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Abstract

The recent flourish of deep learning in various tasks

is largely accredited to the rich and accessible labeled

data. Nonetheless, massive supervision remains a luxury

for many real applications, boosting great interest in label-

scarce techniques such as few-shot learning (FSL), which

aims to learn concept of new classes with a few labeled sam-

ples. A natural approach to FSL is data augmentation and

many recent works have proved the feasibility by proposing

various data synthesis models. However, these models fail

to well secure the discriminability and diversity of the syn-

thesized data and thus often produce undesirable results. In

this paper, we propose Adversarial Feature Hallucination

Networks (AFHN) which is based on conditional Wasser-

stein Generative Adversarial networks (cWGAN) and hallu-

cinates diverse and discriminative features conditioned on

the few labeled samples. Two novel regularizers, i.e., the

classification regularizer and the anti-collapse regularizer,

are incorporated into AFHN to encourage discriminability

and diversity of the synthesized features, respectively. Ab-

lation study verifies the effectiveness of the proposed cW-

GAN based feature hallucination framework and the pro-

posed regularizers. Comparative results on three common

benchmark datasets substantiate the superiority of AFHN

to existing data augmentation based FSL approaches and

other state-of-the-art ones.

1. Introduction

The rich and accessible labeled data fuel the revolu-

tionary success of deep learning [7, 46, 20]. However, in

many specific real applications, only limited labeled data

are available. This motivates the investigation of few-

shot learning (FSL) where we need to learn concept of

new classes based on a few labeled samples. To combat

with deficiency of labeled data, some FSL methods resort

to enhance the discriminability of the feature representa-

tions such that a simple linear classifier learned from a

few labeled samples can reach satisfactory classification re-

sults [39, 36, 38]. Another category of methods investi-

gate techniques of quickly and effectively updating a deep

neural network with a few labeled data, either by learn-

ing a meta-network and the corresponding updating rules

[9, 24, 32, 28], or by learning a meta-learner model that gen-

erates some components of a classification network directly

from the labeled samples [21, 12, 34]. Alternatively, the

third group of methods address this problem with data aug-

mentation by distorting the labeled images or synthesizing

new images/features based on the labeled ones [4, 10, 35, 5].

Our proposed method falls into the data augmentation

based category. The basic assumption of approaches in

this category is that the intra-class cross-sample relation-

ship learned from seen (training) classes can be applied to

unseen (test) classes. Once the cross-sample relationship is

modeled and learned from seen classes, it can be applied

on the few labeled samples of unseen class to hallucinated

new ones. It is believed that the augmented samples can di-

versify the intra-class variance and thus help reach sharper

classification boundaries [45]. Whatever data augmentation

technique is used, it is critical to secure discriminability of

the augmented samples, as otherwise they shall cast catas-

trophic impact on the classifier. On the other hand, the

decision boundary of a classifier can be determined pre-

cisely only when labeled samples exhibit sufficient intra-

class variance. Thus, diversity of the augmented samples is

also of a crucial role. This is in fact the essential motivation

of investigating data augmentation for FSL, as a few labeled

samples encapsulate limited intra-class variance.

Though various data augmentation based FSL methods

have been proposed recently, they fail to simultaneously

guarantee discriminability and diversity of the synthesized

samples. Some methods learn a finite set of transformation

mappings between samples in each base (label-rich) classes

and directly apply them to seed samples of novel (label-

scarce) classes. However, the arbitrary mapping may de-

stroy discriminability of the synthesized samples [6, 15, 35].

Other methods synthesize samples specifically for certain

tasks which regularize the synthesis process [41, 28]. Thus,

these methods can guarantee discriminability of the synthe-
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sized samples. But the task would constrain the synthesis

process and consequently the synthesized samples tend to

collapse into certain modes, thus failing to secure diversity.

To avoid limitations of the existing methods, we pro-

pose Adversarial Feature Hallucination Networks (AFHN)

which consists of a novel conditional Wasserstein Gener-

ative Adversarial Networks (cWGAN) [13] based feature

synthesis framework and two novel regularizers. Unlike

many other data augmentation based FSL approaches that

perform data augmentation in the image space [3, 6, 4],

our cWGAN based framework hallucinates new features

by using the features of the seed labeled samples as the

conditional context. To secure discriminability of the syn-

thesized features, AFHN incorporates a novel classification

regularizer that constrains the synthesized features being of

high correlation with features of real samples from the same

class while of low correlation with those from the different

classes. With this constraint, the generator is encouraged to

generate features encapsulating discriminative information

of the class used as the conditional context.

It is more complicated to ensure diversity of the synthe-

sized features, as conditional GANs are notoriously suscep-

tible to the mode collapse problem that only samples from

limited distribution modes are synthesized. This is caused

by the use of usually high dimensional and structured data

as the condition tends to make the generator ignore the la-

tent code, which controls diversity. To avoid this problem,

we propose a novel anti-collapse regularizer which assigns

high penalty for the case where mode collapse likely oc-

curs. It is derived from the observation that noise vectors

that are closer in the latent code space are more likely to be

collapsed into the same mode when mapped to the feature

space. We directly penalize the ratio of the dissimilarity of

the two synthesized feature vectors and the dissimilarity of

the two noise vectors generating them. With this constraint,

the generator is forced to explore minor distribution modes,

thus encouraging diversity of the synthesized features.

With discriminative and diverse features synthesized, we

can get highly effective classifiers and accordingly appeal-

ing recognition results. In summary, the contributions of

this paper are as follows: (1) We propose a novel cWGAN

based FSL framework which synthesizes fake features by

taking those of the few labeled samples as the conditional

context. (2) We propose two novel regularizers that guar-

antee discriminability and diversity of the synthesized fea-

tures. (3) The proposed method reaches the state-of-the-art

performance on three common benchmark datasets.

2. Related Work

Regarding the perspective of addressing FSL, existing

algorithms can generally be divided into three categories.

The first category of methods aim to enhance the discrim-

inability of the feature representations extracted from im-

ages. To this goal, a number of methods resort to deep met-

ric learning and learn deep embedding models that produce

discriminative feature for any given image [33, 39, 36, 38].

The difference lies in the loss functions used. Other meth-

ods following this line focus on improving the deep metric

learning results by learning a separate similarity metric net-

work [37], task dependent adaptive metric [30], patch-wise

similarity weighted metric [14], neural graph based metric

[18, 25], etc.

A more common category of algorithms address FSL by

enhancing flexibility of a model such that it can be read-

ily updated using a few labeled samples. These methods

utilize meta-learning, also called learning to learn, which

learns an algorithm (meta-learner) that outputs a model (the

learner) that can be applied on a new task when given some

information (meta-data) about that task. Following this line,

some approaches aim to optimize a meta-learned classifica-

tion model such that it can be easily fine-tuned using a few

labeled data [32, 9, 24, 24, 32, 28, 29]. Other approaches

adopt neural network generation and train a meta-learning

network which can adaptively generate entire or some com-

ponents of a classification neural network from a few la-

beled samples of novel classes [31, 12, 22, 21]. The gen-

erated neural network is supposed to be more effective to

classify unlabeled samples from the novel classes, as it is

generated from the labeled samples and encapsulates dis-

criminative information about these classes.

The last category of methods combat deficiency of the la-

beled data directly with data augmentation. Some methods

try to employ additional samples by some forms of trans-

fer learning from external data [33, 42]. More popular ap-

proaches perform data augmentation internally by applying

transformations on the labeled images or the corresponding

feature representations. Naively distorting the images with

common transformation techniques (e.g., adding Gaussian

perturbation, color jittering, etc.) is particularly risky as it

likely jeopardizes the discriminative content in the images.

This is undesirable for FSL as we only have a very lim-

ited number of images to be utilized; quality control of the

synthesizing results for any single image is crucial as oth-

erwise the classifier could be ruined by the low-quality im-

ages. Chen et al. propose a series of methods of perform-

ing quality-controlled image distortions by applying pertur-

bation in the semantic feature space [6], shuffling image

patches [3] and explicitly learning an image transformation

network [4]. Performing data augmentation in the feature

space seems more promising as the feature variance directly

affects the classifier. Many approaches with this idea have

been proposed by hallucinating new samples for novel class

based on seen classes [35, 15], composing synthesized rep-

resentations [5, 44], and using GANs [10, 45].

This paper proposes Adversarial Feature Hallucination

Networks (AFHN), a new GAN-based FSL model that aug-
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ments labeled samples by synthesizing fake features con-

ditioned on those of the labeled ones. AFHN significantly

differs from the two existing GAN based models [45, 10]

in the following aspects. First, AFHN builds upon Wasser-

stein GAN (WGAN) model which is known for more stable

performance, while [45, 10] adopt the conventional GAN

framework. Second, neither [45] nor [10] has a classifica-

tion regularizer. The most similar optimization objective

in [10] is the one which optimizes the synthesized features

as the outlier class (relative to the real class), while that in

[45] is a cycle-consistency objective. We instead regular-

ize the synthesized features of being high correlation with

real features from the same classes and low correlation with

those from the different classes. Third, After training the

generator, we learn a standard Softmax classifier using the

synthesize features, while [45, 10] utilize them to enhance

existing FSL methods. Last, we further propose the novel

anti-collapse regularizer to encourage diversity of synthe-

sized features, while [45, 10] do not.

AFHN also bears some similarity with an existing fea-

ture hallucination based FSL method [41]. But apparently

we adopt the GAN framework which has the discriminator

to regularize the features produced by the generator, while

[41] uses the simple generative model. Besides, AFHN syn-

thesizes new features to learn a standard Softmax classifier

for new classes, while [41] utilizes them to enhance exist-

ing FSL classifier. Moreover, we aim to hallucinate diverse

features with the novel anti-collapse regularizer, while [41]

does not have such an objective.

3. Algorithm

In this section, we first briefly introduce Wasserstein

GAN and then elaborate the details of how we build the

proposed AFHN model upon it.

3.1. Wasserstein GAN

GAN is a recently proposed generative model that has

shown impressive performance on synthesizing realistic im-

ages. The generative process in GAN is modeled as a game

between two competitive models, the generator and the dis-

criminator. The generator aims to generate from noise fake

samples as realistic as possible such that the discriminator

cannot tell whether they are real or fake. The discriminator

instead tries the best to make the correct judgment. This ad-

versarial game pushes the generator to extensively explores

the data distribution and consequently produces more visu-

ally appealing samples than conventional generative mod-

els. However, it is known that GAN is highly unstable in

training. [1] analyzes the convergence properties of the ob-

jective function of GAN and proposes the Wasserstein GAN

(WGAN) which utilizes the Wasserstein distance in the ob-

jective function and is shown of better theoretical proper-

ties than the vanilla GAN. We adopt the improved variant

of WGAN [13], which optimizes the following min-max

problem,

min
G

max
D

E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

+λ E
x̂∼P

x̂

[(‖∇x̂D(x̂)‖2 − 1)2],
(1)

where Pr is the data distribution and Pg is the model dis-

tribution defined by x̃ ∼ G(z), with z ∼ p(z) randomly

sampled from noise distribution p. Px̂ is defined by sam-

pling uniformly along straight lines between pairs of points

sampled from the data distribution Pr and the generator dis-

tribution Pg , i.e., x̂ = αx + (1 − α)x̃ with α ∼ U(0, 1).
The first two terms approximate the Wasserstein distance

and the third term penalizes the gradient norm of x̂.

3.2. Adversarial Feature Hallucination Networks

Following the literature, we formally define FSL as fol-

lows: Given a distribution of tasks P (T ), a sample task

T ∼P (T ) is a tuple T = (ST , QT ) where the support set

ST = {{xi,j}
K
i=1, yj}

N
j=1 contains K labeled samples from

each of the N classes. This is usually known as K-shot

N -way classification. QT = {(xq, yq)}
Q
q=1 is the query set

where the samples come from the same N classes as the

support set ST . The learning objective is to minimize the

classification prediction risk of QT , according to ST .

The proposed AFHN approaches this problem by

proposing a general conditional WGAN based FSL frame-

work and two novel regularization terms. Figure 1 illus-

trates the training pipeline.

FSL framework with conditional WGAN. For a typical

FSL task T = (ST , QT ), the feature extraction network F

produces a representation vector for each image. Specif-

ically for an image from the support set (x, y) ∈ ST , F

generates

s = F (x). (2)

When there are multiple samples for class y, i.e., K > 1,

we simply average the feature vectors and take the averaged

vector as the prototype of class y [36]. Conditioned on s,

we synthesize fake features for the class.

Unlike previous GAN models which sample a single ran-

dom noise variable from some distribution, we sample two

noise variables z1 and z2 ∼ N(0, 1). The generator G syn-

thesizes fake feature s̃1 (̃s2) taking as input z1 (z2) and the

class prototype s,

s̃i = G(s, zi), i = 1, 2. (3)

The generator G aims to synthesize s̃i to be as similar as

possible to s. The discriminator D, taking zi and s as input,

tries to discern s̃i as fake and s as real. Within the WGAN

framework, the adversarial training objective is as follows,

LGANi
= E

(x,y)∼ST

[D(s̃i, zi)]− E
(x,y)∼ST

[D(s, zi)]

+λ E
(x,y)∼ST

[(‖∇ŝi
D(ŝi, zi)‖2 − 1)2], i = 1, 2.

(4)
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Figure 1. Framework of the proposed AFHN. AFHN takes as input a support set and a query set where images in the query set belongs

to the sampled classes in the support set. Each image in the support set is fed to the feature extraction network F , resulting the feature

embedding s. With s, feature generator G synthesizes two fake features s̃1 and s̃2, by combining s with two randomly sampled variables

z1 and z2. Discriminator D discriminates real feature s and fake features s̃1 and s̃2, resulting in the GAN loss LGAN . By analyzing the

relationship between (z1, z2) and (̃s1, s̃2), we get the anti-collapse loss Lar . The proposed few-shot classifier classifies the features of the

query images based on the fake features s̃1 and s̃2. This results in the classification loss Lcr .

Simply training the model with the above GAN loss

does not guarantee the generated features are well suited for

learning a discriminative classifier because it neglects the

inter-class competing information among different classes.

Moreover, since the conditioned feature vectors are of high

dimension and structured, it is likely that the generator will

neglect the noise vectors and all synthesized features col-

lapse to a single or few points in the feature space, i.e.,

the so-called mode collapse problem. To avoid these prob-

lems, we append the objective function with a classification

regularization term and an anti-collapse regularization term,

aiming to encourage both diversity and discriminability of

the synthesized features.

Classification regularizer. As our training objective is to

classify well samples in the query set QT , given the support

set ST , we encourage discriminability of the synthesized

features by requiring them serving well the classification

task as the real features. Inspired by [36], we define a non-

parametric FSL classifier which calculates the possibility of

a query image (xq, yq) ∈ QT of being the same class as

synthesized feature s̃i as

P (yq = y|xq) =
exp(cos(s̃i,q))

∑N

j=1 exp(cos(s̃
j
i , q))

, (5)

where q = F (xq). s̃
j
i is the synthesized feature for the j-th

class and cos(a, b) is the Cosine similarity of two vectors.

The adoption of Cosine similarity, rather than Euclidean

distance as in [36], is inspired by a recent FSL algorithm

[12] which proves that Cosine similarity can bound and re-

duce variance of the features and result in models of better

generalization.

With the proposed FSL classifier, the classification regu-

larizer in a typical FSL task is defined as follows:

Lcri = E
(xq,yq)∼QT

[ 1

N

N
∑

y=1

y log[−P (yq = y|xq)]
]

, (6)

for i = 1, 2. We can see that this regularizer explicitly

encourages the synthesized features to have high correla-

tion with features from the same class (the conditional con-

text), while low correlation with features from the different

classes. To achieve this, the synthesized features must en-

capsulate discriminative information about the conditioned

class and thus secure discriminability.

Anti-collapse regularizer. GAN models are known for

suffering from the notorious mode collapse problem, es-

pecially conditional GANs where structured and high-

dimensional data (e.g., images) are usually used as the con-

ditional contexts. As a consequence, the generator likely

ignores the latent code (noises) that accounts for diversity

and focuses only on the conditional contexts, which is un-

desirable. Specifically to our case, our goal is to augment

the few labeled samples in the feature space; when mode

collapse occurs, all synthesized features may collapse to a

single or a few points in the feature space, failing to di-

versify the labeled samples. Observing that noise vectors

that are closer in the latent code space are more likely to be

collapsed into the same mode when mapped to the feature

space, we directly penalize the ratio of the dissimilarity two

synthesized feature vectors and the dissimilarity of the two

noise vectors generating them.

Remember that we sample two random variables z1 and

z2. We generate two fake feature vectors s̃1 and s̃2 from

them. When z1 and z2 are closer, s1 and s2 are more likely

to be collapsed into the same mode. To mitigate this, we
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Algorithm 1. Proposed FSL algorithm

Input: Training set Dt = {Xt,Yt}, parameters λ, α, and β.

Output: Feature extractor F , generator G, discriminator D.

1. Train F as a standard classification task using Dt.

while not done do

// Fix G and update D.

2. Sample from Dt a batch of FSL tasks T d
i ∼ p(Dt).

For each T d
i do

3. Sample a support set ST = {{xi,j}
K
i=1, yj}

N
j=1 and

query set QT = {{xk,j}
Q
k=1

, yj}
N
j=1.

4. Compute prototypes of the N classes P = {sj}
N
j=1,

where sj = 1

K

∑K

i=1
F (xi,j).

5. Sample N noise variables Z1 = {z
j
1
}Nj=1 and

variables Z2 = {z
j
2
}Nj=1.

6. Generate fake feature sets Z̃1 = {z̃
j
1
}Nj=1

and Z̃2 = {z̃
j
2
}Nj=1 according to Eq. (3).

7. Update D by maximizing Eq. (8).

end For

// Fix D and update G.

8. Sample from Dt a batch of FSL tasks T g
i ∼ p(Dt).

For each T g
i do

9. Execute steps 3 - 7.

10. Update G by minimizing Eq. (8).

end For

end while

define the anti-collapse regularization term as

Lar = E
(x,y)∼ST

[ 1− cos(s̃1, s̃2)

1− cos(z1, z2)

]

. (7)

We can observe that this term amplifies the dissimilarity of

the two fake feature vectors when the latent codes generat-

ing them are of high similarity. With the case mode collapse

more likely occurs being assigned with higher penalty, the

generator is forced to mine minor modes in the feature space

during training. The discriminator will also handle fake fea-

tures from the minor modes. Thus, it is expected that more

diverse features can be synthesized when applying the gen-

erator on novel classes.

With the above two regularization terms, we reach our

final training objective as

min
G

max
D

2
∑

i=1

LGANi
+ α

2
∑

i=1

Lcri + β
1

Lar

, (8)

where α and β are two hyper-parameters. Algorithm 1 out-

lines the main training steps of the proposed method.

3.3. Classification with Synthesized Samples

In the test stage, given an FSL task T ′ = (S′
T
, Q′

T
)

randomly sampled from the test set that the classes have

no overlap with those in the training set, we first aug-

ment the labeled support set S′
T

with the learned gener-

ator G. Then, we train a classifier with the augmented

supported set. The classifier is used to classify sam-

ples from the query set Q′
T

. Specifically, suppose after

data augmentation, we get an enlarged support set Ŝ′
R

=
{(s1, y1), (s2, y2), · · · , (sN×K′ , yN×K′} where K ′ is the

number of samples synthesized for each class. With Ŝ′
R

,

we train a standard Softmax classifier fc as

min
θ

E
(s,y)∼Ŝ′

R

log[−P (y|s; θ)], (9)

where θ is the parameter of fc. With fc, we classify samples

from Q′
T

.

4. Experiments

We evaluate AFHN on three common benchmark

datasets, namely, Mini-ImageNet [39], CUB [40] and CI-

FAR100 [19]. The Mini-ImageNet dataset is a subset of Im-

ageNet. It has 60,000 images from 100 classes, 600 im-

ages for each class. We follow previous methods and use

the splits in [32] for evaluation, i.e., 64, 16, 20 classes as

training, validation, and testing sets, respectively. The CUB

dataset is a fine-grained dataset of totally 11,788 images

from 200 categories of birds. We use the split in [17] and

100, 50, 50 classes for training, validation, and testing, re-

spectively. The CIFAR-100 dataset contains 60,000 images

from 100 categories. We use the same data split as in [47].

In particular, 64, 16 and 20 classes are used for training,

validation and testing, respectively.

Following previous methods, we evaluate 5-way 1-shot

and 5-way 5-shot classification tasks where each task in-

stance involves classifying test images from 5 sampled

classes with 1 or 5 randomly sampled images for each class

as the support set. In order to reduce variance, we repeat

the evaluation task 600 times and report the mean of the

accuracy with a 95% confidence interval.

4.1. Implementation Details

Following the previous data augmentation based meth-

ods [35, 6, 4], we use ResNet18 [16] as our feature extrac-

tion network F . We implement the generator G as a two-

layer MLP, with LeakyReLU activation for the first layer

and ReLU activation for the second one. The dimension of

the hidden layer is 1024. The discriminator is also a two-

layer MLP, with LeakyReLU as the activation function for

the first layer and Sigmoid for the second layer. The di-

mension of the hidden layer is also 1024. The noise vectors

z1 and z2 are drawn from a unit Gaussian with the same

dimensionality as the feature embeddings.

Following the data augmentation based FSL methods

[35, 6], we perform two-step training procedures. In the

first step, we only train the feature extraction network F as

a multi-class classification task using only the training split.

We use Adam optimizer with an initial learning rate 10−3
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cWGAN ✗ ✗ ! ! !

CR ✗ ! ✗ ! !

AR ✗ ✗ ✗ ✗ !

52.73 55.65 57.58 60.56 62.38

Table 1. Ablation study on the Mini-ImageNet dataset for the 5-

way 1-shot setting. cWGAN, CR, and AR represent the condi-

tional WGAN framework, the classification regularizer, and the

anti-collapse regularizer, respectively. The baseline result (52.73)

is obtained by applying the SVM classifier directly on ResNet18

features without data augmentation. The result (55.65) with only

CR added is obtained from the synthesized features produced by

the generator without the discriminator and AR during training.

which decays to the half every 10 epochs. We train F with

100 epochs with batch size of 128. In the second training

stage, we train the generator and discriminator alternatively,

using features extracted by F and update G after every 5

updates of D. We also use Adam optimizer which has an

initial learning rate of 10−5 and decays to the half every 20

epochs for both F and G. We train the whole network with

100 epochs with 600 randomly sampled FSL tasks in each

epoch. For the hyper-parameters, we set λ = 10 as sug-

gested by [13], and α = β = 1 for all the three datasets.

During the test stage, we synthesize 300 fake features for

each class.

The code is developed based on PyTorch.

4.2. Ablation Study

The proposed AFHN consists of the novel conditional

WGAN (cWGAN) based feature synthesize framework and

the two regularizers that encourage diversity and discrim-

inability of the synthesized features, i.e., the Classification

Regularier (CR) and Anti-collapse Regularizer (AR). To

evaluate the effectiveness and impact of these components,

we conduct ablation study on the Mini-ImageNet dataset for

the 5-way 1-shot setting. The results are shown in Table 1.

CR. This regularizer constrains the synthesized features to

have desirable classification property such that we can train

from them a discriminative classifier. We can see that when

it is used as the only regularization for the generator, it

raises the baseline result from 52.73 to 55.65. On the other

hand, when it is used along with cWGAN (the discrimina-

tor regularizes the generated features, resulting in the GAN

loss), it helps further boost the performance from 57.58 to

60.56. Therefore, in the both cases (with and without cW-

GAN), CR helps enhance discriminability of the synthe-

sized features and leads to performance boost.

cWGAN. Compared with the baseline (without data aug-

mentation), cWGAN helps raise the accuracy from 52.73

to 57.58. This is because the synthesized features enhance

the intra-class variance, which makes classification decision

boundaries much sharper. Moreover, with CR as the reg-

ularizer, our cWGAN based generative model boosts the

performance of the naive generative model from 55.65 to

60.56. This further substantiates the effectiveness of the

proposed cWGAN framework. The performance gain is

due to the adversarial game between the generator and the

discriminator, which enhances the generator’s capability of

modeling complex data distribution among training data.

The enhanced generator is therefore able to synthesize fea-

tures of both higher diversity and discriminability.

As mentioned in the related work, one of the major dif-

ferences of the proposed AFHN from the other feature hal-

lucination based FSL method [41] is that AFHN is an adver-

sarial generative model while [41] uses a naive generative

model. This study thus evidences the advantage of AFHN

over [41].

AR. AR aims to encourage the diversity of the synthesized

features by explicitly penalizing the case where mode col-

lapses more likely occur. Table 1 shows that it further brings

about 2% performance gains, thus proving its effectiveness.

4.3. Comparative Results

Mini-Imagenet. Mini-Imagenet is the most extensively

evaluated dataset. From Table 2 we can observe that AFHN

attains the new state-of-the-art, for both the 1-shot and 5-

shot setting. Compared with the other four data augmen-

tation based methods, AFHN reaches significant improve-

ments: it beats ∆-encoder [35] by more than 8% for the

5-shot setting and Dual TriNet [6] by more than 3% for the

1-shot setting. Compared with MetaGAN [45] which is also

based on GAN, AFHN achieves about 10% improvements

for both the 1-shot and 5-shot settings. Besides the sig-

nificant advantages over the peer data augmentation based

methods, AFHN also exhibits remarkable advantages over

the other two categories of methods. It beats the best metric

learning based method DCEM [8] by about 3.5% for the 1-

shot setting. It also performs better than the state-of-the-art

meta-learning based algorithms. Compared with the base-

line method, “ResNet18+SVM”, AFHN reaches about 10%

and 5% improvements for the 1-shot and 5-shot settings,

respectively. This substantiates the effectiveness of our pro-

posed data augmentation techniques.

CUB. This is a fine-grained bird dataset widely used for

fine-grained classification. Recently, it has been employed

for few-shot classification evaluation. Thus, relatively less

results are reported on this dataset. From Table 3 we can see

that AFHN reaches comparable results with both the other

two data augmentation based methods Dual TriNet and ∆-

encoder. It beats the best metric learning based method

SAML [14] by 2.4% for the 5-shot setting, and performs

significantly better than the meta-learning based methods.

Compared with the baseline, we only have a moderate im-

provement in the 1-shot setting and reach only a marginal

boost for the 5-shot setting. We speculate the reason is that

this dataset is relatively small, less than 60 images per class
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Backbone Reference 1-shot 5-shot

ResNet18 + SVM (baseline) ResNet18 52.73±1.44 73.31±0.81

MetricL

Matching Net [39] Conv-64F NeurIPS’16 43.56±0.84 55.31±0.73

PROTO Net [36] Conv-64F NeurIPS’17 49.42±0.78 68.20±0.66

MM-Net [2] Conv-64F CVPR’18 53.37±0.48 66.97±0.35

GNN [11] Conv-256F Arxiv’17 50.33±0.36 66.41±0.63

RELATION NET [37] Conv-64F CVPR’18 50.44±0.82 65.32±0.70

DN4 [23] Conv-64F CVPR’19 51.24±0.74 71.02±0.64

TPN [25] ResNet8 ICLR’19 55.51±0.86 69.86±0.65

PARN [43] Conv-64F ICCV’19 55.22±0.84 71.55±0.66

SAML [14] Conv-64F ICCV’19 57.69±0.20 73.03±0.16

DCEM [8] ResNet18 ICCV’19 58.71±0.62 77.28±0.46

MetaL

MAML [9] Conv-32F ICML’17 48.70±1.84 63.11±0.92

META-LSTM [32] Conv-32F ICLR’17 43.44±0.77 60.60±0.71

SNAIL [27] ResNet-256F ICLR’18 55.71±0.99 68.88±0.92

MACO [17] Conv-32F Arxiv’18 41.09±0.32 58.32±0.21

DFSVL [12] Conv-64F CVPR’18 55.95±0.89 73.00±0.68

META-SGD [24] Conv-32F Arxiv’17 50.47±1.87 64.03±0.94

PPA [31] WRN-28-10 CVPR’18 59.60±0.41 73.74±0.19

UFDA [21] ResNet18 CIKM’19 60.51 77.08

LEO [34] WRN-28-10 ICLR’19 61.76±0.08 77.59±0.12

DataAug

MetaGAN [45] Conv-32F NeurIPS’18 52.71±0.64 68.63±0.67

Dual TriNet [4] ResNet18 TIP’19 58.80±1.37 76.71±0.69

∆-encoder [35] ResNet18 NeurIPS’18 59.90 69.70

IDeMe-Net [4] ResNet18 CVPR’19 59.14±0.86 74.63±0.74

AFHN (Proposed) ResNet18 62.38±0.72 78.16±0.56

Table 2. Few-shot classification accuracy on Mini-Imagenet. “MetricL”, “MetaL” and “DataAug” represent metric learning based category,

meta-learning based category and data augmentation based category, respectively. The ± indicates 95% confidence intervals over tasks.

The best results are in bold.

Backbone Reference
CUB CIFAR100

1-shot 5-shot 1-shot 5-shot

ResNet18 + SVM (baseline) ResNet18 66.54±0.53 82.38±0.43 59.65±0.78 76.75±0.73

MetricL

Matching Net [39] Conv-64F NeurIPS’16 49.34 59.31 50.53±0.87 60.30±0.82

PROTO Net [36] Conv-64F NeurIPS’17 45.27 56.35 - -

DN4 [23] Conv-64F CVPR’19 53.15±0.84 81.90±0.60 - -

SAML [14] Conv-64F ICCV’19 69.33±0.22 81.56±0.15 - -

MetaL

MAML [9] Conv-32F ICML’17 38.43 59.15 49.28±0.90 58.30±0.80

META-LSTM [32] Conv-32F ICLR’17 40.43 49.65 - -

MACO [17] Conv-32F Arxiv’18 60.76 74.96 - -

META-SGD [24] Conv-32F Arxiv’17 66.90 77.10 61.60 77.90

DataAug

Dual TriNet [6] ResNet18 TIP’19 69.61 84.10 63.41±0.64 78.43±0.64

∆-encoder [35] ResNet18 NeurIPS’18 69.80±0.46 82.60±0.35 66.70 79.80

AFHN (Proposed) ResNet18 70.53±1.01 83.95±0.63 68.32±0.93 81.45±0.87

Table 3. Few-shot classification accuracy on CUB and CIFAR100. Please refer Table 2 for details.

on average; a large number of classes only have about 30

images. Due to the small scale of this dataset, the intra-class

variance is less significant than that of the Mini-Imagenet

dataset, such that 5 labeled samples are sufficient to capture

most of the intra-class variance. Performing data augmen-

tation is less crucial than that for the other datasets.

CIFAR100. This dataset has the identical structure as the

Mini-ImageNet dataset. Table 3 shows that AFHN performs

the best over all the existing methods and the advantages

are sometimes significant. AFHN beats Dual TriNet by 5%

and 3% for 1-shot and 5-shot respectively. Compared with

the best meta-learning based method, we get 7% and 4%

improvements for the 1-shot and 5-shot respectively. Com-

pared with the baseline method, AFHN also reach remark-

able gains. We reach about 10% and 5% improvements for

1-shot and 5-shot respectively. This great improvement con-

vincingly substantiates the effectiveness of our GAN based

data augmentation method for solving the FSL problem.

13476



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

cWGAN cWGAN + CR cWGAN + CR + AR

Figure 2. t-SNE [26] visualization of synthesized feature embeddings. The real features are indicated by ⋆. Different colors represent

different classes.
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Figure 3. Impact of the number of synthesized samples for each

class on the Mini-ImageNet dataset.

In summary, among all the three datasets, we reach sig-

nificant improvements over existing state-of-the-art meth-

ods for two of them, while being comparable for the left

one. For all the datasets, our method reaches significant

boost to the baseline method where there is no data augmen-

tation. These experiments substantiate the effectiveness and

superiority of the proposed method.

4.4. Further Analysis

Impact of the number of synthesized features. Figure 3

shows the analysis on Mini-ImageNet about the recognition

accuracy with respect to the number of synthesized features

for each class during test. We can observe that the classifica-

tion accuracy keeps boosted with more features synthesized

at the beginning, and remains stable with even more synthe-

sized samples. This is reasonable because the class variance

encapsulated by the few labeled samples has a upper bound;

data augmentation based on these labeled samples can en-

large the variance to some extent, but it is still bounded by

the few labeled samples themselves. When it reaches the

peak, the performance reasonably turns stable.

Visualization of synthesized features. We showed quan-

titatively in the ablation study that owing to the CR and

AR regularizers, we can generate diverse and discriminative

features which bring significant performance gains. Here

we further study the effect of the two regularizers by show-

ing the t-SNE visualization of the synthesized features. As

shown in Figure 2, the synthesized features of different

classes mix up together when using only cWGAN for aug-

mentation. As analyzed before, cWGAN does not guarantee

synthesizing semantically meaningful features. The prob-

lem is substantially resolved when we train cWGAN with

CR. The synthesized features exhibit clear clustering struc-

ture, which helps train a discriminative classifier. Further-

more, with AR added, the synthesized features still exhibit

favorable clustering structure. But taking a closer look of

the visualization, we can find that the features synthesized

with AR added are more diverse than that without it: the

clusterings are less compact, stretched to larger regions, and

even contains some noises. This shows AR indeed helps di-

versify the synthesized features.

5. Conclusions

We introduce the Adversarial Feature Hallucination Net-

works (AFHN), a new data augmentation based few-shot

learning approach. AFHN consists of a novel condi-

tional Wasserstein GAN (cWGAN) based feature synthesis

framework, the classification regularizer (CR) and the anti-

collapse regularizer (AR). Based on cWGAN, our frame-

work synthesizes fake features for new classes by using the

features of the few labeled samples as the conditional con-

text. CR secures feature discriminability by requiring the

synthesized features to be of high similarity with features of

the samples from the same classes, while of low similarity

with those from the different classes. AR aims to enhance

the diversity of the synthesized features by directly penaliz-

ing the cases where the mode collapse problem likely oc-

curs. The ablation study shows the effectiveness of the

cWGAN based feature synthesis framework, as well as the

two regularizers. Comparative results verify the superior-

ity of AFHN to the existing data augmentation based FSL

approaches as well as other state-of-the-art ones.
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