single rgb images. In ECCV, 2018. 2

[30] Nikos Kolotouros, Georgious Pavlakos, and Kostas Dani-

ilidis. Convolutional mesh regression for single-image hu-

man shape reconstruction. In CVPR, 2019. 2

[31] Pascal Paysan, Reinhard Knothe, Brain Amberg, Sami

Romdhani, and Thomas Vetter. A 3d face model for pose

and illumination invariant face recognition. In AVSS, 2009.

1, 2

[32] Paul Koppen, Zhen-Hua Feng, Josef Kittler, Muhammad

Awais, William Christmas, Xiao-Jun Wu, and He-Feng Yin.

Gaussian mixture 3d morphable face model. In Pattern

Recognition, 2017. 1, 2

[33] Roger Blanco i Ribera, Eduard Zell, John P. Lewis, Junyong

Noh, and Mario Botsch. Facial retargeting with automatic

range of motion alignment. In ACM Trans. Graph., 2017. 1

[34] Sofien Bouaziz, Yangang Wang, and Mark Pauly. Online

modeling for realtime facial animation. In ACM Trans.

Graph., 2013. 1

[35] Thomas N. Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In ICLR, 2017.

3

6108



[36] Un-Sang Park, Hyun-Cheol Choi, Anil K. Jain, and Seong-

Whan Lee. Face tracking and recognition at a distance: A

coaxial and concentric ptz camera system. In IEEE Transac-

tions on Information Forensics and Security, 2013. 1

[37] Volker Blanz and Thomas Vetter. A morphable model for the

synthesis of 3d faces. In SIGGRAPH, 1999. 1, 2

[38] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan

Z. Li. Face alignment across large poses: A 3d solution. In

CVPR, 2016. 5, 6

[39] Yao Feng, Fan Wu, Xiahu Shao, Yanfeng Wang, and Xi

Zhou. Joint 3d face reconstruction and dense alignment with

position map regression network. In ECCV, 2018. 6, 7

[40] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning. In ICML, 2016. 2

[41] Yichun Shi, Anil K. Jain, and Nathan D. Kalka. Probabilistic

face embeddings. In ICCV, 2019. 2, 3

[42] Yuxiang Zhou, Jiankang Deng, Irene Kotsia, and Stefanos

Zafeiriou. Dense 3d face decoding over 2500fps: joint tex-

ture & shape convolutional mesh decoders. In CVPR, 2019.

2, 3

[43] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, 2015.

5, 6

6109


