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Abstract

Most existing trackers based on discriminative correla-

tion filters (DCF) try to introduce predefined regularization

term to improve the learning of target objects, e.g., by sup-

pressing background learning or by restricting change rate

of correlation filters. However, predefined parameters intro-

duce much effort in tuning them and they still fail to adapt

to new situations that the designer did not think of. In this

work, a novel approach is proposed to online automatically

and adaptively learn spatio-temporal regularization term.

Spatially local response map variation is introduced as spa-

tial regularization to make DCF focus on the learning of

trust-worthy parts of the object, and global response map

variation determines the updating rate of the filter. Exten-

sive experiments on four UAV benchmarks have proven the

superiority of our method compared to the state-of-the-art

CPU- and GPU-based trackers, with a speed of ∼60 frames

per second running on a single CPU.

Our tracker is additionally proposed to be applied in

UAV localization. Considerable tests in the indoor practi-

cal scenarios have proven the effectiveness and versatility of

our localization method. The code is available at https:

//github.com/vision4robotics/AutoTrack.

1. Introduction

Visual object tracking is one of the fundamental tasks

in the computer vision community, aiming to localize the

object sequentially only with the information given in the

first frame. Endowing unmanned aerial vehicle (UAV) with

visual tracking capability brings many applications, e.g.,

aerial cinematography [1], person following [2], aircraft

tracking [3], and traffic patrolling [4].

There are currently two main research interests in this

area: discriminative correlation filter (DCF)-based meth-

ods [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] as well as deep learning-

based approaches [15, 16, 17, 18, 19, 20]. In considera-
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Figure 1. Central idea of our tracker. Spatially local and global

response variations are exploited. Local variations indicate local

credibility in the object bounding box. Severe illumination change

in frame 25 and 95 as well as partial occlusion in frame 107 and

207 can lower the credibility of the appearance. AutoTrack is pun-

ished for learning these appearances so that local distractions can

be avoided. In terms of global variations, large value can indicate

wrong tracking result, where we stop the learning of correlation

filters, while relatively large value should accelerate the learning

of correlation filters so that adaptivity can be raised.

tion of the limitation of power capacity and computational

resources onboard UAVs, DCF framework is selected be-

cause of its high efficiency originating from calculation in

the Fourier domain.

To improve DCF-based trackers, there are currently three

directions: a) building more robust appearance model [18,

17, 20, 21], b) mitigating boundary effect or imposing re-

strictions in learning [8, 22, 17, 14, 23], and c) mitigating

filter degradation [24, 12, 14, 25]. Robust appearance can

indeed boost performance, yet it leads to burdensome calcu-

lations. Filter degradation, on the other hand, is not improv-

ing it fundamentally. Most trackers try to improve perfor-

mance using option b) by introducing regularization terms.

Recently, some attentions have been brought to using

response maps generated in the detection phase to form

the restrictions in learning [26]. The intuition behind it is
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that the response map contains crucial information regard-

ing the resemblance of current object and the appearance

model. However, [26] only exploits what we call the spa-

tially global response map variations, while ignoring local

response variation indicating credibility at different loca-

tions in the image: drastic local variation means low credi-

bility and vice versa.

We fully exploit the local-global response variation to

train our tracker with automatic spatio-temporal regulariza-

tion, i.e., AutoTrack. While most parameters in regular-

ization terms proposed by others are hyper-parameters that

require large effort to tune, and would have a difficult time

adjusting to new situations that the designers did not think

of, we propose to learn some of the hyper-parameters au-

tomatically and adaptively. AutoTrack performs favorably

against the state-of-the-art trackers, while running at ∼60
frames per second (fps) on a single CPU.

Our main contributions are summarized as follows:

• We propose a novel spatio-temporal regularization

term to simultaneously exploit local and global infor-

mation hidden in response maps.

• We develop a novel DCF-based tracker which can

automatically tune the hyper-parameters of spatio-

temporal regularization term on the fly.

• We evaluate our tracker on 278 difficult UAV image se-

quences, and the evaluations have validated the state-

of-the-art performance of our tracker compared to cur-

rent CPU- and GPU-based trackers.

• We introduce a novel application of visual object track-

ing in UAV localization and prove its effectiveness as

well as generality in the practical scenarios.

2. Related Works

Tracking by detection: tracking-by-detection frame-

work, which regards the tracking as a classification prob-

lem, is widely adopted in UAV [5, 6, 7, 27, 28]. Among

them, DCF has exhibited good performance with excep-

tional efficiency. The speed of traditional DCF-based track-

ers [7, 5, 29] is around hundreds of fps on a single CPU, far

exceeding the real-time requirement of UAV (30 fps). Yet

they are primarily subjected to the following issues.

a) Boundary effect: the circulant samples suffer from

periodical splicing at the boundary, reducing filters’ dis-

criminative power. Several works can mitigate boundary

effect [22, 8, 14, 30], but they used a constant spatial penal-

ization which cannot adapt to various changes in different

objects. K. Dai et al. optimized the spatial regularization in

the temporal domain [31]. Different to [31], we exploit the

inherent information in DCF framework, so our method is

more generic. Also, we have achieved better performance

in the aerial scenarios in terms of speed and precision.

b) Filter degradation: the appearance model updated via

a linear interpolation method cannot adapt to ubiquitous ap-

pearance change, leading to filter degradation. Some at-

tempts are made to tackle the issue, e.g., training set man-

agement [20, 24, 32], temporal restriction [14, 25], track-

ing confidence verification [23, 12] and over-fitting allevia-

tion [33]. Amongst them the temporal regularization is an

effective and efficient way. Yet the non-adaptive regulariza-

tion is prone to tracking drift once the filter is corrupted.

Tracking by deep learning: recently, deep learning-

based tracking has caught wide attention due to its robust-

ness, e.g., deep feature representation [18, 34, 17, 20], re-

inforcement learning [16], residual learning [35] and adver-

sarial learning [36]. However, for mobile robots, the above

trackers cannot meet the requirement of real-time percep-

tion even with a high-end GPU. Currently, the state-of-the-

art deep trackers [14, 37, 38, 39, 40, 41] are mostly built

on siamese neural network [15]. The pre-trained siamese

trackers just need to traverse in a feed-forward way to get

a similarity score for object localization, facilitating real-

time implementation on GPU. However, on a mobile device

solely with CPU, the speed of siamese-based trackers can-

not satisfy the real-time needs. C. Huang et al. proposed a

CPU-friendly deep tracker [42] by training an agent work-

ing in a cascaded manner. It can run at near real-time speed

by reducing calculation on easy frames. In summary, deep

trackers can hardly meet real-time demands on CPU.

Vision-based localization: vision-based localization is

crucial for UAV especially in GPS-denied environments. A.

Breitenmoser et al. developed a monocular 6D pose estima-

tion system based on passive markers in the visible spec-

trum [43]. However, it performs worse in low-light envi-

ronments. M. Faessler et al. presented a monocular local-

ization system based on infrared LEDs to raise robustness

in cluttered environments [44]. Its generality, however, is

limited since the system can only work in the infrared spec-

trum. Built on [44], we develop a localization system based

on visual tracking. In light of robustness and generality of

our tracker in various scenarios like illumination variation,

occlusion and deformation, our localization system is more

versatile compared to the infrared LED-based one [44].

3. Revisit STRCF

In this section, our baseline STRCF [14] is revisited. The

optimal filter Ht in frame t is learned by minimizing the

following objective function:

E(Ht) =
1

2
‖y −

K∑

k=1

xk
t ⊛ hk

t ‖
2
2 +

1

2

K∑

k=1

‖u� hk
t ‖

2
2

+
θ

2

K∑

k=1

‖hk
t − hk

t−1‖
2
2

, (1)

where xk
t ∈ R

T×1(k = 1, 2, 3, ...,K) is the extracted fea-

ture with length T in frame t, and K denotes number of
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channel, y ∈ R
T×1 is the desired Gaussian-shaped re-

sponse. hk
t , hk

t−1 ∈ R
T×1 respectively denote the fil-

ter of the k-th channel trained in the t-th and (t−1)-th

frame, ⊛ indicates the convolution operator. Noted that

Ht = [h1
t ,h

2
t ,h

3
t , ...,h

K
t ]. As for regularization, the spa-

tial regularization parameter u ∈ R
T×1 is bowl-shaped and

borrowed from SRDCF [8] for decreasing boundary effect,

and temporal regularization, i.e., the third term in Eq. 1, is

firstly proposed to restrict filter’s variation by penalizing the

difference between the current and previous filters.

Although STRCF [14] has achieved competent perfor-

mance, it does have two limitations: a) the fixed spatial

regularization failing to address appearance variation in the

unforeseeable aerial tracking scenarios, b) the unchanged

temporal penalty strength θ (set as 15 in [14]) which is not

general in all kinds of situations.

4. Automatic Spatio-Temporal Regularization

In this work, both local and global response variations

are fully utilized to achieve simultaneous spatial and tempo-

ral regularizations, as well as automatic and adaptive hyper-

parameter optimization.

4.1. Response Variation

First of all, we define local response variation vector

Π = [|Π1|, |Π2|, ..., |ΠT |], as can be seen in Fig. 1 for its

2D visualization in the object bounding box, in preparation

for spatial regularization. Its i-th element |Πi| is defined as:

Πi =
Rt[ψ∆]i −Ri

t−1

Ri
t−1

, (2)

where [ψ∆] is the shift operator to make two peaks in two

response maps Rt and Rt−1 coincide with each other, in

order for removing the motion influence [26]. Ri denotes

the i-th element in response map R.

Automatic spatial regularization: local response vari-

ation reveals the credibility of every pixel in the search area

of the current frame. Therefore, filters located where the

pixel credibility is low should be restricted in learning. We

achieve this by introducing local variation Π to the spatial

regularization parameter ũ:

ũ = P
�
δ log(Π+ 1) + u , (3)

where P⊤ ∈ R
T×T is used to crop the central part of the

filter where the object is located. δ is a constant to adjust the

weight of local response variations, and u is inherited from

STRCF [14] to mitigate boundary effects. Through Eq. 3,

filters located at pixels with dramatic response variation will

be partially refrained from learning the new appearance be-

cause of the spatial punishment.

Automatic temporal regularization: in STRCF [14],

the change rate of filters between two frames is punished in

the loss by a fixed parameter θ. AutoTrack tries to adap-

tively and automatically determine the value of this hyper-

parameter by jointly optimization of its value and the filter.

So we define a reference θ̃ in preparation for the objective

function with regard to the global response:

θ̃ =
ζ

1 + log(ν‖Π‖2 + 1)
, ‖Π‖2 ≤ φ , (4)

where ζ and ν denote hyper parameters. When the global

variation is higher than the threshold φ, it means that there

are aberrances in response maps [26], so correlation filter

ceases to learn. If it is lower than the threshold, the more

dramatic the response map varies, the smaller the reference

value will be, so that the restriction on temporal change of

the correlation filters can be loosened and it can learn more

rapidly in situations like large appearance variations.

Remark 1: Note that what we defined here is the reference

value rather than the hyper-parameter itself. For the hyper-

parameter of the temporal regularization, we use joint op-

timization to online estimate the value of it, so that the re-

striction can be online adaptively adjusted according to the

response map variations. When appearance changes drasti-

cally, correlation filter learns more rapidly and vice versa.

4.2. Objective Optimization

Our objective function for joint optimization of filter as

well as temporal regularization term can be written as:

E(Ht, θt) =
1

2
‖y −

K∑

k=1

x
k
t ⊛ h

k
t ‖22 +

1

2

K∑

k=1

‖ũ⊙ h
k
t ‖22

+
θt

2

K∑

k=1

‖hk
t − h

k
t−1‖22 +

1

2
‖θt − θ̃‖22

, (5)

where θ̃ and θt respectively denote the reference and opti-

mized temporal regularization parameter, and ũ represents

the automatic spatial regularization calculated via Eq. 3.

For optimization, we introduce an auxiliary variable ĝt

by ordering ĝt =
√
TFht(Ĝ = [ĝ1

t , ĝ
2
t , ĝ

3
t , ..., ĝ

K
t ]) where

F ∈ C
T×T denotes the orthonormal matrix and the symbol

ˆdenotes the discrete Fourier transform (DFT) of a signal.

Then Eq. 5 is converted into the frequency domain:

E(Ht, θt, Ĝt) =
1

2
‖y −

K∑

k=1

x̂
k
t ⊙ ĝ

k
t ‖22 +

1

2

K∑

k=1

‖ũ⊙ h
k
t ‖22

+
θt

2

K∑

k=1

‖ĝk
t − ĝ

k
t−1‖22 +

1

2
‖θt − θ̃‖22

.

(6)

By minimizing Eq. 6, an optimal solution can be ob-

tained through alternating direction method of multipliers

(ADMM) [45]. The Augmented Lagrangian form of equa-
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tion Eq. 6 can be formulated as:

Lt(Ht, θt, Ĝt, M̂t) = E(Ht, θt, Ĝt) +
γ

2

K∑

k=1

‖ĝk
t −

√
TFh

k
t ‖22

+

K∑

k=1

(ĝk
t −

√
TFh

k
t )

�
m̂

k
t

,

(7)

where M̂t = [m̂1, m̂2, ..., m̂K ] ∈ R
T×K is the Fourier

transform of the Lagrange multiplier and γ denotes the

step size regularization parameter. By assigning vk
t =

m
k
t

γ
(Vk

t = [v1
t ,v

2
t , ...,v

K
t ]), Eq. 7 can be reformulated as:

Lt(Ht, θt, Ĝt, V̂t) = E(Ht, θt, Ĝt)

+
γ

2

K∑

k=1

‖ĝk
t −

√
TFh

k
t + v̂

k
t ‖22

. (8)

Then we solve the following subproblems by ADMM.

Subproblem Ĝ: given Ht, θt, V̂t, the optimal Ĝ∗ is:

Ĝ
∗ = arg min

Ĝ

{1
2
‖ŷ −

K∑

k=1

x̂
k
t ⊙ ĝ

k
t ‖22

+
θt

2

K∑

k=1

‖ĝk
t − ĝ

k
t−1‖22 +

γ

2

K∑

k=1

‖ĝk
t −

√
TFh

k
t + v̂

k
t ‖22}

.

(9)

Solving Eq. 9 directly is very difficult because of its com-

plexity. So we decide to sample x̂t across all K channels in

each pixel to simplify our formulation written by:

Γ
∗

j (Ĝt) = arg min
Γj(Ĝt)

{‖ŷj − Γj(X̂t)
�
Γj(Ĝt)‖22

+γ‖Γj(Ĝt) + Γj(V̂t)− Γj(
√
TFHt)‖22

+θt‖Γj(Ĝt)− Γj(Ĝt−1)‖22}

, (10)

where Γj(X̂) ∈ C
K×1 represents the vector containing val-

ues of all K channels of X̂ on pixel j(j = 1, 2, ..., T ). After

derivation using Sherman Morrison formula, we can obtain

its solution:

Γ
∗

j (Ĝt) =
1

γ + θt
(I− Γj(X̂t)Γj(X̂t)

�

θt + γ + Γj(X̂t)�νj(X̂t)
)ρ , (11)

where the vector ρ takes the form ρ = Γj(X̂t)ŷj +

θtΓj(Ĝt−1)− γΓj(V̂t) + γΓj(
√
TFHt) for presentation.

Subproblem H: given θt, Ĝt, V̂t, we can optimize hk

by:

arg min
hk

{1
2
‖ũ⊙ h

k
t ‖22 +

γ

2
‖ĝk

t −
√
TFh

k
t + v̂

k
t ‖22} . (12)

The closed-form solution of hk can be written by:

h
k∗ = [Ũ�

Ũ+ γT I]−1
γT (vk

t + g
k
t ) =

γT (vk
t + gk

t )

(ũ⊙ ũ) + γT
,

(13)

where Ũ = diag(ũ) ∈ R
T×T represents diagonal matrix.

Subproblem θt: given other variables in Eq. 8, the op-

timal solution of θt can be determined as:

θ
∗

t = arg min
θt

{θ
2

K∑

k=1

‖ĝk
t − ĝ

k
t−1‖22 +

1

2
‖θt − θ̃‖22}

=θ̃ −
∑K

k=1 ‖ĝk
t − ĝk

t−1‖22
2

. (14)

Lagrangian multiplier update: after solving three sub-

problems above, we can update Lagrangian multipliers as:

V̂
i+1 = V̂

i + γ
i(Ĝi+1 − Ĥ

i+1) , (15)

where i and i + 1 denotes the iteration index and the step

size regularization constant γ (initially equals to 1) takes the

form of γ(i+1)=min(γmax, βγ
i). (β = 10, γmax = 10000)

By iteratively solving the four subproblems above, we

can optimize our objective function effectively and obtain

the optimal filter Ĝt and temporal regularization parameter

θt in frame t. Then Ĝt is used for detection in frame t+ 1.

4.3. Object Localization

The tracked object is localized by searching for the max-
imum value of response map Rt calculated by:

Rt = F
−1

K∑

k=1

(ẑkt ⊙ ĝ
k
t−1), (16)

where Rt is the response map in frame t, F−1 denotes the

inverse Fourier transform (IFT) operator and ẑkt represents

the Fourier form of extracted feature map in frame t.

5. Localization by Tracking

Self-localization for UAV is essential for autonomous

navigation. To develop a robust and universal localization

system in dynamic and uncertain environments, we intro-

duce visual object tracking into UAV localization for the

first time. Specifically, we utilize the open-source software

in [44], but employ AutoTrack to track four objects simul-

taneously instead of segmenting LEDs in the infrared spec-

trum. The main work-flow is briefly described below.

Prerequisites: the system requires the knowledge of

four object configuration (non-symmetric), i.e., their posi-

tions in the world coordinate (observed in motion capture

system), and intrinsic UAV-mounted camera parameters.

Initialization and tracking: after manually assigning

four objects, AutoTrack starts to track them independently

and output their location in the RGB image. Different to

the system [44] only applicable in infrared spectrum, our

system can be used in versatile environments.

Correspondence search and pose optimization: cor-

respondence between the tracked object configuration in

the world coordinate and tracked results in image frames

is firstly clarified, then the final 6D pose is optimized by

fine-tuning the reprojection error [44].
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6. Experiments

In this section, we firstly evaluate the tracking perfor-

mance of AutoTrack with current state-of-the-art trackers

on four difficult UAV benchmarks [46, 47, 48, 49]. Then,

the proposed localization system is evaluated on Quanser∗

platform in the indoor practical scenarios. The experi-

ments of tracking performance evaluation are conducted us-

ing MATLAB R2018a on a PC with an i7-8700K processor

(3.7GHz), 32GB RAM and NVIDIA GTX 2080 GPU. The

tests of localization system are run on ROS [50] using C++.

For the hyper parameters of AutoTrack, we set δ = 0.2,

ν = 2× 10−5, ζ = 13. The threshold of φ is 3000, ADMM

iteration is set to 4. The sensitivity analysis of all the pa-

rameters can be found in the supplementary material.

6.1. Evaluation on UAV Datasets

For rigorous and comprehensive evaluation, the compar-

ison between AutoTrack with the state-of-the-art methods is

reported on four challenging and authoritative UAV bench-

marks: DTB70 [46], UAVDT [47], UAV123@10fps [48]

and VisDrone2018-test-dev [49], with a total number of

119,830 frames. Noted that we use the same evaluation cri-

teria with the four benchmarks [46, 47, 48, 49].

6.1.1 Comparison with deep-based trackers

DTB70: DTB70 [46], composed of 70 difficult UAV

image sequences, primarily addresses the problem of se-

vere UAV motion. In addition, various cluttered scenes and

objects with different sizes as well as aspect ratios are in-

cluded. We compare AutoTrack with nine state-of-the-art

deep trackers, i.e., ASRCF [31], TADT [51], HCF [18],

ADNet [16], CFNet [52], UDT+ [53], IBCCF [54], MD-

Net [55], MCPF [19], on DTB70, and the final results

are reported in Fig. 2. Only with hand-crafted features,

AutoTrack outperforms deep feature-based trackers (AS-

RCF [31], HCF [18], MCPF [19] and IBCCF [54]) and pre-

trained deep architecture-based trackers, i.e., MDNet [55],

ADNet [16], UDT+ [53] and CFNet [52]. In summary, Au-

toTrack exhibits strong robustness against drastic UAV mo-

tion without losing efficiency, and also demonstrates a gen-

erality in tracking different objects in various scenes.

UAVDT: UAVDT [47] mainly emphasizes vehicle track-

ing in various scenarios. Weather condition, flying alti-

tude and camera view are three categories addressed by

UAVDT. Compared to deep trackers including ASRCF [31],

TADT [51], SiameseFC [15], DSiam [56], MCCT [13],

ADNet [16], CFNet [52], DeepSTRCF [14], UDT+ [53],

HCF [18], C-COT [17], ECO [20], IBCCF [54], MCPF [19]

and CREST [35], AutoTrack with a single CPU exhibits the

∗https://www.quanser.com/products/

autonomous-vehicles-research-studio/
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Figure 2. Overall comparison with deep trackers on DTB70 [46].

AutoTrack ranks first place in both precision and success rate.

best performance in terms of precision and speed, as shown

in Table 1. In a word, AutoTrack has extraordinary perfor-

mance in vehicle tracking despite omnipresent challenges.

6.1.2 Comparison with CPU-based trackers

Twelve real-time trackers (with a speed of >30fps), i.e.,

KCF [7], DCF [7], KCC [57] fDSST [11], DSST [58],

BACF [22], STAPLE-CA [10], STAPLE [10], MCCT-

H [13], STRCF [14], ECO-HC [20], ARCF-H [26], and

five non-real-time ones, i.e., SRDCF [8], SAMF [6], CSR-

DCF [30], SRDCFdecon [24], ARCF-HC [26] are used

for comparison. The results of real-time trackers on four

datasets are displayed in Fig. 3. Besides, the average per-

formance of top ten CPU-based trackers in terms of speed

and precision is demonstrated in the Table 2. It can be seen

that AutoTrack is the best real-time tracker on CPU. Some

tracking results are demonstrated in Fig. 4 and Fig. 6.

Overall performance evaluation: AutoTrack has out-

performed all the CPU-based real-time trackers in both pre-

cision and success rate on DTB70 [46], UAVDT [47] and

UAV123@10fps [48]. On VisDrone2018-test-dev [49], Au-

toTrack achieves comparable performance with the best

tracker MCCT-H and ECO-HC in terms of precision and

success rate. As for the average performance of top ten

Table 1. Precision and speed comparison between AutoTrack with

deep trackers on UAVDT [47]. * means GPU speed. Red, green

and blue respectively mean the first, second and third place.

Tracker Precision FPS Tracker Precision FPS

AutoTrack 71.8 65.4 UDT+[53] 69.7 60.4*

DeepSTRCF[14] 66.7 6.6* ADNet[16] 68.3 7.6*

DSiam[56] 70.4 15.9* TADT[51] 67.7 32.5*

MCPF[19] 66.0 0.67* MCCT[13] 67.1 8.6*

Siamese[15] 68.1 37.9* ECO[20] 70.0 16.4*

C-COT[17] 65.6 1.1* CREST[35] 64.9 4.3*

ASRCF[31] 70.0 24.1* HCF[18] 60.2 20.15*

CFNet[52] 68.0 41.1* IBCCF[54] 60.3 3.39*

11927



0 10 20 30 40 50
Location error threshold

0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

Precision plots on DTB70

AutoTrack[0.717]
STRCF [0.649]
ECO-HC [0.643]
ARCF-H [0.607]
MCCT-H [0.604]
BACF [0.590]
fDSST [0.534]
Staple-CA [0.504]
KCF [0.468]
DCF [0.467]
DSST [0.463]
KCC [0.440]
Staple [0.365]

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Success plots on DTB70

AutoTrack[0.479]
ECO-HC [0.453]
STRCF [0.437]
ARCF-H [0.416]
MCCT-H [0.405]
BACF [0.402]
fDSST [0.357]
Staple-CA [0.351]
KCC [0.291]
KCF [0.280]
DCF [0.280]
DSST [0.276]
Staple [0.265]

(a)

0 10 20 30 40 50
Location error threshold

0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

Precision plots on UAVDT

AutoTrack[0.718]
ARCF-H [0.705]
Staple-CA [0.695]
BACF [0.686]
DSST [0.681]
ECO-HC [0.681]
MCCT-H [0.667]
fDSST [0.666]
Staple [0.665]
KCC [0.649]
STRCF [0.629]
KCF [0.571]
DCF [0.559]

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

0.2

0.4

0.6

0.8
Su

cc
es

s r
at

e
Success plots on UAVDT

AutoTrack[0.450]
BACF [0.433]
ARCF-H [0.413]
STRCF [0.411]
ECO-HC [0.410]
MCCT-H [0.402]
Staple-CA [0.394]
KCC [0.389]
fDSST [0.383]
Staple [0.383]
DSST [0.354]
KCF [0.290]
DCF [0.288]

(b)

0 10 20 30 40 50
Location error threshold

0

0.2

0.4

0.6

Pr
ec

isi
on

Precision plots on UAV123@10fps

AutoTrack[0.671]
ECO-HC [0.634]
STRCF [0.627]
ARCF-H [0.612]
MCCT-H [0.596]
Staple-CA [0.587]
Staple [0.573]
BACF [0.550]
KCC [0.531]
fDSST [0.516]
DSST [0.448]
DCF [0.408]
KCF [0.406]

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

0.2

0.4

0.6

Su
cc

es
s r

at
e

Success plots on UAV123@10fps

AutoTrack[0.477]
ECO-HC [0.462]
STRCF [0.457]
ARCF-H [0.434]
MCCT-H [0.433]
Staple-CA [0.420]
Staple [0.415]
BACF [0.397]
fDSST [0.379]
KCC [0.374]
DSST [0.286]
DCF [0.266]
KCF [0.265]

(c)

0 10 20 30 40 50
Location error threshold

0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

-H [0.811]MCCT
HC [0.797]ECO-

ARCF-H [0.791]
rack[0.788]AutoT
[0.783]Staple
CA [0.782]Staple-
0.781]KCC [
F [0.778]STRC
[0.774]BACF
[0.762]DSST
[0.698]fDSST

0.685]KCF [
0.669]DCF [

Precision plots on VisDrone2018-test-dev

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

C [0.578]HECO-
rack[0.573]AutoT

MCCT-H [0.572]
F [0.567]STRC

BACF [0.567]
Staple [0.566]

-H [0.563]ARCF
-CA [0.550]Staple
[0.541]DSST
0.530]KCC [
[0.510]fDSST

0.413]KCF [
0.408]DCF [

Success plots on VisDrone2018-test-dev

(d)

Figure 3. Overall performance of CPU-based real-time trackers on (a) DTB70 [46] (b) UAVDT [47] (c) UAV123@10fps [48] and (d)

VisDrone2018-test-dev [49]. Two measures for one-pass evaluation (OPE) [59] are used for evaluation. Precision plot can demonstrate

the percentage of scenarios when the distance between estimated bounding box and ground truth one is smaller than different thresholds,

and the score at 20 pixels is used for ranking. Success plot can display the percentage of situations when the overlap between estimated

bounding box and ground truth one is greater than different thresholds. Area under curve (AUC) is utilized for ranking.

Table 2. Average speed (fps) and precision of top ten CPU-based trackers on four benchmarks. Red, green and blue respectively mean the

first, second and third place. All the reported speed is run on a single CPU. Noted that AutoTrack is the best real-time tracker on CPU.

Tracker AutoTrack ARCF-HC[26] ECO-HC[20] ARCF-H[26] STRCF[14] MCCT-H[13] STAPLE CA[10] BACF[22] CSR-DCF[30] SRDCF[8]

Precision 72.4 71.9 69.1 67.3 67.1 67.0 64.2 65.6 67.7 62.7

Speed 59.2 19.3 69.5 53.4 28.4 58.8 58.5 53.1 11.8 14.2

CPU-based trackers, AutoTrack has the best performance in

precision with the second fast speed of 59.2fps, only slower

than ECO-HC (69.5fps), however, we have achieved an av-

erage improvement of 4.8% in precision compared to ECO-

HC. Moreover, AutoTrack has an advantage of 7.9% in pre-

cision and 108.5% in speed over the baseline STRCF.

Figure 4. Tracking results and response maps of AutoTrack (red

box) and STRCF (green box) of bird1 3, car18, MountainBike5

and person12 2. AutoTrack (third row) has less distraction in re-

sponse than STRCF (second row) due to automatic regularization.

Remark 2: M. Muller et al. created a 10fps dataset from

the recorded 30fps one [48], thus the movement of tracked

object between successive frames is larger, bringing more

challenges. On UAV123@10fps, AutoTrack achieves a re-

markable advantage of 5.8% in precision than the second

best ECO-HC, proving its robustness against large motion.

Remark 3: Compared to ARCF-HC [26] solely repress-

ing the global response variation using a fixed parameter,

we fully utilize the local-global information to fine-tune the

spatio-temporal regularization term in an automatic manner.

Extensive experiments have shown that AutoTrack achieves

better performance while providing a much faster speed

which is 3.1 times that of ARCF-HC.

Attribute-based evaluation: Success plots of eight

attributes are exhibited in Fig. 5. In the normal ap-

pearance change scenarios (deformation, in-plane-rotation,

viewpoint change), AutoTrack improves STRCF by 15.9%,

15.5% and 4.6% in success rate because the automatic tem-

poral regularization can smoothly help filter adapt to new

appearance. In illumination variation and large occlusion

(aberrant appearance variation), AutoTrack has a superior-

ity of 7.0% and 15.7% compared to STRCF in light of adap-

tive spatial regularization as well as aberrance monitoring

mechanism which can stop training before contamination.
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DTB70: Deformation (18)
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UAV123@10fps: Illumination variation (31)
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DTB70: In-plane rotation (47)
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DTB70: Motion blur (27)
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UAV123@10fps: Partial occlusion (73)
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UAV123@10fps: Viewpoint change (60)

(g)

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

rack[0.407]AutoT
F [0.389]STRC
HC [0.387]ECO-

MCCT-H [0.365]
-CA [0.343]Staple
[0.332]Staple
-H [0.330]ARCF
[0.318]BACF

fDSST [0.317]
0.268]KCC [
[0.245]DSST
0.222]DCF [
0.222]KCF [
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Figure 5. Attribute-based comparison on deformation, illumination variation, in-plane rotation, large occlusion, motion blur, partial occlu-

sion, viewpoint change, and out-of-view. More attribute-based evaluations can be seen in the supplementary material.

6.1.3 Ablation study

To validate the effectiveness of our method, AutoTrack

is compared to itself with different modules enabled. The

overall evaluation is presented in Table 3. With each mod-

ule (automatic spatial regularization ASR, automatic tem-

poral regularization ATR) added to the STRCF, the perfor-

mance is smoothly improved. It is noted that ATR can also

bring a gain in speed compared to ASR because we can re-

duce meaningless and detrimental training on contaminated

samples. In addition, response maps of some frames are il-

lustrated in Fig. 4. It can be clearly seen that response of

our method is more reliable than that of baseline.

##0149

##0404

#0544

##0002

#0151

#0161

##0002

##0033

##0120

AutoTrack ECO-HC STRCF ARCF-H BACF MCCT-H

Figure 6. Screenshots of Car16 2, ChasingDrones, and Gull1.

Table 3. Ablation study of AutoTrack. ASR and ATR respectively

represents automatic spatial and temporal regularization.

Tracker Precision AUC FPS

STRCF 0.671 0.468 28.4

STRCF + ASR 0.716 0.489 53.7

STRCF + ATR 0.714 0.492 60.0

AutoTrack 0.724 0.495 59.2

6.2. Evaluation of Localization System

We evaluate our localization system on six datasets cov-

ering 2,666 images, and in each dataset, the camera is mov-

ing at a distinct trajectory as UAV flies. The image is cap-

tured with a resolution of 1280× 720 pixels at 10fps, using

Intel RealSense (R200) camera looking ahead to perform

building inspection, as shown in Fig. 7.

We adopt the UAV location in motion capture system

UAV

Building

Tracked object

Reflective marker

Figure 7. Experiment setup (left) and view from the UAV-mounted

camera (right). The tracked objects (reflective markers whose

ground truth locations are known in Quanser motion-capture sys-

tem) for UAV localization are denoted as four green rectangles.
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Figure 8. Estimation of camera position and the respective errors on six datasets. Lines with red, green and blue color denote x, y and z

positions, respectively. The ground truth is not displayed because there is no noticeable differences with our results at such scale.

as the ground truth. The mean position errors in x, y and

z directions are reported in Table 4. Figure 8 exhibits

the estimated position as well as respective error in every

frame. The root-mean-square error (RMSE) of our method

on 2,666 frames is 3.44 centimeters.

Remark 4: It is noted that our system is applicable in var-

ious scenarios because our tracker can track any arbitrary

objects once given their information in the first frame. In

summary, compared to LED-based localization system [44],

our method is more versatile and can run at real-time frame

rates in the real-world scenarios.

Table 4. Illustration of estimation errors on six datasets covering

2,666 frames. The dataset is in line with the (a)-(f) in Fig. 8.

Dataset x(cm) y(cm) z(cm) RMSE Frame number

(a) 1.90 2.25 2.38 3.79 652

(b) 1.06 1.88 1.13 2.44 431

(c) 3.01 3.51 1.30 4.80 400

(d) 1.01 1.73 1.16 2.32 381

(e) 3.77 1.77 1.05 4.30 352

(f) 2.27 2.77 0.91 3.69 450

Average 2.17 2.32 1.32 3.44 444

7. Conclusion

In this work, a generally applicable automatic spatio-

temporal regularization framework is proposed for high-

performance UAV tracking. Local response variation indi-

cates local credibility, thus restricting local correlation filter

learning. Global variation is able to control how much the

correlation filter learns from the whole object. Comprehen-

sive experiments have validated that AutoTrack is the best

CPU-based tracker with a speed of ∼60fps, and even out-

performs some state-of-the-art deep trackers on two UAV

datasets [46, 47]. In addition, we try to bridge the gap be-

tween the theory and practice by utilizing visual tracking

in UAV localization in the real world. Considerable tests

proved the effectiveness and generality of our method. We

strongly believe that our work can promote the development

of visual tracking and its application in robotics.
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