
Deep Iterative Surface Normal Estimation

Jan Eric Lenssen1,2,∗

janeric.lenssen@udo.edu

Christian Osendorfer1

christian@nnaisense.com

1 NNAISENSE
2 TU Dortmund University

Jonathan Masci1

jonathan@nnaisense.com

Abstract

This paper presents an end-to-end differentiable algo-

rithm for robust and detail-preserving surface normal es-

timation on unstructured point-clouds. We utilize graph

neural networks to iteratively parameterize an adaptive

anisotropic kernel that produces point weights for weighted

least-squares plane fitting in local neighborhoods. The ap-

proach retains the interpretability and efficiency of tradi-

tional sequential plane fitting while benefiting from adapta-

tion to data set statistics through deep learning. This results

in a state-of-the-art surface normal estimator that is ro-

bust to noise, outliers and point density variation, preserves

sharp features through anisotropic kernels and equivari-

ance through a local quaternion-based spatial transformer.

Contrary to previous deep learning methods, the proposed

approach does not require any hand-crafted features or pre-

processing. It improves on the state-of-the-art results while

being more than two orders of magnitude faster and more

parameter efficient.

1. Introduction

Normal vectors are local surface descriptors that are used

as an input for several computer vision tasks ranging from

surface reconstruction [27] to registration [39] and seg-

mentation [17]. For this reason, the task of surface nor-

mal estimation has been an important and well studied re-

search topic for a long time, with several methods dating

back up to 30 years [23]. Progress in the field, however,

has been plateauing only until recently when a number of

works has shown that improvements can be achieved with

the use of data-driven deep learning techniques [5, 7, 19],

as also shown in related fields like point cloud denoising

[42] or finding correspondences on meshes and point clouds

[10, 14, 32, 35]. Deep learning methods are known to often

achieve better results compared to data-independent meth-

ods. However, they have downsides in terms of robustness

∗Work performed during an internship at NNAISENSE.

a) Least squares plane fitting

b) Graph neural network

c) Deep re-weighting

ψ(·, θ1)

ψ(·, θ2) ψ(·, θ3)

R1

R2 R3

Pair-wise residual features prf(i, j)

w

θ1 θ2 θ3R1 R2 R3

Figure 1: Simplified overview of the proposed method for

deep iterative surface normal estimation. The figure shows

the process for a subset of three points. (a) Surfaces are fit-

ted by optimizing weighted least squares. (b) A graph neu-

ral network infers kernel parameters and local orientation

from intermediate pair-wise point descriptors. (c) A train-

able, adaptive kernel refines the weights for the next step of

the least squares optimization.

to small input changes, adversarial attacks, interpretability,

and sometimes also computational efficiency. Also, they do

not make use of often well-known instrinsic problem struc-

ture, which leads to the necessity of having a large amount

of training data and model parameters to learn that structure

on their own.

It is well-known that surface normal estimation can be

formulated as a least-squares optimization problem. A way

to utilize this problem-specific knowledge with deep learn-

ing is to take an iteratively reweighting least squares (IRLS)

scheme [22] for robust model fitting and modify it using

deep data-dependent weighting, as it has been done recently

(with or without iterations) for other tasks [25, 43, 44, 46].

11247

It is a promising candidate to combine robustness, inter-

pretability and efficiency with the data prior of deep neural

networks (DNNs). From a deep learning perspective, the

approach imposes a strong bias on the architecture, heavily

constraining the space of solutions to those which are better

suited for the given problem.

Contribution In this work, we present such a trainable re-

weighting procedure for input graphs with a large number

of weighted least square problems and use it to design a fast

and accurate algorithm for surface normal estimation on un-

structured point clouds (c.f. Figure 1). The method consists

of a light-weight graph neural network (GNN), which pa-

rameterizes a local quaternion transformer and a deep ker-

nel function to iteratively re-weight graph edges in a large-

scale point neighborhood graph. We show that the resulting

algorithm

• reaches state-of-the-art performance in surface normal

estimation on unstructured point clouds,

• is more than two orders of magnitude faster and

more parameter efficient than related deep learning ap-

proaches, and

• is robust to noise and point density variation, while be-

ing equivariant and able to preserve sharp features.

2. Related work

Traditional methods for surface normal estimation make

use of plane fitting approaches like unweighted principal

component analysis (PCA) [23] and singular value decom-

position (SVD) (c.f. [28] for an overview). The perfor-

mance of these approaches usually hinges upon the often

cumbersome selection of data-specific hyper-parameters,

such as point neighborhood sizes, and it is sensitive to

noise, outliers and density variations. Because of this, sev-

eral heuristics have been proposed to ease such selection,

e.g. those for finding a neighborhood size for plane fit-

ting [34]. Another limitation of plane fitting methods is

that they tend to smoothen sharp details, in fact they can

be seen as isotropic low-pass filters. In order to preserve

sharp features methods that extract normal vectors from es-

timated Voronoi cells have been proposed [2, 33] and com-

bined with PCA [1]. Alternative approaches include edge-

aware sampling [24] or normal vector estimation in Hough

space [6]. In addition, several methods arise from more

complex surface reconstruction techniques, e.g. moving

least squares (MLS) [30], spherical fitting [18], jet fitting [9]

and multi-scale kernel methods [3].

Deep learning methods. Deep learning based approaches

also found their way into surface normal estimation with

the recent success of deep learning in a wide range of do-

mains. These approaches can be divided into two groups,

depending on the actual type of input data they use. The

first group aims at normal estimation from single images

[4, 12, 15, 29, 31, 41, 45] and has received a lot of interest

over the last few years due to the well understood properties

of CNNs for grid-structured data.

The second line of research directly uses unstructured

point clouds and emerged only very recently, partially due

to the advent of graph neural networks and geometric deep

learning [8]. Boulch et al. [7] proposed to use a CNN on

Hough transformed point clouds in order to find surface

planes of the point cloud in Hough space. Based on the re-

cently introduced point processing network, PointNet [40],

Guerrero et al. [19] proposed a deep multi-scale architecture

for surface normal estimation. Later, Ben-Shabat et al. [5]

improved on those results using 3D point cloud fisher vec-

tors as input features and a three-dimensional CNN archi-

tecture consisting of multiple expert networks.

3. Problem and background

Let S be a manifold in R
3, P = {p0, ...,pm} a finite set

of sampled and possibly distorted points from that manifold

and N̂ = {n̂0, ..., n̂m} the tangent plane normal vectors at

sample points pi. Surface normal estimation for the point

cloud P can be described as the problem of estimating a set

of normal vectors N = {n0, ...,nm} given P , whose direc-

tion match those of the actual surface normals n̂i as close

as possible. We consider the problem of unoriented normal

estimation, determining the normal vectors up to a sign flip.

Estimating the correct sign can be done in a post-processing

step, depending on the task at hand, and is explicitly tackled

by several works [37, 25, 47].

A standard approach to determine unoriented surface

normals is fitting planes to the local neighborhood of every

point pi [30]. Given a radius r or a neighborhood size k, we

model the input as a nearest neighbor graph G = (P, E),
where we have a directed edge (i, j) ∈ E if and only if

||pj − pj ||2 < r or if pj is one of the k nearest neighbors

of pi, respectively. LetN (i) denote the local neighborhood

of pi, with ki ≡ |N (i)|, containing all pj with (i, j) ∈ E .

Furthermore, let P(i) ∈ R
ki×3 be the matrix of centered

coordinates of the points from this neighborhood, that is

P(i)j = p⊤
j −

1

ki

∑

m∈N (i)

p⊤
m, pj ∈ N (i). (1)

Fitting a plane to this neighborhood is then described as

finding the least squares solution of a homogeneous system

of linear equations:

n∗
i = argmin

n:|n|=1

||P(i)n||22 = argmin
n:|n|=1

∑

j∈N (i)

||P(i)j · n||
2

(2)

11248

The simple plane fitting of Eq. 2 is not robust and does not

result in high-quality normal vectors: It produces accurate

results only if there are no outliers in the data, which is

never the case in practice. Additionally, this approach elim-

inates sharp details because it acts as a low-pass filter on

the point cloud. Even when an isotropic radial kernel func-

tion θ(||P(i)||) is used to weight points according to their

distance to the local mean, fine details cannot be preserved.

Both problems can be resolved through integrating

weighting functions into Eq. 2. Sharp features can be pre-

served with an anisotropic kernel that infers weights of

point pairs based on their relative positions, i.e.:

n∗
i = argmin

n:|n|=1

∑

j∈N (i)

ψ(pj − pi) · ||P(i)j · n||
2 (3)

where ψ(·) is an anisotropic kernel, considering the full

Cartesian relationship between neighboring points, instead

of only their distance. However, an anisotrop kernel is no

longer rotation invariant, so that equivariance of output nor-

mals needs to be ensured additionally. Robustness to out-

liers can be achieved by another kernel that weights points

according to an inlier score si,j . More specifically, Eq. 2 is

changed to

n∗
i = argmin

n:|n|=1

∑

j∈N (i)

si,j · ||P(i)j · n||
2, (4)

where si,j weights outliers with a low and inliers with a

high score. However, in order to infer information about the

outlier status of points an initial model estimation is nec-

essary. A standard solution to this circular dependency is

to formulate the problem as a sequence of weighted least-

squares problems [22, 43]. Given the residuals rl of the

least squares solution from iteration l, the solution for iter-

ation l + 1 is computed as

nl+1
i = argmin

n:|n|=1

∑

j∈N (i)

s(rli,j) · ||P(i)j · n||
2. (5)

That is, the inlier score and the estimated model are refined

in an alternating fashion.

4. Deep iterative surface normal estimation

In this section we present our method, which com-

bines the described properties of robustness, anisotropy and

equivariance with the deep learning property of adaptation

to large data set statistics. In contrast to existing deep learn-

ing methods [5, 19], we do not directly regress normal vec-

tors from point features but weights for a least-squares opti-

mization step, utilizing the problem specific knowledge out-

lined above.

The core of the algorithm is a trainable kernel function

ψ : R3 × R
d → R, which computes weights as

wi,j = ψ(Ri(pj − pi), θi), (6)

Algorithm 1 Differentiable iterative normal estimation

Input:

P: Point cloud

L: Number of iterations

k or r: Neighborhood size (num. neighbors or radius)

Output:

N: Normal vector estimations

——————————————————————–

(P, E)← Neighborhood graph from P and k / r
C← CovMatrices(P, E)
U,Σ← ParallelEig(C)
N0 ← Extract Solutions from U
for l ∈ {1, ..., L} do

(Θ,Q)← GNN(P, E ,Nl−1)
R← QuatsToMats(Q)
W← ApplyKernel ψ(R,P,Θ, E)
C←WeightedCovMatrices(P,W, E)
U,Σ← ParallelEig(C)
Nl ← Extract Solutions from U

end for

return NL

where θ are kernel parameters and R is a rotation matrix.

The kernel is shared by all local neighborhoods of the point

graph while θ and R are individual for each node. Because

there is no apriori information about the structure of the in-

put data, a reasonable approach is to model ψ as an MLP

and to find kernel parameters through supervised learning

from data. To this end, parameters θ and poses R for each

neighborhood are jointly regressed by a graph neural net-

work on the point neighborhood graph. Then, the kernel

function ψ regresses anisotropic, equivariant weights wi,j

for each edge in the graph, which are used to find the nor-

mal vectors using traditional weighted least-squares opti-

mization

ni = argmin
n:|n|=1

∑

j∈N (i)

softmax
j∈N (i)

(wi,j)||P(i)j · n||
2, (7)

in parallel for all i ∈ P . Similar to iterative re-weighting

least squares (c.f. Eq. 5), we apply the method in an iterative

fashion to achieve robustness and provide the residuals of

the previous solution as input to the graph neural network.

The core algorithm is formulated as pseudo code in Al-

gorithm 1. The initial weighting of the points in a neighbor-

hood is chosen to be uniform, which results in unweighted

least-squares plane fitting in the initial iteration. In the

following, we present the graph neural network, the lo-

cal quaternion rotation and our differentiable least square

solver in more detail.

11249

4.1. GNN for parameterization and rotation

For regressing parameters θ and rotations R for the

whole point cloud, graph neural networks [13, 20] are a

natural fit because the network must be invariant to the or-

dering of the points in a neighborhood and it must be able

to allow weight sharing over neighborhoods with varying

cardinality.

Our graph neural network architecture consists of a

neighborhood aggregation procedure, which is applied three

consecutive times. Given MLPs h and γ, the neighborhood

aggregation scheme, similar to that of PointNet [40] and to

general message passing graph neural network frameworks

[20, 36], is given by message function

fe(i, j) = h
(

f(i) |di,j |prf(i, j)
)

, (8)

and node update function

f(i) = γ
(1

|N (i)|

∑

j∈N (i)

fe(i, j)
)

, (9)

with | denoting feature concatenation. Using this scheme,

we alternate between computing new edge features fe(i, j)
and node features f(i). In addition to the Cartesian rela-

tion vector di,j = (pj − pi), pair-wise residual features, a

modified version of Point Pair Features (PPF) [10, 11], are

provided as input:

prf(i, j) = (|ni ·di,j |, |nj ·di,j |, |ni ·nj |, ||di,j ||
2
2). (10)

They are computed directly from the last set of least-squares

solutions and contain the residuals as point-plane distances

|ni · di,j |.
After applying the message passing scheme, the output

node feature matrix F ∈ R
N×(d+4) is interpreted as a tuple

(Θ ∈ R
N×d,Q ∈ R

N×4), containing kernel and rotation

parameters for all nodes. We use the row-normalized Q
as unit quaternions to efficiently parameterize the rotation

group SO(3). We found that using a rotation matrix instead

of an arbitrary 3 × 3 matrix (as in the Spatial Transformer

Network [26]) heavily improves training stability, as also

observed by Guerrero et al. [19]. By applying a custom,

differentiable map from quaternion space to the space of

rotation matrices we efficiently compute the local rotation

matrices R for all nodes in parallel.

All in all, the graph neural network is permutation invari-

ant, can be efficiently applied in parallel on varying neigh-

borhood sizes, and is a local operator. Locality is an ad-

vantage which allows the algorithm to be applied on partial

point clouds and scans, without relying on global features

or semantics.

4.2. Parallel differentiable least­squares

In every iteration of the presented algorithm, the plane

fitting problem of Eq. 7 needs to be solved. A standard ap-

proach is to utilize the Singular Value Decomposition of the

weighted matrix diag(
√

wl
i)P(i): Let UΣVT be its de-

composition, then the column vector of V corresponding

to the smallest singular value is the optimal solution for the

given least squares problem [21, 43]. However, n SVDs (for

potentially varying matrix sizes) need to be solved in our

scenario, one for every neighborhood, which makes this ap-

proach prohibitive. A much more efficient approach in this

case is to consider the eigendecomposition of the weighted

3×3 covariance matrix C(i) = P(i)⊤diag(wl
i)P(i) which

has the columns of V as its eigenvectors [21]. The solution

for Eq. 7 is then the eigenvector associated with the smallest

eigenvalue. The computational complexity for the eigende-

composition of this 3× 3 matrix is O(1) and hence for one

overall iteration O(n).
Our algorithm is trained end-to-end by minimizing the

distance between ground truth normals and the least squares

solution, requiring backpropagation through the eigende-

composition. We follow the work of Giles [16]: Given par-

tial derivatives ∂L/∂U and ∂L/∂Σ for eigenvectors and

eigenvalues, respectively, we compute the partial deriva-

tives for a real symmetric 3× 3 covariance matrix C as

∂L

∂C
= U

(

(
∂L

∂Σ
)diag + F ◦U⊤ ∂L

∂U

)

U⊤, (11)

where Fi,j = (λj − λi)
−1 contains inverse eigenvalue dif-

ferences. We implemented forward and backward steps for

eigendecomposition of a large number of symmetric 3 × 3
matrices, where we parallelize over graph nodes, leading to

anO(1) implementation (usingO(n) processors) of parallel

least squares solvers.

Handling numerical instability. Backpropagation

through the eigendecomposition can lead to numerical

instabilities due to at least two reasons: 1) Low-rank input

matrices with two or more zero eigenvalues. 2) Exploding

gradients when two eigenvalues are very close to each other

and values of F go to infinity. We apply two tricks to avoid

these problems. First, a small amount of noise is added to

the diagonal elements of all covariance matrices, making

them full-rank. Second, gradients are clipped after the

backward step on very large values, to tackle the cases of

nearly equal eigenvalues that lead to exploding gradients.

4.3. Training

Training is performed by minimizing the Euclidean dis-

tance between estimated normals N and ground truth nor-

mals N̂, averaged over all normal vectors in the training set:

L(N̂,N) =
1

n

n
∑

i=1

min(||n̂i − ni||2, ||n̂i + ni||2), (12)

where the minimum of the distances to the flipped or non-

flipped ground truth vectors is used. While we also experi-

11250

Ours (k = 64, L = 4) Nesti-Net [5] PCPNet [19] HoughCNN [7] PCA Jet [9]

No noise 6.72 6.99 9.68 10.23 12.29 12.23

Noise (σ = 0.00125) 9.95 10.11 11.46 11.62 12.87 12.84

Noise (σ = 0.006) 17.18 17.63 18.26 22.66 18.38 18.33

Noise (σ = 0.012) 21.96 22.28 22.8 33.39 27.5 27.68

Varying Density (Stripes) 7.73 8.47 11.74 12.47 13.66 13.39

Varying Density (Gradients) 7.51 9.00 13.42 11.02 12.81 13.13

Average 11.84 12.41 14.56 16.9 16.25 16.29

Table 1: Results for unoriented normal estimation. Shown are normal estimation errors in angle RMSE. For PCA and Jet,

optimal neighborhood size for average error is chosen. For our approach, we display results for a balanced neighborhood size

k = 64, which improves on the state of the art for all noise levels. Results for different k are shown in Table 2.

mented with different angular losses, we found that the Eu-

clidean distance loss still provides the best result and the

most stable training. A loss is computed after each least

squares step and the network is trained iteratively by per-

forming a gradient descent step after each iteration of the

algorithm. This fights vanishing gradients that occur due to

the normalization of vectors in quaternion and eigenvector

computations. The weights of our network are shared over

iterations, allowing generalization to further iterations.

5. Experiments

Experiments were conducted to compare the proposed

Differentiable Iterative Surface Normal Estimation with

state-of-the-art methods both quantitatively, measuring nor-

mal estimation accuracy, and qualitatively, on a Poisson re-

construction and on a transfer learning task. Section 5.1

introduces the dataset used to train our model whereas Sec-

tion 5.2 details the architecture and the protocol followed in

our experiments. Then, qualitative (Section 5.3) and quan-

titative (Section 5.5) results are presented and an analysis of

complexity and execution time (Section 5.4) is given.

5.1. PCPNet dataset

Our method is trained and validated quantitatively on the

PCPNet dataset as provided by Guerrero et al. [19]. It

consists of a mixture of high-resolution scans, point clouds

sampled from handmade mesh surfaces and differentiable

surfaces. Each point cloud consists of 100k points. We re-

produce the experimental setup of [5, 19], training on the

provided split containing 32 point clouds under different

levels of noise. The test set consists of six categories, con-

taining four sets with different levels of noise (no noise,

σ = 0.00125, σ = 0.0065 and σ = 0.012) and two sets

with different sampling density (striped pattern and gradi-

ent pattern). We evaluate unoriented normal estimation,

same as the related approaches. The Root Mean Squared

Error (RMSE) on the provided 5k points subset is used as

performance metric following the protocol of related work,

where the RMSE is first computed for each test point cloud

before the results are averaged over all point clouds in one

category. Model selection is performed using the provided

validation set.

5.2. Experimental setup and architecture

The presented graph neural network was implemented

using the Pytorch Geometric library [13]. The neural net-

works h, γ and ψ each consist of two linear layers, with

ReLU non-linearity. A detailed description of the archi-

tecture is presented in the supplemental materials. During

training, output weights from the kernel are randomly set to

zero with probability of 0.25.

It should be noted that despite inheriting the neighbor-

hood size parameter from traditional PCA, it is possible for

a network trained on a specific k to be applied for other k
as well. This is because all networks can be shared across

an arbitrary number of points and the softmax function nor-

malizes weights for neighborhoods of varying sizes. We

observed that generalization across different k only leads to

a very small increase in average error. However, to fairly

evaluate our method for different k, a network is trained

for each k ∈ {32, 48, 64, 96, 128}. Trained consists of 300

epochs using the RMSProp optimization method. All re-

ported test results are given after 4 re-weighting iterations

of our algorithm. Iterating longer does not show significant

improvements. Quantitative results over iterations, results

for extrapolation over iterations and generalization between

different k are presented in the supplemental materials. For

further realization details, we refer to our implementation,

which we will make available online prior to publication.

5.3. Quantitative Evaluation

RMSE results for the PCPNet test set of our approach

(with k = 64) and related works are shown in Table 1.

We improve on the state of the art on all noise levels and

varying densities. While the improvement is only small,

it should be noted that we reach it while being orders of

magnitude faster and more parameter efficient (c.f. Sec-

tion 5.4, which is of importance for many applications in

resource constraint environments. For the non deep learn-

11251

Ours L = 4 PCA

Neighborhood size k 32 48 64 96 128 32 48 64 96 128

No noise 6.09 6.63 6.72 6.82 7.35 9.10 9.94 10.68 11.93 12.54

Noise (σ = 0.00125) 10.22 9.63 9.95 10.45 9.64 11.22 11.56 12.08 12.71 12.97

Noise (σ = 0.006) 18.17 17.36 17.18 17.03 16.90 28.41 23.00 20.68 18.81 18.12

Noise (σ = 0.012) 25.17 22.40 21.96 21.80 22.13 45.35 38.48 33.67 28.81 26.67

Varying Density (Stripes) 7.22 7.63 7.73 7.87 8.67 10.48 11.40 12.07 13.18 14.07

Varying Density (Gradients) 6.84 7.19 7.51 7.69 8.49 9.96 10.74 11.35 12.36 13.21

Average 12.28 11.81 11.84 11.94 12.20 19.09 17.52 16.75 16.30 16.26

Table 2: Comparison of unoriented normal estimation RMSE between the proposed method and PCA for different neigh-

borhood sizes k. It can be seen that our method consistently provides lower errors while being significantly more robust to

changes of that parameter, compared to PCA.

Angle error threshhold ath [degree]

A
n
g
le

E
rr
o
rs

<
a
th

[%
]

0.5 5 10 15 20 25 30

20

40

60

80

100

No Noise
0.5 5 10 15 20 25 30

20

40

60

80

100

Low Noise

0.5 5 10 15 20 25 30

20

40

60

80

100

Medium Noise
0.5 5 10 15 20 25 30

20

40

60

80

100

High Noise

0.5 5 10 15 20 25 30

20

40

60

80

100

Variable Density: Stripes
0.5 5 10 15 20 25 30

20

40

60

80

100

Variable Density: Gradients

PCA
PCPNet
Nesti-Net
Ours

Figure 2: Comparison for varying angle error threshold.

For error threshholds on the x-axis, the y-axis shows the

percentage of normals which have an error lower than that

threshhold. Our method and PCA use neighborhood size

k = 64. For low noise settings and varying density, our

method succeeds in recovering sharp features, as shown by

the higher accuracies for low angle threshholds.

ing approaches, PCA and Jet, results for medium neighbor-

hood sizes are displayed. In addition, results for different

k are provided in Table 2 and compared to errors obtained

by PCA with the same respective neighborhood size. Our

method performs stronger than the PCA baseline in all sce-

narios. As expected, varying k leads to a behavior similar

to that of PCA, with large k’s performing better on more

noisy data. However, it can be observed that our approach

is more robust to changes of k: Even for small neighbor-

hood sizes, high noise is handled significantly better than

by PCA and large neighborhoods still produce satisfactory

results for low noise data. It should be noted that for all

evaluated k we improve on the state of the art w.r.t. aver-

age error. An evaluation for smaller k down to k = 2 is

provided in the supplemental materials.

While the RMSE error metric is well suited for a general

comparison, it is not a good proxy to estimate the ability

of recovering sharp features since it does not take into ac-

count the error distribution over angles. Therefore, as an

additional metric, Figure 2 presents the percentage of an-

gle errors falling below different angle thresholds. The re-

sults confirm that our approach is better at preserving details

and sharp edges, especially for low noise point clouds and

varying density, where it outperforms other approaches. For

higher noise, results similar to Nesti-Net are achieved.

5.4. Efficiency

Our model is small, consisting of only 7981 trainable pa-

rameters, shared over iterations and spatial locations. On a

single Nvidia Titan Xp, a point cloud with 100k points is

processed in 5.67 seconds (0.0567 ms per point). A large

part of this is the kd-tree used to compute the nearest neigh-

bor graph, which takes 2.1 seconds of the 5.67 seconds. It

is run on the CPU and could be further sped-up by utilizing

GPUs.

Ours Nesti-Net [5] PCPNet [19]

Num. parameters 7981 179M 22M

Exec. time, 100k p. 3.57 s 1350 s 470 s

Relative exec. time 1× 378× 131×

Table 3: Comparison of efficiency between the approaches

using deep learning. We list number of model parameters

as well as average execution times for estimating normals

on a point cloud with 100k points.

In Table 3 we compare our approach against the re-

lated deep learning approaches Nesti-Net and PCPNet. Our

approach is orders of magnitude (378× and 131×) faster

than the related approaches. The comparison was made

11252

Figure 3: Qualitative comparison between our method (k = 64, L = 4) and related work. We show diverse examples from

the test set, sampled from different categories, noise levels and density variations. The color encodes the angle error of

estimated normals in degrees. Best viewed in the digital version of the paper.

Normals over iterations

Weights over iterations

(a) Sharp edge

Normals over iterations

Weights over iterations

(b) Noisy surface

Figure 4: Local behaviour of our method over several iterations for a sharp edge (a) and a noisy surface (b). The partial point

clouds where sampled from the PCPNet test dataset. The colors in the first rows show the weights from the kernel network

for one normal in the neighborhood while the colors in the second row show the angle error of all neighborhood normals.

as fair as possible by excluding nearest neighbor queries

(note that this favors the other approaches since they need

larger neighborhoods) and the original implementations.

The speedup of our method can be contributed to the much

smaller network size and the parallel design of the GNN and

least-squares optimization steps.

5.5. Qualitative Evaluation

This section visually presents surface normal errors for

various elements of the PCPNet test set in Figure 3 and

compares them against results from the PCA baseline and

related deep learning approaches. It can be seen that the

biggest improvements are obtained for low noise scenarios

and varying density, where our method is able to preserve

sharp features of objects better than the other methods. In

general it can be observed that our approach tends to pro-

vide sharp, discriminative normals for points on edges in-

stead of smooth averages. In rare cases, this can lead to a

false assignment of points to planes, as we can see in the

example in column 8. It can be observed that, in contrast

to Nesti-Net, our approach behaves equivariant to input ro-

tation as is seen clearly on the diagonal edge of the box

example in column 3. Sharp edges are kept also in uncom-

mon rotations, which we can attribute to our local rotational

transformer. Results for more examples are displayed in the

supplemental material.

Interpretability. In order to interprete the results of our

method, Figure 4 shows a detailed view of local neighbor-

hoods over several iterations of our algorithm. An example

for a sharp edge is shown in Figure 4a and a high noise sur-

face in Figure 4b. Both sets of points were sampled from the

real test data. For the sharp edge, the algorithm initially fits

a plane with uniform weights, leading to smoothed normals.

Over the iterations, high weights concentrate on the more

plausible plane, leading to recovering of the sharp edge. In

the noisy example, we can see that outliers are iteratively

receiving lower weights, leading to more stable estimates.

11253

