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Abstract

Interaction modeling is important for video action anal-

ysis. Recently, several works design specific structures to

model interactions in videos. However, their structures are

manually designed and non-adaptive, which require struc-

tures design efforts and more importantly could not model

interactions adaptively. In this paper, we automate the pro-

cess of structures design to learn adaptive structures for

interaction modeling. We propose to search the network

structures with differentiable architecture search mecha-

nism, which learns to construct adaptive structures for dif-

ferent videos to facilitate adaptive interaction modeling. To

this end, we first design the search space with several basic

graph operations that explicitly capture different relations

in videos. We experimentally demonstrate that our architec-

ture search framework learns to construct adaptive interac-

tion modeling structures, which provides more understand-

ing about the relations between the structures and some in-

teraction characteristics, and also releases the requirement

of structures design efforts. Additionally, we show that the

designed basic graph operations in the search space are

able to model different interactions in videos. The exper-

iments on two interaction datasets show that our method

achieves competitive performance with state-of-the-arts.

1. Introduction

Video classification is one of the basic research top-

ics in computer vision. Existing video classification so-

lutions can be mainly divided into two groups. The first

one is the two-stream network based methods [28, 33, 8],

which model appearance and motion features with RGB

and optical flow streams respectively; the second type is

∗Corresponding author

Turning 
the camera 
right while 

filming 
something

Trying but 
failing to 

attach sth 
to sth 

because it 
doesn't 

stick

Operation Candidates

Computation Cell

Computation Cell

N-input

N-input

N-output

N-output

concat

Operation Search

concat

Figure 1. Illustration of our method. We search adaptive network

structures to model the interactions in different videos, in which

the candidate basic operations (dashed arrows) are selected (solid

arrows) to construct adaptive structures for different videos.

the 3D convolution neural networks (CNN) based methods

[29, 4, 32, 26, 31, 23], which model spatiotemporal features

with stacked 3D convolutions or the decomposed variants.

While these methods work well on scene-based action clas-

sification, most of them obtain unsatisfactory performance

on recognizing interactions, since they haven’t effectively

or explicitly modeled the relations.

To model the interactions in videos, some methods em-

ploy specific structures [40, 14, 16] to capture temporal re-

lations. Others model the relations between entities. Non-

local network [34] and GloRe [7] design networks with

self-attention and graph convolution to reason about the re-

lations between semantic entities. CPNet [22] aggregates

features from potential correspondences for representation

learning. Space-time region graphs [35] are developed to

model the interactions between detected objects with graph
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convolution network (GCN).

However, existing methods have to manually design net-

work structures for interaction modeling, which requires

considerable architecture engineering efforts. More impor-

tantly, the designed structures are fixed so that they could

not adaptively model different interactions. For example,

the two videos in Figure 1 contain the interactions with

greatly different complexities and properties, i.e. the upper

one mainly concerns the motions of the background while

the lower one involves complicated relations among objects,

where which kind of structures should be used to adequately

model the interactions is not completely known in advance,

so that it requires to construct adaptive structures for more

effective interactions modeling.

Instead of designing fixed network structures manually,

we propose to automatically search adaptive network struc-

tures directly from training data, which not only reduces

structures design efforts but also enables adaptive interac-

tion modeling for different videos. As briefly illustrated in

Figure 1, different operations are adaptively selected to con-

struct the network structures for adaptive interaction mod-

eling for different videos, which is implemented by differ-

entiable architecture search. To construct the architecture

search space, we first design several basic graph operations

which explicitly capture different relations in videos, such

as the temporal changes of objects and relations with the

background. Our experiments show that the architecture

search framework automatically constructs adaptive net-

work structures for different videos according to some in-

teraction characteristics, and the designed graph operations

in the search space explicitly model different relations in

videos. Our method obtains competitive performance with

state-of-the-arts in two interaction recognition datasets.

In summary, the contribution of this paper is two-fold.

(1) We propose to automatically search adaptive network

structures for different videos for interaction modeling,

which enables adaptive interaction modeling for different

videos and reduces structures design efforts. (2) We design

the search space with several basic graph operations, which

explicitly model different relations in videos.

2. Related Work

2.1. Action and Interaction Recognition

In the deep learning era, action recognition obtains im-

pressive improvements with 2D [28, 33, 8] or 3D [15, 29,

26, 4, 32, 31, 23] CNNs. 2D CNNs use RGB frames and

optical flows as separate streams to learn appearance and

motion representations respectively, while 3D CNNs learn

spatiotemporal features with 3D convolutions or the decom-

posed counterparts. Some other works [19, 16] learn spa-

tiotemporal representations by shifting feature channels or

encoding motion features together with spatiotemporal fea-

tures, which achieve high performance and efficiency. As

for temporal-based actions, TRN [40] and Timeception [14]

design specific structures to model the temporal relations.

To model interactions, Gupta et al. [11] apply spatial

and functional constraints with several integrated tasks to

recognize interactions. InteractNet [9] and Dual Attention

Network [37] are proposed to model the interactions be-

tween human and objects. Some other works model the

relations between entities for interaction recognition. Non-

local network [34] models the relations between features

with self-attention. CPNet [22] aggregates correspondences

for representation learning. GCNs are employed to model

the interactions between nodes [35, 7]. These specific struc-

tures in the above methods are non-adaptive. In practice,

however, we do not know what kinds of interactions are

contained in videos, and the non-adaptive structures could

not sufficiently model various interactions, which requires

adaptive structures for effective modeling.

In this work, we propose to automatically search adap-

tive network structures with differentiable architecture

search mechanism for interaction recognition.

2.2. Graph-based Reasoning

Graph-based methods are widely used for relation rea-

soning in many computer vision tasks. For example, in

image segmentation, CRFs and random walk networks are

used to model the relations between pixels [5, 3, 18]. GCNs

[12, 17] are proposed to collectively aggregate information

from graph structures and applied in many tasks including

neural machine translation, relation extraction and image

classification [1, 2, 25, 36]. Recently, GCNs are used to

model the relations between objects or regions for interac-

tion recognition. For example, Chen et al. [7] adopt GCN to

build a reasoning module to model the relations between se-

mantic nodes, and Wang et al. [35] employ GCN to capture

the relations between detected objects.

In this paper, we design the search space with basic op-

erations based on graph. We propose several new graph op-

erations that explicitly model different relations in videos.

2.3. Network Architecture Search

Network architecture search aims to discover optimal ar-

chitectures automatically. The automatically searched ar-

chitectures obtain competitive performance in many tasks

[42, 20, 43]. Due to the computational demanding of the

discrete domain optimization [43, 27], Liu et al. [21] pro-

pose DARTS which relaxes the search space to be continu-

ous and optimizes the architecture by gradient descent.

Inspired by DARTS, we employ differentiable archi-

tecture search mechanism to automatically search adap-

tive structures directly from training data, which facilitates

adaptive interaction modeling for different videos and re-

leases the requirement of structures design efforts.
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Figure 2. Overall framework. Some frames are sampled from a video as the input to our model. We extract basic features of the sampled

frames with a backbone CNN, and extract class-agnostic bounding box proposals with RPN model. Then we apply RoIAlign to obtain the

features of proposals and regard them as node features. In the graph operations search stage, we search for a computation cell, where the

supernodes are transformed by the selected graph operations on the superedges (see Section 3.2 and 3.3 for details), to construct adaptive

structures. The searched structures are used to model the interactions in the corresponding videos. Finally, the node features are pooled

into a video representation for interaction recognition.

3. Proposed Method

In order to learn adaptive interaction modeling structure

for each video, we elaborate the graph operations search

method in this section. We design the architecture search

space with several basic graph operations, where the can-

didate operations are enriched in addition to graph convo-

lution by several proposed new graph operations modeling

different relations, e.g. the temporal changes and relations

with background. We further develop the search framework

based on differentiable architecture search to search adap-

tive structure for each video, which enables adaptive inter-

action modeling for different videos.

3.1. Overall Framework

We first present our overall framework for interaction

recognition in Figure 2. Given a video, we sample some

frames as the input to our model. We extract basic fea-

tures of the sampled frames with a backbone CNN. At the

same time, we extract class-agnostic RoIs for each frame

with Region Proposal Network (RPN) [13]. Then we ap-

ply RoIAlign [13] to obtain features for each RoI. All the

RoIs construct the graph for relation modeling. The nodes

are exactly the RoIs, and edges are defined depending on

the specific graph operations introduced in Section 3.2, in

which different graph operations would indicate different

connections and result in different edge weights. To obtain

adaptive network structures, we employ differentiable ar-

chitecture search mechanism to search adaptive structures

in which graph operations are combined hierarchically. The

interactions are modeled with the searched structures by

transforming the node features with the selected graph op-

erations. Finally, the output node features are pooled into a

video representation for interaction classification.

In the following subsections, we describe the search

space with basic graph operations and the architecture

search framework in details.

3.2. Search Space with Graph Operations

To search the network structures, we firstly need to con-

struct a search space. We search for a computation cell to

construct the network structures, as illustrated in Figure 2.

A computation cell is a directed acyclic computation graph

with N ordered supernodes (“supernode” is renamed from

“node” to avoid confusion with the nodes in the graphs con-

structed from RoIs). Each supernode contains all the nodes

and each superedge indicates the candidate graph operations

transforming the node features. In the computation cell, the

input supernode is the output of the previous one, and the

output is the channel-wise concatenated node features of all

the intermediate supernodes.

Each intermediate supernode can be obtained by sum-

ming all the transformed predecessors (the ordering is de-

noted as “N-1”, “N-2”, “N-3” in Figure 2) as follows,

X(j) =
∑

i<j

oij(X(i)), (1)

where X(i), X(j) are the node features of the i-th and j-

th supernode, and oij is the operation on superedge (i, j).
Thus the learning of cell structure reduces to learning the

operations on each superedge, so that we design the candi-

date operations in the following.

We design the basic operations based on graph for ex-

plicit relation modeling. In addition to graph convolution,

we propose several new operations, i.e. difference propaga-

tion, temporal convolution, background incorporation and

node attention, which explicitly model different relations in

videos and serve as basic operations in the search space.
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3.2.1 Feature Aggregation

Graph convolution network (GCN) [17] is commonly used

to model relations. It employs feature aggregation for rela-

tion reasoning, in which each node aggregates features from

its neighboring nodes as follows,

zi = δ





∑

j

a
f
ij ·W fxj



 , (2)

where xj ∈ R
Cin is the feature of node-j with Cin dimen-

sions, W f ∈ R
Cout×Cin is the feature transform matrix

applied to each node, a
f
ij = xT

i Ufxj is the affinity be-

tween node-i and node-j with learnable weights Uf , δ is

a nonlinear activation function and the zi ∈ R
Cout is the

updated feature of node-i with Cout dimensions. Through

information aggregation on the graph, each node enhances

its features by modeling the dependencies between nodes.

3.2.2 Difference Propagation

In videos, the differences between objects are important for

recognizing interactions. But GCN may only aggregate fea-

tures with weighted sum, which is hard to explicitly capture

the differences. Therefore, we design an operation differ-

ence propagation to explicitly model the differences.

By slightly modifying Equation (2), the differences can

be explicitly modeled as follows,

zi = δ





∑

j,j 6=i

adij ·W d(xi − xj)



 , (3)

where the symbols share similar meanings of those in Equa-

tion (2). The item (xi−xj) in Equation (3) explicitly mod-

els the differences between node-i and node-j, and then the

differences are propagated on the graph, as shown in Fig-

ure 3(a). Difference propagation focuses on the differences

between nodes to model the changes or differences of ob-

jects, which benefits recognizing interactions relevant to the

changes or differences.

3.2.3 Temporal Convolution

Nodes in videos are inherently in temporal orders. How-

ever, both feature aggregation and difference propagation

model the features in unordered manners and ignore the

temporal relations. Here we employ temporal convolution

to explicitly learn temporal representations.

In temporal convolutions, we firstly obtain node se-

quences in temporal order. Given node-i in the t-th frame,

we find its nearest node (not required to represent the same

object) in each frame measured by the inner product of node

features and arrange them in temporal order for a sequence,

Xi = [x0
i , · · · ,x

t
i, · · · ,x

T−1
i ], (4)

(a) Difference Propagation (b) Temporal Convolution

background

RoI

node

relation

(c) Background Incorporation (d) Node Attention

Figure 3. Illustration of proposed graph operations. (a) Difference

Propagation, each node propagates the differences to its neighbor-

ing nodes. (b) Temporal Convolution, each node learns temporal

features with convolution over node sequences along the video.

(c) Background Incorporation, each node aggregates the relations

with the background. (d) Node Attention, each node learns atten-

tion weights to indicate its importance.

where x0
i , · · · ,x

T−1
i denote the nearest nodes in frame

0, · · · , T − 1 with reference to the given node xt
i.

Then we conduct temporal convolutions over the node

sequence as shown in Figure 3(b),

zi = δ(W t ∗Xi), (5)

where ∗ denotes temporal convolution and W t is the convo-

lution kernel. The temporal convolution explicitly learns the

temporal representations to model the significant appear-

ance changes of the node sequence, which is essential for

identifying interactions with temporal relations.

3.2.4 Background Incorporation

The node features derived from RoIAlign exclude the back-

ground information. However, background is useful since

the objects probably interact with the background. This in-

spires us to design the background incorporation operation.

In each frame, the detected objects have different affini-

ties with different regions in the background, as illustrated

in Figure 3(c). Denote the feature of node-i in the t-th frame

as xt
i ∈ R

Cin and the background feature map correspond-

ing to the t-th frame as yt ∈ R
h×w×Cin . The affinity be-

tween xt
i and yt

j (j = 1, · · · , h × w) can be calculated as

abij = xt
i

T
U by

t
j with learnable U b. The abij indicates the

relations between the node and the background with spatial

structure, which could be transformed into node features,

zr
i = V ba

b
i , (6)
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where ab
i = [abi1; a

b
i2; · · · ; a

b
i(h·w)] ∈ R

h·w is the affinity

vector, and V b ∈ R
Cout×(h·w) is the transform matrix trans-

forming the affinity vector into node features.

In addition, the background features can be aggregated

according to the affinity abij to model the dependencies be-

tween detected objects and the background,

za
i =

∑

j=1,··· ,h×w

abij ·W byj . (7)

Finally, the updated node features are the combination of

the two features above followed by a nonlinear activation,

zi = δ(zr
i + za

i ). (8)

3.2.5 Node Attention

The graph contains hundreds of nodes but they contribute

differently to recognizing interactions. Some nodes irrel-

evant to the interaction serve as outliers that interfere the

interaction modeling, so it is reasonable to weaken the out-

liers with attention scheme.

The outliers are often the nodes wrongly detected by

RPN, which usually have few similar nodes and their simi-

lar nodes do not locate regularly at specific regions or along

the videos, as briefly illustrated in Figure 3(d). So that we

calculate the attention weights according to the similarities

and relative positions to the top-M similar nodes.

zi = wi · xi,

wi = σ(W n [a
n
i ; ∆si]),

an
i =

[

anij1 ; a
n
ij2

; · · · ; anijM
]

,

∆si =









si − sj1
si − sj2

· · ·
si − sjM









,

(9)

where wi is the attention weight of xi, which is calculated

from similarity vector an
i and relative positions ∆si, σ is

the sigmoid nonlinear function, jm is the node index of

node-i’s m-th similar nodes measured by inner product, and

anijm is the inner product of node features between node-i

and node-jm, and si = [xi; yi; ti] is the normalized spa-

tial and temporal positions of node-i. With the attention

weights, we are able to focus on informative nodes and ne-

glect the outliers.

The graph operations above explicitly capture different

relations in videos and serve as the basic operations in the

architecture search space, which facilitates structure search

in Section 3.3.

3.3. Searching Adaptive Structures

With the constructed search space, we are able to search

adaptive structures for interaction modeling. We employ

differentiable architecture search mechanism in DARTS

[21] to develop our search framework, and revise the learn-

ing of operation weights to facilitate search of adaptive in-

teraction modeling structures.

DARTS. DARTS utilizes continuous relaxation to learn

specific operations (oij in Equation (1)) on the superedges.

The softmax combination of all the candidate operations are

calculated as the representation of each supernode,

ōij(X(i)) =
∑

o∈O

exp(αij
o )

∑

o
′
∈O

exp(αij

o
′ )

o(X(i)), (10)

where O is the set of candidate operations, o represents a

specific operation, αij
o is the operation weight of operation

o on superedge (i, j), and the ōij(X(i)) is the mixed out-

put. In this way, the cell structure learning reduces to the

learning of operation weights αij
o .

To derive the discrete structure after the search procedure

converges, the operation with strongest weight is selected as

the final operation on superedge (i, j),

oij = argmax
o∈O

αij
o . (11)

Adaptive Structures. Since the interactions differ from

video to video, we attempt to learn adaptive structures for

automatical interaction modeling. However, the operation

weights αij
o in Equation (10) is non-adaptive. So that we

modify the αij
o to be adaptive by connecting them with the

input video through a fully-connected (FC) layer,

αij
o = Aij

o X, (12)

in which X is the global feature of input video (global

average pooling of the backbone feature) and Aij
o is the

learnable structure weights corresponding to operation o on

superedge (i, j). In this way, adaptive structures are con-

structed for different videos to model the interactions.

Unlike alternatively optimizing the model in training and

validation set to approximate the architecture gradients in

DARTS, we jointly optimize the structure weights and the

weights in all graph operations in training set to learn adap-

tive structures.

Fixing Substructures. It is time consuming to search stable

structures with too many candidate operations. We attempt

to reduce the number of basic operations by combining sev-

eral operations into fixed substructures and regarding the

fixed substructures as basic operations in the search space.

For example, we connect feature aggregation and node at-

tention sequentially into a fixed combination, and put it after

the other 3 graph operations to construct 3 fixed substruc-

tures for search (as shown on the superedges in Figure 4).

By this means, we accelerate search by simplifying the

search space and also deepen the structures because each

superedge contains multiple graph operations.
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Diversity Regularization. We find that the search frame-

work easily selects only one or two operations to construct

structures, because these operations are easier to optimize.

However, other operations are also effective on interaction

modeling, so we hope to keep more operations activated in

the searched structures. We introduce the variance of oper-

ation weights as an auxiliary loss to constraint that all the

operations would be selected equally,

Lvar =
1

|O| − 1

∑

o∈O

(αo − ᾱ)2, (13)

where αo =
∑

(i,j) α
ij
o , ᾱ is the mean of αo. The variance

loss is added to the classification loss for optimization.

4. Experiments

4.1. Datasets

We conduct experiments on two large interac-

tion datasets, Something-Something-V1(Sth-V1) and

Something-Something-V2(Sth-V2) [10] (see Figure 7 and

8 for some example frames). Sth-V1 contains 108,499

short videos across 174 categories. The recognition of

them requires interaction reasoning and common sense

understanding. Sth-V2 is an extended version of Sth-V1

which reduces the label noises.

4.2. Implementation Details

In the training, we employ stagewise training of the

backbone and the graph operations search for easier conver-

gence. And we optimize the weights in all graph operations

and the structure weights (Aij
o in Equation (12)) alternately

to search adaptive structures.

In the structures search stage, we include the zero and

identity as additional candidate operations. Following [6],

we add dropout after identity to avoid its domination in the

searched structures. We use 3 intermediate supernodes in

each computation cell. The weight for auxiliary variance

loss Lvar (Equation (13)) is set to 0.1.

More details about the model, training procedure and

data augmentation are included in supplementary materials.

4.3. Analysis of Architecture Search Framework

In this section, we analyze our architecture search frame-

work. First we compare the interaction recognition ac-

curacy of our searched structures with our baselines, and

the results are shown in Table 1. It is observed that our

searched structures obtain about 3% improvements over the

baselines, i.e. global pooling (global average pooling of the

backbone feature) and pooling over RoIs (average pooling

over all the RoI features), indicating that the searched struc-

tures are effective to model interactions and improve recog-

nition performance. In the following, we show the searched

structures and analyze the effects of adaptive structures.

Search schemes V1 Val1Acc V2 Val1Acc

global pooling 48.1 60.3

pooling over RoIs 48.3 60.3

non-adaptive (only testing)2 50.2 62.4

non-adaptive (training and testing)3 50.8 63.1

adaptive 51.4 63.5
1 Something-Something-V1 validation set and Something-Something-V2 validation set
2 Only one searched structure (corresponding to most training videos) is used for testing.
3 The structure are non-adaptive both in training and testing.

Table 1. Interaction recognition accuracy (%) comparison of dif-

ferent search schemes.

case1

case2

feat_aggr

diff_prop

temp_conv

back_incor

node_att

N-input

N-input N-output

N-output

N-1

N-1

N-2

N-2

N-3

N-3 operations

concat

concat

Figure 4. Two example videos and their corresponding structures.

In the figure, “feat aggr”, “diff prop”, “temp conv”, “back incor”,

“node att” represent feature aggregation, difference propagation,

temporal convolution, background incorporation and node atten-

tion, respectively.

4.3.1 Searched Structures

Figure 4 shows two examples of the input videos and

the corresponding searched structures. From the searched

structures we observe that our architecture search frame-

work learns adaptive structures for different input videos.

The main differences between the two structures are the su-

peredges entering “N-3”, where case1 learns simple struc-

ture but case2 selects complicated structure with more

graph operations. Perhaps case2 is confusing with other

interactions and requires complicated structures to capture

some detailed relations for effective interaction modeling.

Mismatch of videos and structures. To validate the speci-

ficity of adaptive structures, we swap the two searched

structures in Figure 4 to mismatch the input videos, and use

them to recognize the interactions. The results are com-

pared in Figure 5. We observe that the mismatch of videos

and structures leads to misclassification, which reveals that

different videos require different structures for effective in-

teraction modeling, since different interactions of different

complexities are involved.

4.3.2 Analysis of Adaptive Structures

To understand the relations between the adaptive structures

and the interaction categories, we statistically analyze the

proportion of videos per class corresponding to different

searched structures in validation set. Figure 6 compares the
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Figure 5. Top 5 classification score comparison of match and mis-

match of videos and structures. (a) and (b) show the results of

the two cases in Figure 4. The red bars indicate the groundtruth

categories.
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Figure 6. The proportion of videos per class corresponding to dif-

ferent structures. (a) and (b) show the results on the two datasets.

The bars with different colors indicate different structures.

results of two searched structures indicated with different

colors. We observe that the searched structures are strongly

correlated to the interaction categories, where each struc-

ture corresponds to some specific interaction categories. For

examples, in Something-Something-V1 dataset, the struc-

ture indicated with orange bars mainly corresponds to the

interactions of indexes {2, 4, 6, 12, 15, et al.}, which are

about the motions of the camera. While the structure indi-

cated with blue bars includes the interactions about mov-

ing/pushing objects (of indexes {8, 26, 29, 30, 41, et al.}).

This reveals that our architecture search framework learns

to roughly divide the videos into several groups according

to some characteristics in the interactions, and search spe-

cialized structures for different groups for adaptive interac-

tion modeling. In other words, the adaptive structures au-

tomatically model interactions in a coarse (groups) to fine

(specialized structure for each group) manner.

We further quantitatively compare the interaction recog-

nition accuracy of non-adaptive and adaptive search

schemes in Table 1. We make the following observations:

On the one hand, adaptive scheme gains better performance

than non-adaptive schemes. On the other hand, using only

one searched structure for testing leads to obvious perfor-

mance degradation, since different structures are searched

to match different groups during training but only one struc-

Operations V1 Val Acc V2 Val Acc

global pooling 48.1 60.3

pooling over RoIs 48.3 60.3

feature aggregation 49.9 62.0

difference propagation 49.5 61.8

temporal convolution 48.7 61.0

background incorporation 49.7 62.4

node attention 49.8 61.8

Table 2. Interaction recognition accuracy (%) comparison of dif-

ferent graph operations.

ture is used for testing, which is insufficient to model the in-

teractions in all groups. These observations further indicate

the effectiveness of the adaptive structures.

We also validate that learning with fixed substructures

gains slight improvements, diversity regularization helps to

learn structures with multiple operations, and the adaptive

structures can transfer across datasets. For more details,

please refer to our supplementary materials.

4.4. Analysis of Graph Operations

In this section, we analyze the role of each graph opera-

tion in interaction modeling. Firstly, we compare the recog-

nition accuracy of different operations by placing them on

top of the backbone, and the results are shown in Table 2.

It is seen that all the operations improve the performance

over baselines, indicating that explicitly modeling the re-

lations with graph operations benefits interaction recogni-

tion. Different graph operations gain different improve-

ments, which depends on the significance of different re-

lations in the datasets. In the following, we visualize some

nodes and cases to demonstrate the different effects of dif-

ferent graph operations in interaction modeling.

Top activated nodes. We visualize the nodes with top affin-

ity values of some operations for the same video in Figure

7. The feature aggregation focuses on the apparently simi-

lar nodes to model the dependencies among them as shown

in Figure 7(a). On the contrary, the difference propagation

models the significant changes of some obviously different

nodes in Figure 7(b). In Figure 7(c), the nodes with high at-

tention weights are the hand or the bag, and the nodes with

low attention weights are some outliers, which indicates that

the node attention helps to concentrate on important nodes

and eliminate the interference of outliers.

Successful and failed cases. We show some successful and

failed cases to indicate the effects of different operations in

Figure 8. In Figure 8(a), the feature aggregation success-

fully recognizes the interaction due to the obvious depen-

dencies between the paper and the mug. However, it fails

when detailed relations in Figure 8(b) and 8(c) are present.

In Figure 8(b), the difference propagation and the tempo-

ral convolution could capture that the lid is rotating so that

they correctly recognize the interaction. In Figure 8(c), the

background incorporation is able to capture the relations

between the towel and the water in the background so that
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(a) Feature Aggregation

(b) Different Propagation

(c) Node Attention

Figure 7. Top activated nodes of different operations on the same interac-

tion “Pulling something out of something”. In (a) and (b), the red node is

the reference node and the blue nodes are the top activated nodes. In (c),

The red nodes have the highest attention weights while the blue ones have

the lowest attention weights.

(a) Stuffing something into something

(b) Twisting something

(c) Twisting something wet until water comes out

Figure 8. Successful and failed cases of different graph operations. The

green bounding boxes are RoIs extracted from RPN.

it makes correct prediction, but other operations ignoring

the background information are hard to recognize such an

interaction with the background.

More case study and analysis about graph operations are

included in supplementary materials.

4.5. Comparison with State-of-the-arts

We compare the interaction recognition accuracy with

recent state-of-the-art methods, and the results are show

in Table 3. Except for STM [16], our method outper-

forms other methods, which indicates the effectiveness of

our method. We model the interactions with adaptive struc-

tures, which enhances the ability of interaction modeling

and boosts the performance.

Among the recent state-of-the-arts, I3D+GCN [35] also

uses graph operation over object proposals to recognize in-

teractions. Our method surpasses it with a margin about 7%,

perhaps because we have trained a better backbone with our

data augmentation techniques (see Section 4.2 for details),

Methods V1 Val Acc V2 Val Acc

I3D+GCN [35] (ECCV’18) 43.3 -

NonLocalI3D+GCN [35] (ECCV’18) 46.1 -

CPNet [22] (CVPR’19) - 57.6

TSM [19] (ICCV’19) 44.81 58.71

ECO [41] (ECCV’18) 46.4 -

TrajectoryNet [39] (NeurIPS’18) 47.8 -

S3D [38] (ECCV’18) 48.2 -

ir-CSN-152 [30] (ICCV’19) 48.4 -

GST [23] (ICCV’19) 48.6 62.6

discriminative filters [24] (ICCV’19) 50.12 -

STM [16] (ICCV’19) 50.7 64.2

adaptive structures search (Ours) 51.4 63.5
1 Only RGB results are reported for fair comparison.
2 Only the results with the same backbone (ResNet50) as ours are reported.

Table 3. Interaction recognition accuracy (%) comparison with

state-of-the-arts.

and our adaptive structures with multiple graph operations

learn better interaction representations.

STM [16] proposes a block to encode spatiotemporal and

motion features, and stacks it into a deep network, which

obtains better performance on Something-something-V2

dataset than ours. However, we adaptively model interac-

tions with different structures, which provides more under-

standing about the relations between the interactions and

the corresponding structures, instead of only feature encod-

ing in STM. In addition, our structures are automatically

searched, which releases the structures design efforts.

5. Conclusion

In this paper, we propose to automatically search adap-

tive network structures for interaction recognition, which

enables adaptive interaction modeling and reduces struc-

tures design efforts. We design the search space with several

proposed graph operations, and employ differentiable ar-

chitecture search mechanism to search adaptive interaction

modeling structures. Our experiments show that the archi-

tecture search framework learns adaptive structures for dif-

ferent videos, helping us understand the relations between

structures and interactions. In addition, the designed basic

graph operations model different relations in videos. The

searched adaptive structures obtain competitive interaction

recognition performance with state-of-the-arts.

Acknowledgement

This work was supported partially by the Na-

tional Key Research and Development Program of

China (2018YFB1004903), NSFC(U1911401,U1811461),

Guangdong Province Science and Technology Innova-

tion Leading Talents (2016TX03X157), Guangdong NSF

Project (No. 2018B030312002), Guangzhou Research

Project (201902010037), and Research Projects of Zhejiang

Lab (No. 2019KD0AB03). The principal investigator for

this work is Wei-Shi Zheng.

528



References

[1] Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheg-

giani, and Khalil Simaan. Graph convolutional encoders for

syntax-aware neural machine translation. In Proceedings of

the 2017 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1957–1967, 2017.

[2] Daniel Beck, Gholamreza Haffari, and Trevor Cohn. Graph-

to-sequence learning using gated graph neural networks. In

Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics, pages 273–283, 2018.

[3] Gedas Bertasius, Lorenzo Torresani, Stella X Yu, and Jianbo

Shi. Convolutional random walk networks for semantic im-

age segmentation. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 858–866, 2017.

[4] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 4724–4733, 2017.

[5] Siddhartha Chandra, Nicolas Usunier, and Iasonas Kokkinos.

Dense and low-rank gaussian crfs using deep embeddings.

In The IEEE International Conference on Computer Vision

(ICCV), pages 5103–5112, 2017.

[6] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Pro-

gressive differentiable architecture search: Bridging the

depth gap between search and evaluation. arXiv preprint

arXiv:1904.12760, 2019.

[7] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan

Shuicheng, Jiashi Feng, and Yannis Kalantidis. Graph-based

global reasoning networks. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

433–442, 2019.

[8] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolu-

tional two-stream network fusion for video action recogni-

tion. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 1933–1941, 2016.

[9] Georgia Gkioxari, Ross Girshick, Piotr Dollár, and Kaiming

He. Detecting and recognizing human-object interactions. In

The IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8359–8367, Salt Lake City, UT, USA,

2018.

[10] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S.

Westphal, H. Kim, V. Haenel, I. Fruend, P. Yianilos, M.

Mueller-Freitag, F. Hoppe, C. Thurau, I. Bax, and R. Memi-

sevic. The “something something” video database for learn-

ing and evaluating visual common sense. In The IEEE In-

ternational Conference on Computer Vision (ICCV), pages

5843–5851, 2017.

[11] A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-

object interactions: Using spatial and functional compatibil-

ity for recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 31(10):1775–1789, 2009.

[12] David K Hammond, Pierre Vandergheynst, and Rémi Gri-
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