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Abstract

Fuzzy clustering is known to perform well in real-world

applications. Inspired by this observation, we incorporate

a fuzzy mechanism into discrete convolutional kernels for

3D point clouds as our first major contribution. The pro-

posed fuzzy kernel is defined over a spherical volume that

uses discrete bins. Discrete volumetric division can nor-

mally make a kernel vulnerable to boundary effects during

learning as well as point density during inference. How-

ever, the proposed kernel remains robust to boundary con-

ditions and point density due to the fuzzy mechanism. Our

second major contribution comes as the proposal of an effi-

cient graph convolutional network, SegGCN for segment-

ing point clouds. The proposed network exploits ResNet

like blocks in the encoder and 1 × 1 convolutions in the

decoder. SegGCN capitalizes on the separable convolution

operation of the proposed fuzzy kernel for efficiency. We es-

tablish the effectiveness of the SegGCN with the proposed

kernel on the challenging S3DIS and ScanNet real-world

datasets. Our experiments demonstrate that the proposed

network can segment over one million points per second

with highly competitive performance.

1. Introduction

Learning directly from 3D point clouds is gaining in-

creasing research interest due to its applications is au-

tonomous vehicles and robotics in general. The main chal-

lenge here is that 3D point clouds captured by sensors (e.g.

LiDAR) are unorganized, unlike images. Hence, the use of

conventional CNN architectures is not feasible since they

require organized grid-like inputs.

Currently, one of the most promising solution for fea-

ture learning from point clouds is to use the spatial-domain

graph convolutional networks (GCNs). GCNs perform spa-

tial convolutions on graph representations constructed from

the point clouds. Most of the existing GCNs in the liter-

ature rely on mini-networks to achieve the graph convolu-

tion [24, 34, 43, 44], which incurs significant network com-

plexity and computational overhead.

Discrete kernels have been recently proposed in the 3D
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(a) 4× 2 + 1 hard kernel (b) 4× 1 + 1 fuzzy kernel

Figure 1. Hard versus fuzzy spherical kernel (2D slices of 3D

spheres are shown). The color gradient depicts fuzziness. Both

kernels have 4 divisions along the azimuth. There is a split along

the radial dimension for the hard kernel, assigning different co-

efficients to different bins. Hence, the neighbourhood points ‘s’

and ‘t’ of the target ‘i’ get very different weights. For the fuzzy

kernel, these neighbors use similar parameters to compute the fea-

ture of ‘i’ as the product of their fuzzy coefficients and learnable

parameters of their common bin.

Euclidean space [21, 40] that are well-suited for direct

graph convolution without the need for mini-networks. Ap-

plications of these kernels to GCN architectures can make

it significantly lightweight and efficient. Among these dis-

crete kernels, the spherical kernel [21] partitions the local

neighborhood in a compact way while preserving the at-

tractive properties of translation-invariance and asymmetry

similar to the standard CNN kernels [12, 16, 20, 35, 37], as

well as permutation-invariance. More importantly, it does

not require any online/offline learning of template points

like the other kernels [33, 40]. Instead the kernel divides a

spherical region systematically along its azimuth, elevation

and radial directions into multiple non-overlapped bins.

However, since point coordinates in the 3D space (R3)

are real numbers, such a discretization of the space into vol-

umetric bins is potentially vulnerable to boundary effects,

considering that many points will inevitably be very close to

the boundaries. To address this issue and motivated by the

success of fuzzy clustering in machine learning [4], we in-

troduce the fuzzy mechanism into the spherical kernel. We

remark that the standard CNN kernels do not suffer from the

boundary effects because the image pixel coordinates are

defined in Manhattan space. In Fig. 1, we provide a simple
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example for unordered points in 2D to show how a fuzzy

kernel can be robust to boundary effects during feature ex-

traction. Note that, the spherical kernel degenerates to a

circular kernel in 2D. As can be seen, the neighbor points

s, t of the target point i locate very close to the boundary of

radial bins. A hard kernel will use different parameters for

s, t to compute the feature of the target point i. However,

in a fuzzy kernel, the fuzzy coefficients result in s, t to use

similar parameters to compute the feature of i.

In this paper, we propose fuzzy coefficients along the el-

evation and radial directions of the spherical kernel for ro-

bust 3D point cloud processing. The fuzzy spherical kernel

avoids splits along the radial direction altogether. To apply

our kernel effectively for semantic segmentation of point

clouds, we also propose an encoder-decoder graph convolu-

tional network SegGCN. The encoder exploits ResNet like

blocks [12] for hierarchical feature learning, while the de-

coder comprises simple 1×1 convolutions to generate the fi-

nal representations of the points. Within each ResNet block,

we apply our fuzzy spherical kernel with depth-separable

convolution [6] to aggregate the context information, which

contributes significantly to the network efficiency. We con-

struct the graph connections using range search [27], and

coarsen the point cloud with farthest point sampling [29].

The point features are downsampled with max-pooling and

upsampled with weighted interpolation. We demonstrate

the performance of our SegGCN and fuzzy spherical kernel

on two challenging real-world datasets, S3DIS and Scan-

Net. We also show that the fuzzy kernel is robust to decreas-

ing point density. Our main contributions are summarized

below:

• We propose a fuzzy spherical kernel by incorporating

fuzzy mechanism into the spherical kernel of Lei et

al. [21]. The new kernel applies spherical convolu-

tions by separating the depth-wise and point-wise op-

erations following Xception [6], and achieves superior

performance in practical applications.

• We propose an efficient graph convolutional network

architecture SegGCN for 3D semantic segmentation.

With the use of separable fuzzy spherical convolution,

SegGCN is able to segment over a million points per

second with high accuracy.

• We provide CUDA implementations of the fuzzy

spherical convolution in Tensorflow [1]. The source

code is available on this Github link.

2. Related Work

3D-CNNs: 3D-CNNs learn features from voxel-grid rep-

resentations of point clouds using grid-like kernels. The

cubic growth of computational and memory requirements

constrained early networks in this category to process low

resolution inputs (e.g. 30×30×30 [45], 32×32×32 [26]).

Engelcke et al. [10] proposed to reduce the computational

overhead by making the input and intermediate feature

maps sparse. However, their solution could not resolve the

memory issue. The OctNet [30] improves the input res-

olution to 256×256×256 by reducing both the computa-

tional and memory costs with an octree-based representa-

tion. However, it is unable to avoid the redundant compu-

tations in the empty spaces. Recently, researchers trans-

formed point clouds into other regular-grid representations

such as tangent image [38] and high-dimensional lattice

[36] so that standard CNNs can be applied.

MLPs: PointNet [28] is one of the first deep networks that

directly takes the xyz coordinates of points as input fea-

tures and learns representations of each point with multi-

layer perceptrons (MLPs). The limitation of PointNet is

that MLPs cannot explore the geometric context during fea-

ture learning. PointNet++ [29] addresses this issue with hi-

erarchical max-pooling. SO-Net [23] learns to reorganize

the point cloud into a rectangular map, and exploits mini-

PointNet to learn node-wise features within the map. KC-

Net [33] uses a distance-based kernel correlation between

the local neighbors and the template points, but it is only

applicable to point clouds with pure xyz coordinates. As

the network goes deeper, it relies on MLPs to extract the

features. Those template points are predefined and optimiz-

able during network training. Kd-network [15] is a promi-

nent tree structure based network for point clouds. It also

uses point coordinates as the input and computes features of

parent nodes by applying MLP to the concatenated features

of their children. Despite the diversity of these networks,

none of them contribute towards context learning with con-

volutional modules for point clouds.

GCNs: We group networks for point cloud processing into

the GCN category as long as they define point-wise convo-

lutions for context learning from the local neighbors. We

ignore their originally explored architectures because those

convolutional operations are readily adaptable to GCNs.

Spectral graph convolutions entail high computational com-

plexity for the signal transformation between different do-

mains. It also requires a good alignment of the graph Lapla-

cians of different point clouds. Yi et al. [47] addressed

that for synthetic models with SpecTN, which is rather dif-

ficultly applied to real data. Most of the other networks

focus on spatial graph convolutions.

ECC [34] is a pioneering work for point cloud analy-

sis with spatial graph convolutions. Motivated by the dy-

namic filter networks [8], it introduces mini-networks com-

posed of MLPs to generate the convolution filters dynami-

cally on graph edges. Subsequently, Flex-Conv [11], Spi-

derCNN [46] and DGCNN [41] generate the edge filters us-

ing more effective parameterizations. Instead of generating

the filters in an edge-wise convention, generating a com-

plete convolution kernel using the mini-networks has also

been explored [24, 44]. Li et al. [24] designed the X -Conv
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module for point clouds. However, their method is sensitive

to the permutations of points. PointConv [44] computes the

convolution kernel as a product of the local weight func-

tion and inverse density function. Unlike PointCNN, it uses

1× 1 convolutions in the mini-networks making the kernel

permutation-invariant. Wang et al. [41] proposed a graph

attention convolutional network (GACNet) by inserting the

attention mechanism in GCN. It still defines the point fea-

tures as a weighted sum of its neighborhood features but the

difference is that GACNet learns the weights with MLPs

based not only on spatial proximity between the neighbor-

ing points and the target point, but also their feature sim-

ilarity. Similar to CRF [17], such an attention mechanism

encourages the neighbors to have consistent labels, leading

to accurate semantic segmentation. However, the depen-

dency on dynamic filter generation makes these networks

computationally expensive.

Discrete kernel is an attractive alternative to avoid the

computational overhead of dynamic networks. Lei et

al. [21] proposed a spherical convolutional kernel for fea-

ture learning from point clouds, and demonstrated its effec-

tiveness with octree-adapted architectures. Later, the kernel

is also shown to be applied to graphs [22]. KPConv kernel

[40] differs from the spherical kernel mainly in the decision

of volumetric bins. It performs an offline data-independent

training to obtain a number of template points, and uses

these template points to divide the 3D metric space.

3. Method

Let P = {xi ∈ R
3}Ni=1 be a point cloud and its feature

maps be F l = {f li ∈ R
Cin}Ni=1. To perform convolution at

a target point xi, we first construct its neighborhood set as

N (xi) = {x ∈ P : ‖x − xi‖ ≤ ρ}. With the neighbor-

hood set N (xi), the general convolution kernel calculates

the output feature of xi in channel c as:

f l+1
ic =

1

N (xi)

∑

x∈N (xi)

〈

Kc(x− xi), f
l
〉

, (1)

where Kc(x − xi) ∈ R
Cin is the kernel function related to

channel c, f l is the input features of neighbor point x, and

〈·, ·〉 represents the scalar product of two vectors. We omit

the bias term in the equation for brevity, and follow the same

convention in the subsequent equations. Here, the kernel

function Kc can be either a continuous function [34, 46] or

a set of learnable parameters defined in different volumetric

regions [21, 40]. We use range search instead of the com-

monly used KNN to construct the neighbors because (1)

the range neighbors provide consistent metric information

in the space and it is robust to density changes [29, 40]; and

(2) the range search is more efficient than KNN under brute-

force CUDA implementations, especially when the number

of desired neighbors is large.

3.1. Fuzzy Kernel Function

To compute the output features in channel c, a fuzzy ker-

nel defines a set of learnable parameters Kc = {wκc ∈
R

Cin}Kκ=0 and a criterion to associate each neighbor point

to the set elements wκc differently. Assume that each neigh-

bor x ∈ N (xi) of the target convolution point xi is asso-

ciated to a coefficient vector ξ = {ξκ}
K
κ=0. In general, the

fuzzy kernel computes the feature f l+1
ic of point xi as:

f l+1
ic =

1

N (xi)

∑

x∈N (xi)

〈(

K
∑

κ=0

ξκwκc

)

, f l
〉

. (2)

Without the loss of generality, we constrain the elements of

the coefficients to be normalized, i.e.
∑K

κ=0 ξκ = 1, similar

to the Gaussian Mixture Models [4].

In the fuzzy kernel function, each neighboring point

makes use of all the kernel parameters to perform the con-

volution. In fact, the hard kernel can be considered as a

special case of the fuzzy kernel where the coefficient vector

ξ is simplified to be a one-hot vector. Thus, each neighbor

x uses only a single particular wκc to compute the feature

of the target point:

f l+1
ic =

1

N (xi)

∑

x∈N (xi)

〈wκc, f
l〉, (3)

in which κ = κ(x− xi) ∈ Z.

The convolutions in Eq.(1)-(3) follow the definition of

typical convolutions in deep learning, and calculate each

output feature by conducting the depth-wise and spatial

convolutions simultaneously. Inspired by the success of

separable convolution [6, 24], we propose to separate the

depth-wise and point-wise operations in Eq. (2) and (3) that

makes the preformed convolutions more efficient. Since

point-wise convolution is independent of neighbors, we ap-

ply the discrete kernels to depth-wise convolutions alone.

In this situation, the kernel Kc is reduced to Kc = {wκc ∈
R}Kκ=0. The fuzzy kernel convolution in Eq. (2) and the

hard kernel convolution in Eq. (3) are respectively simpli-

fied to:

f l+1
ic =

1

N (xi)

∑

x∈N (xi)

(

K
∑

κ=0

ξκwκc

)

f l
c. (4)

f l+1
ic =

1

N (xi)

∑

x∈N (xi)

wκcf
l
c. (5)

By applying such depth-wise convolutions λ times to each

input channel, we obtain Cout = λCin output features at

point xi. Following this, point-wise convolution is readily

achieved with 1×1 convolutions. In this paper, we apply all

kernels under the separable convolutional convention which

significantly contributes to our network efficiency.
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3.2. Hard Spherical Kernel

The spherical kernel proposed by Lei et al. [21] divides

the local spherical neighborhood into n× p× q volumetric

bins by partitioning the space uniformly along the azimuth

(θ), elevation (φ) and radial (r) dimensions. It includes an

additional bin for self-convolution of the target point. This

results in a spherical convolution kernel of size n×p×q+1,

which can be represented as Kc = {wκc ∈ R}n×p×q
κ=0 . Here,

w0c is the parameter for self-convolution.

For the hard kernel, for each neighboring point x, [21]

computes a single index κ based on its coordinates ψ =
(θ, φ, r) in the local spherical coordinate system centered

at xi. The index value κ is 0 if x = xi, otherwise, it is

represented as

κ = kr × n× p+ kφ × n+ kθ + 1, (6)

where kθ ∈ {0, . . . , n − 1}, kφ ∈ {0, . . . , p − 1}, kr ∈
{0, . . . , q − 1}. The constraint of uniform splitting results

in the bin range along the three dimensions (θ, φ and r)

respectively to be 2π
n

,π
p

and ρ
q

. Therefore, kθ, kφ, kr can be

determined as:






















kθ = min
(

n− 1,
⌊

n× (θ+π)
2π

⌋)

, θ ∈ [−π, π],

kφ = min
(

p− 1,
⌊

p×
(φ+π

2
)

π

⌋)

, φ ∈ [−π
2 ,

π
2 ],

kr = min
(

q − 1,
⌊

q × r
ρ

⌋)

, r ∈ (0, ρ].

(7)

Though efficient, hard kernel suffers from ambiguity and

sharp changes at the bin boundaries. For instance, given

two points xs,xt ∈ N (xi) nearby the xy plane, and 0 <

‖xs − xt‖ < ǫ, ǫ → 0+. Suppose the two coordinates

of the points are exactly the same i.e. θs = θt, rs = rt,

but the coordinates φs = ǫ and φt = −ǫ are different. This

results in their indices kφs
and kφt

to be different, and hence

they would use different parameters during the convolution.

Another example is when a neighbor point xs is very close

to the target convolution point xi, i.e. 0 < ‖xs − xi‖ <

ǫ. This results in the point xs to use a certain parameter

wκ (where κ > 0) in the convolution, which is different

from the parameter w0 used by xi for self convolution. To

address these issues, we propose a fuzzy spherical as one

of the major contributions of this work. We show that the

new kernel is both more effective and efficient in practical

applications.

3.3. Proposed Fuzzy Spherical Kernel

To avoid the boundary effects in radial direction, we first

remove splitting of the sphere along its radius. Therefore,

the fuzzy spherical kernel is of size n × p + 1, and the

computation of index κ in Eq. (6) gets reduced to κ =
kφ×n+kθ+1. We introduce three new parameters α, β, γ

along the elevation and radial dimensions to facilitate the

construction of fuzzy coefficients for the kernel. Among

them, α and γ are defined as:
{

α = p×
(φ+π

2
)

π
,

γ = 1− ‖x−xi‖
ρ

.
(8)

Here, γ controls the contribution of each neighbourhood

point to the training of self-convolution bin. The closer

the point to the target point, the more it contributes to self-

convolution. We can then represent the index kφ in Eq. (7)

with α as:

kφ = min(p− 1, ⌊α⌋). (9)

To this end, the parameter β becomes

β = 1− |α− kφ − 0.5|. (10)

The β controls the contribution of each neighbourhood

point to the training of the elevation bin it is located in. As

can be derived, when the point is in the elevation bin center,

β will be 1, while when the point is exactly on the boundary

of two bins, β decreases to 0.5. The other bin that can cause

boundary effects for point x in the elevation dimension is

k̃φ, which can be computed as

k̃φ =

{

max(0, kφ − 1), if (α− kφ) ≤ 0.5.

min(p− 1, kφ + 1), if (α− kφ) > 0.5.
(11)

The fuzzy coefficient vector ξ contains at most three non-

zero values, which are

ξ0 = γ, ξκ′ = (1− γ)β, ξκ̃′ = (1− γ)(1− β).

where κ′ = kφ × n+ kθ +1, κ̃′ = k̃φ × n+ kθ +1. It can

be shown that ξ satisfies the normalization constraint:

n×p
∑

κ=0

ξκ = ξ0 + ξκ′ + ξκ̃′

= γ + (1− γ)β + (1− γ)(1− β) = 1. (12)

Eventually, following Eq. (4), the fuzzy spherical kernel

computes the feature of the target point xi as:

f l+1
ic =

1

N (xi)

∑

x∈N (xi)

(ξ0w0c + ξκ′wκ′c + ξκ̃′wκ̃′c)f
l
c.

(13)

In the proposed fuzzy kernel, all the neighboring points

contribute to the training of self-convolution parameter w0

based on their distances to the target point xi. This is in con-

trast to the original spherical kernel [21] that optimizes w0

only based on the target convolution point. In the elevation

direction, the parameter that each neighboring point uses

in the convolution becomes a weighted combination of the

parameters from its two nearest bins. Such a weighted com-

bination alleviates the unreasonably sharp changes of con-

volutional parameters between the bin boundaries. Overall,
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Figure 2. Proposed encoder-decoder graph convolutional network SegGCN. A graph G0 gets sequentially coarsened to G1,G2,G3,G4 and

back again to G0. During encoding 2× ResNet blocks with fuzzy convolutions are used between consecutive graphs. We omit self loops

for clarity. During decoding, 1 × 1 convolutions are used for efficiency. Skip connections are used to copy features from the encoder that

are concatenated with the features at the decoder of the similar graph stage. We use Batch Normalization (BN) after ELU activations.

the proposed fuzzy spherical kernel enables the convolu-

tional parameters used by each neighbor point to change in

a smooth and consistent way.

We do not incorporate the fuzziness in azimuth dimen-

sion because commonly performed arbitrary horizontal ro-

tations for training data augmentation already resolves the

ambiguity in this dimension. Hence, applying the fuzzy

mechanism only in the radial and elevation directions keeps

our kernel more efficient. This can be verified by compar-

ing the fuzzy convolution computation in Eq. (4) to its hard

counterpart in Eq. (5).

From Eq. (13), we can see that the proposed fuzzy

spherical kernel requires only 3 more multiplications and 2

more additions in the convolution with each neighbor point,

which is far less than the computations required by a dense

vector ξ. The sparseness of our fuzzy coefficient vector

makes the spherical kernel more efficient without signifi-

cantly affecting its effectiveness. We provide complexity

analysis for the backward propagation of convolution in the

supplementary material.

Comparison to KPConv: In contrast to the proposed ker-

nel, the kernel used in KPConv [40] must generate a set

of template points offline using optimization. The perfor-

mance of that network is highly dependent on the kernel

points returned by the offline training, which is sub-optimal.

In contrast, the fuzzy spherical kernel divides the space

occupied by the neighbors in a deterministic and compact

manner. In § 4, we empirically demonstrate that the pro-

posed fuzzy spherical kernel outperforms KPConv under

similar settings.

3.4. Network Architecture

We propose an encoder-decoder graph convolutional net-

work for point cloud segmentation. The network is com-

posed of ResNet blocks in the encoder part and 1 × 1 con-

volutions in the decoder part. Figure 2 shows the archi-

tecture of our network. To construct graph representations

from a point cloud P = {x1, . . . ,xN} with feature maps

F = {f1, . . . , fN}, we consider a graph G = (V, E), in

which V = {1, 2, . . . , N} and E ⊆ |V| × |V| respectively

represent the sets of graph vertices and edges. Each vertex

i ∈ V is associated with a point location xi and its corre-

sponding feature map fi. We derive the edge set E from the

point neighbors.

Graph connection and coarsening: We use range search

to get the spatial neighbors of each point within a speci-

fied radius ρ. We implement range search efficiently us-

ing CUDA programming to exploit GPU parallel compu-

tations. For practical reasons, we constrain the maximum

number of neighbor connections to M . Random sampling

is applied if the range search returns more than M points in

the neighborhood. To coarsen the graph hierarchically into

different resolutions, we exploit the point cloud subsam-

pling method, Farthest Point Sampling (FPS) [29]. Com-

pared to voxel-grid sampling [34, 40], FPS has the advan-

tage of keeping the number of vertices/points fixed across

different samples, which is helpful when applying standard

batch normalization [13]. For efficiency, we avoid sub-

sampling strategies that require separate training [9]. By

alternating between connecting vertices and graph coars-

ening L times, we construct a pyramid of L + 1 graphs

G0 → G1 → · · · → GL with resolutions from fine to coarse.

Pooling and Unpooling: In the encoder, we use max-
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pooling to compute vertex features for the coarsened

graphs. This process defines the features of each vertex in

graph Gl+1 as the max-pooled features of their neighbors in

graph Gl. In the decoder part, we compute vertex features

for the graph with higher resolution with unpooling opera-

tion, which is performed using weighted interpolation. In

particular, the interpolation method upsamples the vertex

features in graph Gl as a weighted sum of its neighborhood

features in graph Gl+1. The definition of our weights is sim-

ilar to PointNet++ [29].

We construct a segmentation network, SegGCN, using

the above techniques. SegGCN comprises a pyramid of five

graph resolutions. To learn features at each level, we use

two ResNet blocks with (separable) fuzzy spherical convo-

lution in the encoder. Pooling operations are used to extract

features when the graph structure alters. SegGCN also ex-

ploits the effective skip connections [3, 5, 31] by copying

features from the encoder and concatenating them to the de-

coder features at a similar level in the graph hierarchy. The

concatenated features at the decoder stage are processed

with a 1× 1 convolution, which is empirically shown to be

more efficient and effective in § 4 than the ResNet blocks

used for the encoding purposes. We provide illustration of

our SegGCN including details of the ResNet block as well

as the upsampling block in Fig. 2. With this paper, we also

release CUDA implementation of the fuzzy spherical kernel

and the efficient SegGCN architecture. The code is Tensor-

flow compatible [1], and can be found at this Github Link.

4. Experiments

We evaluate our SegGCN on the challenging semantic

segmentation datasets S3DIS [2] and ScanNet [7] which

consists of point clouds of large-scale indoor scenes. Color

information are provided with (r, g, b) values on both

datasets. We train our network with 6-dimensional input

features (x, y, z, r, g, b). Before using the raw color values,

we rescale them into the range [−1, 1].

Our network is trained on a single GeForce RTX 2080

Ti GPU with Adam Optimizer [14]. For training, we set the

initial learning rate to 0.001 with momentum 0.9. Through-

out the experiments, we apply the fuzzy spherical convolu-

tion with a kernel size 8 × 4 × 1 + 1. Our network takes

point clouds of size 8, 192 as inputs, while the batch size are

kept fixed to 16. This results in the total size of points pro-

cessed by the network with each batch as 131K. We allow

the maximum neighbor connections of vertices in all graphs

to be M = 64. These hyper-parameters are empirically de-

termined based on cross-validations. We exploit common

data augmentations in the related literature in our experi-

ments, including random scaling, shifting, noisy translation,

random azimuth rotation (up to 360◦ degrees) and arbitrary

rotation perturbations (up to 10◦ degrees). We apply these

augmentations on-the-fly in the network training session.

Point cloud flipping and color augmentation is not applied.

Network Configuration: We use identical network con-

figurations for ScanNet and S3DIS. In specific, the vertex

sizes of graphs G0, G1, G2, G3, G4 are 8192, 2048, 768,

384, 128 respectively. We construct the graph edges of

G0,G1,G2,G3 using an increasing range search radius 0.1,

0.2, 0.4, 0.8. The output feature sizes of the three convolu-

tions in a ResNet block can be represented as (D,D, 4 ×
D) [12]. We set the hyper-parameter D of our ResNet

blocks of G0,G1,G2,G3 as 32, 64, 128, 256. The fuzzy con-

volution in the block uses a constant multiplier λ = 1. In

the decoder, we explore only the nearest three points for

feature interpolation. The output feature sizes of the 1 × 1
convolutions in the upsampling blocks are half of their cor-

responding encoder features. Instead of feeding the raw in-

put features to the graph architecture directly, we insert one

shared MLP in-between to increase the point cloud feature

size from 6 to 64. SegGCN classifies the feature representa-

tion obtained from G0 in the decoder directly without using

further fully connected layers.

4.1. S3DIS

The Stanford large-scale 3D Indoor Spaces (S3DIS)

dataset [2] is collected from three different buildings on the

Standard campus using Matterport scanner. It is composed

of colored 3D point clouds of 6 indoor areas. The task de-

fined on this dataset is about labeling 13 semantic elements,

which are ceiling, floor, wall, beam, column, window, door,

table, chair, sofa, bookcase, board, and clutter. Any ele-

ment that is not among the 12 well-defined classes, is con-

sidered clutter. Because Area 5 is related to a building not

covered by the other areas [39], we perform experiments by

using Area 5 as the test set, which is also the convention of

the previous works [19, 24, 28, 39, 42]. The used evaluation

metrics include the Overall Accuracy (OA), average Accu-

racy of all 13 categories (mAcc), per-category Intersection

Over Union (IoU), and their average (i.e. mIoU). mIoU is

considered the most reliable metric among these.

Due to the millions of points in each indoor scene, we

firstly sub-sample the scene cloud using the VoxelGrid al-

gorithm [32] with a grid size 3cm. We then split each scene

into overlapped blocks of size 1.5m× 1.5m. Similar to the

PointCNN [24], we apply such splitting to the x, y dimen-

sions but not to the height z dimension. The goal is to keep

the height information complete. Our (x, y, z) coordinates

in the input features are normalized by aligning them to the

ground plane center of their corresponding blocks. The ex-

periment results are provided in Table 1. It can be noticed

that SegGCN performs better than other competitive convo-

lutional networks, including SSP+SPG [18] and GACNet

[42] whose performance pre-dominantly benefit from local

labeling consistency. The size of learnable parameters of

SegGCN is 3.0M. Its inference time for batch sizes of 16
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Table 1. Performance on the fifth fold (Area 5) of S3DIS dataset. SSP+SPG and GACNet use the constraint of local labeling consistency

while the proposed network does not.

Methods OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

A
re

a
5

PointNet [28] - 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 58.9 52.6 5.9 40.3 26.4 33.2

SEGCloud [39] - 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6

Tangent-Conv [38] 82.5 62.2 52.8 - - - - - - - - - - - - -

SPG [19] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 75.4 84.7 52.6 69.8 2.1 52.2

PointCNN [24] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

SSP+SPG [18] 87.9 68.2 61.7 - - - - - - - - - - - - -

GACNet [41] 87.8 - 62.9 92.3 98.3 81.9 0.0 20.4 59.1 40.9 78.5 85.8 61.7 70.8 74.7 52.8

SPH3D-GCN [22] 87.7 65.9 59.5 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7

KPConv [40] - 70.9 65.4 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1

SegGCN (Prop.) 88.2 70.4 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 54.3

Table 2. 3D semantic labeling on ScanNet: All the networks use spatial coordinates and color values as input features.

Method mIoU floor wall chair sofa table door cab bed desk toil sink wind pic bkshf curt show cntr fridg bath other

ScanNet [7] 30.6 78.6 43.7 52.4 34.8 30.0 18.9 31.1 36.6 34.2 46.0 31.8 18.2 10.2 50.1 0.2 15.2 21.1 24.5 20.3 14.5

PointNet++ [29] 33.9 67.7 52.3 36.0 34.6 23.2 26.1 25.6 47.8 27.8 54.8 36.4 25.2 11.7 45.8 24.7 14.5 25.0 21.2 58.4 18.3

SPLATNET3D [36] 39.3 92.7 69.9 65.6 51.0 38.3 19.7 31.1 51.1 32.8 59.3 27.1 26.7 0.0 60.6 40.5 24.9 24.5 0.1 47.2 22.7

Tangent-Conv [38] 43.8 91.8 63.3 64.5 56.2 42.7 27.9 36.9 64.6 28.2 61.9 48.7 35.2 14.7 47.4 25.8 29.4 35.3 28.3 43.7 29.8

PointCNN [24] 45.8 94.4 70.9 71.5 54.5 45.6 31.9 32.1 61.1 32.8 75.5 48.4 47.5 16.4 35.6 37.6 22.9 29.9 21.6 57.7 28.5

PointConv [44] 55.6 94.4 76.2 73.9 63.9 50.5 44.5 47.2 64.0 41.8 82.7 54.0 51.5 18.5 57.4 43.3 57.5 43.0 46.4 63.6 37.2

SPH3D-GCN [22] 61.0 93.5 77.3 79.2 70.5 54.9 50.7 53.2 77.2 57.0 85.9 60.2 53.4 4.6 48.9 64.3 70.2 40.4 51.0 85.8 41.4

KPConv [40] † 68.4 93.5 81.9 81.4 78.5 61.4 59.4 64.7 75.8 60.5 88.2 69.0 63.2 18.1 78.4 77.2 80.5 47.3 58.7 84.7 45.0

SparseConvNet [25] 72.5 95.5 86.5 86.9 82.3 62.8 61.4 72.1 82.1 60.3 93.4 72.4 68.3 32.5 84.6 75.4 87.0 53.3 71.0 64.7 57.2

SegGCN (Prop.) 58.9 93.6 77.1 78.9 70.0 56.3 48.4 51.4 73.1 57.3 87.4 59.4 49.3 6.1 53.9 46.7 50.7 44.8 50.1 83.3 39.6
†KPConv [40] takes 9.3 seconds to segment 90K points in the inference stage using the same hardware, which is 100× slower than SegGCN.

and 32 is 150 and 250 milliseconds respectively. On a sin-

gle RTX 2080 Ti GPU, SegGCN can process over a million

points per-second. We show visualizations of representative

segmentations generated by SegGCN in Fig. 3.

4.2. ScanNet

ScanNet [7] is an RGB-D video dataset collected from

indoor environments. It contains a diversity of recon-

structed rooms/offices with rich annotations for 3D seman-

tic labeling L. The dataset provides labels for 40 com-

mon classes, while only 20 of them are used for perfor-

mance evaluation, resulting in 21 classes to be labelled

with the network. The training/validation/test set includes

1201, 312, 100 scenes respectively, while the ground-truth

labels of test set are not public. Researchers have to submit

their test results online for the standard evaluation. We ap-

ply VoxelGrid subsampling and splitting strategies identical

to S3DIS to prepare the block data. Table 1 summarizes the

result of our experiments with this data. All the techniques

in the table use the spatial coordinates and color values as

input features. SegGCN outperforms the other competitive

convolutional approaches on 16 out of 20 categories, result-

ing in a significant overall improvement in the mIoU. Our

training/inference time with batch size 16 is 340/160 ms.

4.3. Discussion

4.3.1 Kernel comparison

In Table 3, we compare the performance of the proposed

fuzzy spherical kernel to the hard spherical kernel of Lei

et al. [21]. We also compare with the fuzzy KPConv ker-

Table 3. Performance of different kernels on S3DIS. We use SPH

as abbreviations of the spherical kernel. Hard and fuzzy SPH ker-

nels are compared. We also compare with original fuzzy KPConv

kernel to its hard counterpart implemented in this work. Proposed

SegGCN is used as the network.
kernel hard SPH fuzzy SPH hard KPConv fuzzy KPConv

OA 88.0 88.2 86.9 87.1

mAcc 69.6 70.4 68.7 68.6

mIoU 62.9 63.6 60.5 61.0

nel [40], which makes fuzzy assignments based on the

distances between the neighbors and the template kernel

points. Moreover, we also create a hard KPConv kernel that

associates each neighbor point only to its closest template

point (with coefficient 1). We calculate the template kernel

points of KPConv based on the github code provided by the

authors1. We apply all kernels under separable convolution

configuration. The network used is ours, i.e. SegGCN. The

training/test data as well as the hyper-parameters settings of

the network are exactly the same for all experiments. The

only difference is the discrete kernels used in the ResNet

block. The original KPConv subsamples point clouds with

grid-based sampling, and has to play implementation tricks

for batch normalization because the point cloud size varies

for different samples.

The training/inference time for hard spherical kernel

and fuzzy spherical kernel are 251/133 ms versus 314/153,

where the fuzzy kernel performs slightly slower than the

hard spherical kernel. However, it results in a significant

performance gain at acceptable computational complexity.

1https://github.com/HuguesTHOMAS/KPConv
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office mIoU = 94.8%mIoU = 95.7%water closet

Proposed Ground truthGround truth Proposed

hallway mIoU = 95.1%

Ground truth Proposed

Figure 3. Visualization of representative segmentations by the proposed SegGCN on the S3DIS dataset. (Top) Segmentation result of a

hallway of 13 meters. (Bottom) Results of two separate rooms. On left is a common water closet. On right is an office. For a diverse range

of scenes (simple to complex), SegGCN is able to segment the point cloud semantics effectively.

Figure 4. Robustness of fuzzy kernel vs. hard kernel to missing

data. SegGCNs trained on 8, 129 points with fuzzy SPH kernel

and hard SPH kernel [21] are tested by dropping a certain data

percentage. The proposed fuzzy SPH kernel shows a clear rela-

tive stability over its hard counterpart over a considerable range of

missing data. For the six different input sizes we test, the stan-

dard deviations of mIoU/mAcc metrics of the fuzzy kernel are

0.37/0.49, over 3 times better than 1.66/1.65 of the hard kernel.

We elaborate on further advantages of the fuzzy mechanism

in the following section.

4.3.2 Robustness to point density (missing data)

Although the fuzzy kernel performs better than the hard ker-

nel on mIoU, its real benefit comes in dealing with missing

data or lower point density. To demonstrate that, we let two

SegGCN networks use fuzzy and hard spherical kernels and

train them on 8192 points. We test the robustness of those

networks by inducing sparsity in the input. We vary the

input sizes to 8192, 7168, 6144, 5120, 4096, 3072, corre-

sponding to the data drop ratio of 0, 0.125, 0.25, 0.375, 0.5,

0.625, respectively. We show with both mIoU and mAcc

metrics the performance of both kernels for these cases in

Fig. 4. The results conclusively demonstrate the stability

of our fuzzy kernel in the face of missing data, which is a

major advantage of fuzzy kernel over hard kernels. We note

that, in our technique this advantage comes in addition to

the highly competitive performance on dense clouds, and

the ability to efficiently process large point clouds.

Table 4. Performance comparison between the proposed 1 × 1

convolution and the choice dictated by the common practice of

encoder-based 2× ResNet blocks in the decoder. Despite the sim-

plicity, the proposed 1× 1 convolution is much more effective.

Decoder
#params mAcc mIoU

time(ms)

convolution train infer

single 1× 1 Conv 3.0M 70.4 63.6 314 153

2× ResNet blocks 5.6M 69.8 62.9 385 179

4.3.3 Decoder module choice

To justify our choice of 1 × 1 convolutions in the decoder

part of SegGCN, as compared to the more popular choice of

replicating similar encoder components, we perform an ad-

ditional experiment. We replace all single 1×1 convolution

in SegGCN with 2× ResNet blocks similar to the encoder.

Table 4 compares the results of the two networks. The pro-

posed SegGCN is clearly more effective and efficient than

its counterpart which is based on the more common choice

of the decoder.

5. Conclusion

We introduce a fuzzy mechanism in spherical convolu-

tional kernel to process 3D point clouds. We additionally

propose an efficient Graph convolutional network, SegGCN

for semantic segmentation task. The proposed fuzzy ker-

nel demonstrates robustness against adverse boundary con-

ditions by removing the weight assignment of the conven-

tional discrete spherical kernel. It is also shown to be nat-

urally robust against missing data. Our network exploits

ResNet-like blocks in the encoder and 1×1 convolutions in

the decoder. Experiments with S3DIS and ScanNet datasets

demonstrate that our network can process over 1M points

per second, achieving highly competitive performance.
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