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Figure 1: Top row: images synthesized from semantic segmentation maps. Bottom row: high-resolution images synthesized

from salient object layouts, which allows users to create an image by drawing only a few bounding boxes.

Abstract

We propose a new task towards more practical appli-

cation for image generation - high-quality image synthe-

sis from salient object layout. This new setting allows

users to provide the layout of salient objects only (i.e.,

foreground bounding boxes and categories), and lets the

model complete the drawing with an invented background

and a matching foreground. Two main challenges spring

from this new task: (i) how to generate fine-grained de-

tails and realistic textures without segmentation map in-

put; and (ii) how to create a background and weave it

seamlessly into standalone objects. To tackle this, we

propose Background Hallucination Generative Adversarial

Network (BachGAN), which first selects a set of segmenta-

tion maps from a large candidate pool via a background

retrieval module, then encodes these candidate layouts via

a background fusion module to hallucinate a suitable back-

ground for the given objects. By generating the halluci-

nated background representation dynamically, our model

can synthesize high-resolution images with both photo-

realistic foreground and integral background. Experiments

on Cityscapes and ADE20K datasets demonstrate the ad-

vantage of BachGAN over existing methods, measured on

both visual fidelity of generated images and visual align-

ment between output images and input layouts.1

1Project page: https://github.com/Cold-Winter/BachGAN.
∗ This work was done while the first author was an intern at Microsoft.

1. Introduction

Pablo Picasso once said “Every child is an artist. The

problem is how to remain an artist once grown up.” Now

with the help of smart image editing assistant, our cre-

ative and imaginative nature can well flourish. Recent years

have witnessed a wide variety of image generation works

conditioned on diverse inputs, such as text [38, 36], scene

graph [13], semantic segmentation map [11, 33], and holis-

tic layout [39]. Among them, text-to-image generation pro-

vides a flexible interface for users to describe visual con-

cepts via natural language descriptions [38, 36]. The lim-

itation is that one single sentence may not be adequate for

describing the details of every object in the intended image.

Scene graph [13], with rich structural representation, can

potentially reveal more visual relations of objects in an im-

age. However, pairwise object relation labels are difficult

to obtain in real-life applications. The lack of object size,

location and background information also limits the quality

of synthesized images.

Another line of research is image synthesis conditioned

on semantic segmentation map. While previous work [11,

33, 25] has shown promising results, collecting annotations

for semantic segmentation maps is time consuming and la-

bor intensive. To save annotation effort, Zhao et al. [39]

proposed to take as the input a holistic layout including both

foreground objects (e.g., “cat”, “person”) and background

(e.g., “sky”, “grass”). In this paper, we push this direction to

a further step and explore image synthesis given salient ob-
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ject layout only, with just coarse foreground3 object bound-

ing boxes and categories. Figure 1 provides a compari-

son between segmentation-map-based image synthesis (top

row) and our setting (bottom row). Our task takes fore-

ground objects as the only input, without any background

layout or pixel-wise segmentation map.

The proposed new task presents new challenges for im-

age synthesis: (i) how to generate fine-grained details and

realistic textures with only a few foreground object bound-

ing boxes and categories; and (ii) how to invent a realis-

tic background and weave it into the standalone foreground

objects seamlessly. Note that no knowledge about the back-

ground is provided; while in [39], a holistic layout is pro-

vided and only low-resolution (64 × 64) images are gener-

ated. In our task, the goal is to synthesize high-resolution

(512× 256) images given very limited information (salient

layout only).

To tackle these challenges, we propose Background

Hallucination Generative Adversarial Network (Bach-

GAN).Given a salient object layout, BachGAN generates

an image via two steps: (i) a background retrieval module

selects from a large candidate pool a set of segmentation

maps most relevant to the given object layout; (ii) these

candidate layouts are then encoded via a background fusion

module to hallucinate a best-matching background. With

this retrieval-and-hallucination approach, BachGAN can

dynamically provide detailed and realistic background that

aligns well with any given foreground layout. In addition,

by feeding both foreground objects and background repre-

sentation into a conditional GAN (via a SPADE normaliza-

tion layer [25]), BachGAN can generate high-resolution im-

ages with visually consistent foreground and background.

Our contributions are summarized as follows:

• We propose a new task - image synthesis from salient

object layout, which allows users to draw an image by

providing just a few object bounding boxes.

• We present BachGAN, the key components of which

are a retrieval module and a fusion module, which can

hallucinate a visually consistent background on-the-fly

for any foreground object layout.

• Experiments on Cityscapes [4] and ADE20K [40]

datasets demonstrate our model’s ability to gener-

ate high-quality images, outperforming baselines mea-

sured on both visual quality and consistency metrics.

2. Related Work

Conditional Image Generation Conditional image syn-

thesis tasks can facilitate diverse inputs, such as source im-

age [11, 20, 26, 41, 42], sketch [27, 42, 34], scene graph

[13, 1], text [21, 38, 36, 18, 19], video clip [17, 6, 29], and

3Salient and foreground are used interchangeably in this paper.

dialogue [28, 3]. These approaches fall into three main cat-

egories: Generative Adversarial Networks (GANs) [7, 22],

Variational Autoencoders (VAEs) [15], and autoregressive

models [31, 23]. Our proposed model is a GAN framework

aiming for image generation from salient layout only, which

is a new task.

In previous studies, the layout is typically treated as an

intermediate representation between the input source (e.g.,

text [9, 18] or scene graph [13]) and the output image. In-

stead of learning a direct mapping from text/scene graph to

an image, the model constructs a semantic layout (includ-

ing bounding boxes and object shapes), based on which

the target image is generated. Well-labeled instance seg-

mentation maps are required to train the object shape gen-

erator. There is also prior work that aims to synthesize

photo-realistic images directly from semantic segmentation

maps [33, 11]. However, obtaining detailed segmentation

maps for large-scale datasets is time consuming and labor

intensive. In [16], to avoid relying on instance segmenta-

tion mask as the key input, additional background layout

and object layout are used as the input. [39] proposed the

task of image synthesis from object layout; however, both

foreground and background object layouts are required, and

only low-resolution images are generated. Different from

these studies, we propose to synthesize images from salient

object layout only, which is more practical in real-life ap-

plication where the user can simply draw the outlines of

intended objects.

High-Resolution Image Synthesis Adversarial learning

has been applied to image-to-image translation [11, 32], to

convert an input image from one domain to another using

image pairs as training data. L1 loss [12] and adversarial

loss [7] are popular choices for many image-to-image trans-

lation tasks.

Recently, Chen and Koltun [2] suggest that it might be

difficult for conditional GANs to generate high-resolution

images due to training instability and optimization issues.

To circumvent this, they use a direct regression objective

based on a perceptual loss [5] and produce the first model

that can synthesize high-quality images. Motivated by this,

pix2pix-HD [33] uses a robust adversarial learning objec-

tive together with a new multi-scale generator-discriminator

architecture to improve high-resolution generation perfor-

mance. In [32], high-resolution video-to-video synthesis

are explored to model temporal dynamics. Park et al.

[25] shows that spatially-adaptive normalization (SPADE),

a conditional normalization layer that modulates the activa-

tions using input semantic layouts, can synthesize images

significantly better than state-of-the-art methods.

However, the input of all the aforementioned approaches

is still semantic segmentation map. In our work, we adopt

the SPADE layer in our generator, but only use a salient ob-

ject layout as the conditional input. This foreground layout
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Figure 2: Overview of the proposed BachGAN for image synthesis from salient object layout.

is combined with hallucinated background to obtain a fused

representation, which is then fed into the SPADE layer for

image generation.

3. BachGAN

We first define the problem formulation and introduce

preliminaries in Sec. 3.1, before presenting the proposed

Background Hallucination Generative Adversarial Network

(BachGAN). As illustrated in Figure 2, BachGAN con-

sists of three components: (i) Background Retrieval Module

(Sec. 3.2), which selects a set of segmentation maps from a

large candidate pool given a foreground layout; (ii) Back-

ground Fusion Module (Sec. 3.3), which fuses the salient

object layout and the selected candidate into a feature map

for background hallucination; and (iii) Image Generator,

which adopts a SPADE layer [25] to generate an image

based on the fused representation. Discriminators are omit-

ted in Figure 2 for simplicity.

3.1. Problem Formulation and Preliminaries

Problem Definition Assume we have a set of images

I and their corresponding salient object layouts L. The

goal is to train a model that learns a mapping from lay-

outs to images, i.e., L → I. Specifically, given a ground-

truth image I ∈ I and its corresponding layout L ∈
L, where Li = (xi, yi, hi, wi) denotes the top-left co-

ordinates plus the height and width of the i-th bounding

box. Following [25, 33], we first convert L into a label

map M ∈ {0, 1}H×W×Co , where Co denotes the num-

ber of categories, and H,W are the height and width of

the label map, respectively. Different from the seman-

tic segmentation map used in [33], some pixels M(i, j)
can be assigned to n object instances, i.e., M(i, j) ∈
{0, 1}Co s.t.

∑
p M(i, j, p) = n.

A Naive Solution To draw in the motivation of our frame-

work, we first consider a simple conditional GAN model

and discuss its limitations. By considering the label map M

as the input image, image-to-image translation models can

be directly applied with the following objective:

min
G

max
D

EM,I[log(D(M, I))]

+ EM[log(1−D(M, G(M)))] , (1)

where G and D denote the generator and the discriminator,

respectively. The generator G(·) takes a label map M as

input to generate a fake image.

State-of-the-art conditional GANs, such as pix2pix-

HD [33], can be directly applied here. However, some

caveats can be readily noticed, as only a coarse foreground

layout is provided in our setting, making the generation task

much more challenging than when a semantic segmentation

map is provided. Thus, we introduce Background Halluci-

nation to address this issue in the following sub-section.
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3.2. Background Retrieval Module

The main challenge in this new task is how to generate

a proper background to fit the foreground objects. Given

an object layout L that contains k instances: LC0

0 , . . . ,LCk

k ,

where Ci is the category of instance Li, assume we have

a memory bank B containing pairs of image I and its

fine-grained semantic segmentation map S with l instances:

S
C0

0 , ...,SCl

l . We first retrieve a pair of I and S that contain

the most similar layout to L, by using a layout-similarity

score, a variant of the Intersect over Union (IoU) metric, to

measure the distance between a salient object layout and a

fine-grained semantic segmentation map:

IoUr =

∑C

j=1 S
j
⋂
L
j

∑C

j=1 S
j
⋃
Lj

, (2)

where C is the total number of object categories, S
j =⋃

i

S
j
i , and L

j =
⋃

i

L
j
i .
⋃

and
⋂

denote union and intersect,

respectively. The proposed metric can preserve the overall

location and category information of each object, since the

standard IoU score is designed for measuring the quality of

object detection. However, instead of calculating the mean

IoU scores across all the classes, we use Eqn. (2) to prevent

the weights of small objects from growing too high.

Given a salient object layout Lq as the query, we rank the

pairs of image and semantic segmentation map in the mem-

ory bank by the aforementioned layout-similarity score.

As a result, we can obtain a retrieved image Ir with se-

mantic segmentation map Sr, which has a salient object

layout most similar to the query Lq . The assumption is

that images with a similar foreground composition may

share similar background as well. Therefore, we treat

the retrieved semantic segmentation map, Sr, as the po-

tential background for Lq . Formally, we first convert

the background of Sr into a label map Mb: Mb(i, j) ∈
{0, 1}Cb s.t.

∑
p Mb(i, j, p) = 1, where Cb denotes the

number of categories in the background. Then, we produce

a new label map, encoding both the foreground object lay-

out and the fine-grained background segmentation map, by

concatenating Mb and the foreground label map Mq of Lq:

M̂ = [Mb;Mq] , (3)

where [; ] denotes concatenation, and the resulting label map

is represented as M̂ ∈ {0, 1}H×W×(Co+Cb). Note that

the memory bank B can be much smaller than the scale of

training data. Therefore, this approach does not require ex-

pensive pairwise segmentation map annotations to generate

high-quality images.

A Simple Baseline Based on the obtained new label map

M̂, now we describe a simple baseline that motivates our

proposed model. We consider the new label map as an input

image, and adopt an image-to-image translation model. The

following conditional GAN loss can be used for training:

min
G

max
D

E
M̂,Ir

[log(D(M̂, Ir))] + E
M̂,Iq

[log(D(M̂, Iq))]

+ E
M̂
[log(1−D(M̂, G(M̂)))] , (4)

where Iq is the ground-truth image corresponding to the

query Lq , and Ir is the retrieved image.4 We name this base-

line method “BachGAN-r”. Though the ground-truth back-

ground cannot be obtained, the use of the retrieved back-

ground injects useful information that helps the generator

synthesize better images, compared to the objective in Eqn.

(1).

3.3. Background Fusion Module

Though the retrieval-based baseline approach can hallu-

cinate a background given a foreground object layout, the

relevance of one retrieved semantic segmentation map to

the input foreground layout is not guaranteed. One possi-

ble solution is to use multiple retrieved segmentation maps

in Eqn. (4). However, this renders training unstable as the

discriminator becomes unbalanced when several retrieved

images are included in the loss function. More importantly,

the dimension of the input label map is too high. In order to

utilize multiple retrieved segmentation maps for a fuzzy hal-

lucination of the background, we further introduce a Back-

ground Fusion Module to encode Top-m retrieved segmen-

tation maps to hallucinate a smoother background.

Assume we obtain m retrieved segmentation maps

Sr,0, ...,Sr,m with their corresponding background label

maps Mb,0, ...,Mb,m. The query salient object layout

Lq has a corresponding label map Mq , where Mb,i ∈
{0, 1}H×W×Cb and Mq ∈ {0, 1}H×W×Co . As illustrated

in Figure 2, we first obtain M̂r,0, ..., M̂r,m with Eqn. (3),

where M̂r,i ∈ {0, 1}H×W×(Co+Cb). Mq is padded with

0 to obtain a query label map M̂q with the same shape as

M̂r,i. M̂r,0, ..., M̂r,m are then concatenated into M̂r ∈
{0, 1}m×H×W×(Co+Cb). A convolutional network F is

then used to encode the label maps into feature maps:

m0 = F(M̂q)⊕ Pool(F(M̂r)) , (5)

where Pool represents average pooling, ⊕ denotes element-

wise addition, and m0 ∈ R
H×W×h (h is the number of

feature maps). We then use another convolutional network

M to obtain updated feature maps:

mt = mt−1 ⊕M(mt−1) . (6)

After T steps, we obtain the final feature map m̂ = mT ,

which contains information from both salient object layout

and hallucinated background.

4Empirically, we observe that adding the retrieved image to the GAN

loss improves the performance.
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Figure 3: Examples of image synthesis results from different models on the Cityscapes dataset. Results from Layout2im are

not included due to low resolution of the generated images (provided in Appendix).

Training Objective Based on the feature map m̂, Bach-

GAN uses the following conditional GAN loss for training:

min
G

max
D

Em̂,Iq [log(D(m̂, Iq))]

+ Em̂[log(1−D(m̂, G(m̂)))] , (7)

where Iq is the ground-truth image corresponding to the

query Lq . Compared with Eqn. (4), multiple retrieved

segmentation maps are used to hallucinate the background,

which leads to better performance in practice.

Image Generator Now, we describe how the generator

G(·) takes m̂ as input to generate a high-quality image.

In order to generate photo-realistic images, we utilize the

spatially-adaptive normalization (SPADE) layer [25] in our

generator. Let hi denote the activation feature map of the

i-th layer of the generator G. Similar to batch normaliza-

tion [10], SPADE [25] first normalizes hi, then produces

the modulation parameters γ and β to denormalize it, both

of which are functions of m̂:

ĥi = norm(hi)⊗ γ(m̂)⊕ β(m̂) , (8)

where ĥi denotes the output of a SPADE layer, norm (·) is

a normalization operation, and ⊗ and ⊕ are element-wise

production and addition, respectively. An illustration of the

generator is provided in the bottom part of Figure 2. More

details about SPADE can be found in [25].

4. Experiments

In this section, we describe experiments comparing

BachGAN with state-of-the-art approaches on the new task,

as well as detailed analysis that validates the effectiveness

of our proposed model.

4.1. Experimental Setup

Datasets We conduct experiments on two public datasets:

Cityscapes [4] and ADE20K [40]. Cityscapes contains im-

ages with street scene in cities. The size of training and the

validation set is 3,000 and 500, respectively. We exclude 23

background classes and use the remaining 10 foreground

objects in the salient object layout. With provided instance-

level annotations, we can readily transform a semantic seg-

mentation instance to its bounding box, by taking the max
and min of the coordinates of each pixel in an instance.

ADE20K consists of 20,210 training and 2,000 validation

images. The dataset contains challenging scenes with 150

semantic classes. We exclude the 35 background classes

and utilize the remaining 115 foreground objects. There are

no instance-level annotations for ADE20k, thus, we use a

simple approach to find contours [30] from a semantic seg-

mentation map and then obtain the bounding box for each

contour. A separate memory bank is used for each dataset.

We train all the image synthesis methods on the same train-

ing set and report their results on the same validation set.

Baselines We include several strong baselines that can gen-

erate images with object layout as input:

• SPADE: We adopt SPADE [25] as our first baseline,

taking as input the salient object layout instead of se-

mantic segmentation map used in the original paper.

• SPADE with Segmentation (SPADE-SEG): We ob-

tain the second baseline by exploiting the pairs of seg-

mentation mask and image from the memory bank.

Besides GAN loss, the model is trained with an ad-

ditional loss. It minimizes the segmentation loss be-

tween the real image and the output from the generator

based on the memory bank.

• Layout2im: We use the code from Layout2im [39],

which generates images from holistic layouts and sup-

ports the generation of 64× 64 images only.

Performance metrics Following [2, 33], we run a se-

mantic segmentation model on the synthesized images and

measure the segmentation accuracy. We use state-of-the-art

segmentation networks: DRN-D-105 [37] for Cityscapes,
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Figure 4: Examples of image synthesis results from different models on the ADE20K dataset.
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Figure 5: Generated images by adding bounding boxes sequentially to previous layout (Cityscapes).

Model
Cityscapes ADE20K

Acc FID Acc FID

Layout2im [39] - 99.1 - -

SPADE 57.6 86.7 55.3 59.4

SPADE-SEG 60.2 81.2 60.9 57.2

BachGAN-r 67.3 74.4 64.5 53.2

BachGAN 70.4 73.3 66.8 49.8

SPADE-v [25] 81.9† 71.8† 79.9† 33.9†

Table 1: Results on Cityscapes and ADE20K w.r.t. FID and

the pixel accuracy (Acc). Results with (†) are reported in

[25], serving as the upper bound of our model performance.

and UperNet101 [35] for ADE20K. Pixel accuracy (Acc) is

compared across different models. This is done using real

objects cropped and resized from ground-truth images in

the training set of each dataset. In addition to classification

accuracy, we use the Frechet Inception Distance (FID) [8]

to measure the distance between the distribution of synthe-

sized results and the distribution of real images.

Implementation Details All the experiments are con-

ducted on an NVIDIA DGX1 with 8 V100 GPUs. We

use Adam [14] as the optimizer, and learning rates for the

generator and discriminator are both set to 0.0002. For

Cityscapes, we train 60 epoches to obtain a good genera-

tor, and ADE20k needs 150 epoches to converge. m is set

to 3 for both datasets.

4.2. Quantitative Evaluation

Table 1 summarizes the results of all the models w.r.t. the

FID score and classification accuracy. We also report the

scores on images generated from vanilla SPADE (SPADE-

v) using segmentation map as input (upper bound). Mea-

sured by FID, BachGAN outperforms all the baselines in

both datasets with a relatively large margin. For Cityscapes,

BackGAN achieves a FID score of 73.3, which is close

to the upper bound. In ADE20K, the improved gain over
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Figure 6: Generated images by adding bounding boxes sequentially to previous layout (ADE20k).

Figure 7: Top row: synthesized images based on salient object layouts from the test set. Bottom row: synthesized images

based on salient layouts with flipping objects, modified from the top-row layouts.

baselines is not significant. This is because most images in

ADE20K are dominated by salient foregrounds, with rel-

atively less space for background, which limits the effect

of our hallucination module. The pixel accuracy of our

method is also higher than other baselines. BachGAN-r also

achieves reasonable performance on both datasets.

4.3. Qualitative Analysis

In Figure 3 and 4, we provide qualitative comparison of

all the methods. Our model produces images with much

higher visual quality compared to the baselines. Particu-

larly, in Cityscapes, our method can generate images with

detailed/sharp backgrounds while the other approaches fail

to. In ADE20K, though the background region is relatively

smaller than Cityscapes, BachGAN still produces synthe-

sized images with better visual quality.

Figure 5 and 6 demonstrate that BachGAN is able to ma-

nipulate a series of complex images progressively, by start-

ing from a simple layout and adding new bounding boxes

sequentially. The generated samples are visually appealing,

with new objects depicted at the desired locations in the im-

ages, and existing objects remain consistent to the layout in

previous rounds. These examples demonstrate our model’s

ability to perform controllable image synthesis based on

layout.

Figure 7 further illustrates that BachGAN also works

well when objects are positioned in an unconventional way.

In the bottom row, we flip some objects in the object layouts

(e.g., windowpane in the top-left image), and generate im-

ages with the manipulated layouts. BachGAN is still able

to generate high-quality images with a reasonable back-

ground, proving the robustness of BachGAN.

In Figure 8, we sample some retrieved images from

Cityscapes. The top-3 results are consistent and similar with

the original background. More synthesized and retrieval re-

sults (for ADE20K) are provided in Appendix.

4.4. Human Evaluation

We use Amazon Mechanical Turk (AMT) to evaluate the

generation quality of all the approaches. AMT turkers are

provided with one input layout and two synthesized out-

puts from different methods, and are asked to choose the

image that looks more realistic and more consistent with

the input layout. The user interface of the evaluation tool

also provides a neutral option, which can be selected if the

turker thinks both outputs are equally good. We randomly
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Query Ground Truth Retrieval Results

Figure 8: Examples of top-3 retrieved images from the memory bank of Cityscapes.

Dataset
BachGAN vs. BachGAN vs. BachGAN vs. BachGAN vs.

SPADE SPADE-Seg BachGAN-r Layout2im

win loss tie win loss tie win loss tie win loss tie

Cityscapes 85.5 3.4 11.1 71.7 12.4 15.9 61.6 24.1 14.3 96.0 0.2 3.8

ADE20K 75.9 12.8 11.3 66.8 17.4 15.8 57.2 18.7 24.1 - - -

Table 2: User preference study. Win/lose/tie indicates the percentage of images generated by BachGAN are bet-

ter/worse/equal to the compared model.

Method BachGAN-3 BachGAN-4 BachGAN-5

FID 73.31 73.03 72.95

Table 3: FID scores of BachGAN with different numbers of

retrieved segmentation maps (Cityscapes).

Bank size BachGAN BachGAN-r

|B| 73.31 74.44

2× |B| 72.50 73.95

Table 4: FID scores of BachGAN and BachGAN-r trained

using memory bank of different sizes (Cityscapes).

sampled 300 image pairs, each pair judged by a different

group of three people. Only workers with a task approval

rate greater than 98% can participate in the study.

Table 2 reports the pairwise comparison between our

method and the other four baselines. Based on human

judgment, the quality of images generated by BachGAN

is significantly higher than SPADE. Comparing with two

strong baselines (SPADE-SEG and BachGAN-r), Bach-

GAN achieves the best performance. As expected, Lay-

out2im receives the lowest acceptance by human judges,

due to its low resolution.

4.5. Ablation Study

Effect of segmentation map retrieval First, we train three

BachGANs with different numbers of retrieved segmenta-

tion maps, setting m to 3, 4 and 5, and evaluate them on

Cityscapes. The FID scores of different models are summa-

rized in Table 3. The model using Top-5 retrieved segmen-

tation maps (BachGAN-5) achieves the best performance,

compared to models with Top-3 and Top-4. This analysis

demonstrates that increasing the number of selected seg-

mentation maps can slightly improve the scores. Due to

the small performance gain, we keep m = 3 in our experi-

ments.

Effect of memory bank We also compare models trained

with memory banks of different sizes. Specifically, we

compare the performance of BachGAN and BachGAN-r

with memory bank size |B| (used in our experiments) and

2 × |B|. Results are summarized in Table 4. With a larger

memory bank, both models are able to improve the evalua-

tion scores. Interestingly, the gain of BachGAN is larger

than that of BachGAN-r, showing that BachGAN enjoys

more benefit from the memory bank. More analysis about

the size of memory bank is provided in Appendix.

5. Conclusion

In this paper, we introduce a novel framework, Bach-

GAN, to generate high-quality images conditioned on

salient object layout. By hallucinating the background

based on given object layout, the proposed model can gener-

ate high-resolution images with photo-realistic foreground

and integral background. Comprehensive experiments on

both Cityscapes and ADE20K datasets demonstrate the ef-

fectiveness of our proposed model, which can also perform

controllable image synthesis by progressively adding salient

objects in the layout. For future work, we will investigate

the generation of more complicated objects such as people,

cars and animals [24]. Disentangling the learned represen-

tations for foreground and background is another direction.
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