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Abstract

In this paper, we tackle the task of establishing dense vi-

sual correspondences between images containing objects of

the same category. This is a challenging task due to large

intra-class variations and a lack of dense pixel level anno-

tations. We propose a convolutional neural network archi-

tecture, called adaptive neighbourhood consensus network

(ANC-Net), that can be trained end-to-end with sparse key-

point annotations, to handle this challenge. At the core of

ANC-Net is our proposed non-isotropic 4D convolution ker-

nel, which forms the building block for the adaptive neigh-

bourhood consensus module for robust matching. We also

introduce a simple and efficient multi-scale self-similarity

module in ANC-Net to make the learned feature robust to

intra-class variations. Furthermore, we propose a novel

orthogonal loss that can enforce the one-to-one matching

constraint. We thoroughly evaluate the effectiveness of our

method on various benchmarks, where it substantially out-

performs state-of-the-art methods.

1. Introduction

Establishing visual correspondences has long been a fun-

damental problem in computer vision. It has seen variety

of applications in areas such as 3D reconstruction [1, 33],

image editing [6], scene understanding [24], and object de-

tection [4].

Earlier works mainly focused on estimating correspon-

dences for images of the same scene or object (i.e. instance-

level correspondences) using hand-crafted features such

as SIFT [26] or HOG [3]. Recently, finding correspon-

dences for different instances from the same category (i.e.

semantic correspondences) has attracted more and more

attention[2, 9, 32, 10, 27]. In this paper, we focus on the

problem of establishing dense correspondences for a pair

of images depicting different instances from the same cate-

∗indicates equal contribution

gory. This task is extremely challenging due to large intra-

class variation in properties such as colour, scale, pose, and

illumination. Further, it is unreasonably expensive, if not

impossible, to provide dense annotations for such image

pairs.

To deal with the challenges mentioned above, we in-

troduce a convolutional neural network (CNN), called

Adaptive Neighbourhood Consensus Network (ANC-Net),

which can produce reliable semantic correspondences with-

out requiring dense human annotations. ANC-Net takes a

pair of images as input and predicts a 4D correlation map,

containing the matching scores for all possible matches be-

tween the two images. The most likely matches can then

be retrieved by finding the matches giving the maximum

matching scores.

ANC-Net consists of a CNN feature extractor, a multi-

scale self-similarity module, and an adaptive neighbour-

hood consensus module. At the core of ANC-Net is

our proposed non-isotropic 4D convolution, which incor-

porates an adaptive neighbourhood consensus constraint

for robust matching, and our proposed multi-scale self-

similarity module, which aggregates multiple self-similarity

features, which are insensitive to intra-class appearance

variation[17].

CNN features have been very popular for the task of

correspondence estimation due to their promising perfor-

mance, and most state-of-the-art methods are based on

CNN features [32, 27, 10, 17, 2]. Like other methods,

ANC-Net also extracts features with a pre-trained CNN.

However, instead of directly using the CNN features to cal-

culate matching scores, we introduce the multi-scale self-

similarity. Self-similarity has been introduced in existing

methods [10, 17]. Unlike other methods that either use

self-similarity as an extra feature alongside raw CNN fea-

tures [10], or use computationally expensive irregular self-

similarity patterns [17], our self-similarity features are both

computationally cheap to obtain, and do not need combin-

ing with raw CNN features, whist still capturing the com-

plex self-similarity patterns.
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Figure 1: An overview of ANC-Net. Given a pair of images (Is, It), ANC-Net can predict their pixel-wise semantic

correspondences. A CNN backbone F first extracts features Fs and F
t. Our multi-scale self-similarity module then captures

the self-similarity features Ss and S
t based on F

s and F
t. We can then obtain Cs from S

s and S
t, and Cf from F

s and F
t.

Taking Cf and Cs as input, our ANC module N will predict a refined C̄, from which the pixel-wise correspondences can be

retrieved with interpolation.

With reliable feature representation, the matching scores

for each individual feature pair can then be calculated.

However, as the individual feature pairs do not contain

any matching validity information, matching by direct fea-

ture comparison can be rather noisy. To mitigate this, cor-

respondence validity constraints should be applied to ob-

tain reliable matching scores. Neighbourhood consensus,

which measures how many pairs are matched in the neigh-

bourhoods of the two points under consideration, turns to

be one of the most effective correspondence validity con-

straints, and has been successfully introduced in recent

work [32, 10]. However, [32] and [10] assume neighbour-

hoods of the same size for the two points in consideration.

Unfortunately, this assumption does not hold in practice, as

objects in real images typically have different scales and

shapes. Therefore, adopting neighbourhoods of the same

size is very likely to be affected by unrelated neighbours

(e.g. background parts). To address this issue, we propose

an adaptive neighbourhood consensus module, which can

select the correct neighbourhoods.

As mentioned earlier, the cost of labelling ground truth

means fully supervised learning with dense annotations is

not feasible. Instead, our model can effectively make use

of sparse key-point annotations. To enforce the one-to-one

mapping constraint, which is crucial for plausible corre-

spondences, we further propose a novel one-to-one map-

ping loss, called orthogonal loss, to regularise the training.

To summarise, our contributions are four fold:

• We introduce ANC-Net for the task of dense semantic

correspondence estimation, which can be trained with

sparse key-point annotations.

• We propose a non-isotropic 4D convolutional kernel,

which forms the building block for the adaptive neigh-

bourhood consensus module for robust matching.

• We propose a simple and efficient multi-scale self-

similarity to make the feature matching robust to intra-

class variation.

• We propose a novel orthogonal loss that can enforce

the one-to-one matching constraint, encouraging plau-

sible matching results.

We thoroughly evaluate the effectiveness of our method

on various benchmarks, where it substantially outperforms

state-of-the-art methods. Our code can be found at https:

//ancnet.avlcode.org/.

2. Related work

The semantic correspondence estimation problem is of-

ten considered as either a pixel-wise matching problem,

an image alignment problem, or a flow estimation prob-

lem. Earlier works used hand-crafted features, such as

SIFT [26] or HOG [3], to establish semantic correspon-

dences [24, 15, 11, 8, 7, 35]. Here, we briefly review recent

CNN based methods.

Pixel-wise matching. Long et al. [25] transferred the fea-

tures pre-trained on an image classification task to pixel-

wise correspondence estimation. Choy et al. [2] introduced

a method to learn a feature embedding for the correspon-

dence problem, by pulling positive features pairs close and

pushing negative feature pairs away. Han et al. [9] proposed

a CNN model that tries to match image patches consider-

ing both appearance and geometry information, and obtains

the pixel-wise correspondences by interpolation. Novotny

et al. [28] introduced a method to learn geometrically stable

features with self-supervised learning by applying a syn-

thetic warp to the images. More recently, Rocco et al. [32]

proposed to construct a CNN model that incorporates neigh-

bourhood consensus information to refine the 4D tensor

storing all the matching scores, which are obtained from
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pre-trained CNN features. Huang et al. [10] introduced

a method to incorporate self-similarity based on [32] and

fuse different features with an attention mechanism. Min

et al. [27] showed that effectively combining features ex-

tracted from different layers can provide significant benefits

for the dense semantic correspondence estimation task.

Image alignment. Rocco et al. [30] developed a CNN ar-

chitecture that can predict the global geometric transfor-

mation between two images by training on synthetically

warped data. Seo et al. [34] improved [30] by introducing

attention based offset-aware correlation kernels. Rocco et

al. [31] presented an end-to-end trainable CNN architecture

that uses weak image-level supervision, which is trained by

a soft inlier counting loss in a similar spirit to RANSAC.

Jeon et al. [13] introduced a hierarchical learning procedure

to progressively learn affine transformations to align the im-

ages in a chaos-to-fine manner. Kim et al. [16] introduced to

a recurrent transformer network, which is trained with an it-

erative process and can predict the transformations between

a pair of images.

Flow estimation. Fischer et al. [5] introduced an end-

to-end trainable model called FlowNet, which is trained

on synthetic data to predict optical flow. FlowNet is fur-

ther improved by Ilg et al. [12] in several aspects. Kim et

al. [17] proposed a learnable self-similarity feature, which

is then used to estimate an dense affine transformation flow

for each feature location. The semantic correspondences

can then be obtained by applying such transformations.

Lee et al. [22] introduced a method to use images anno-

tated with binary foreground masks, and subjected to syn-

thetic geometric deformations, to train a CNN model with a

mask consistency loss and a flow consistency loss. Besides

these, there are also some methods that learn the flow using

videos [36, 20] by considering temporal consistency.

3. Method

Given a pair of images (Is, It), our objective is to find

pixel-wise correspondences between the two images. We

propose a CNN, ANC-Net, which takes (Is, It) as input

and produces a 4D correlation map containing the matching

scores for all possible pairs in the feature space of the two

images. Pixel-wise correspondence then can be extracted by

interpolation among the most likely matches in the feature

space. The model can be trained with a supervised loss on

sparse key-point annotations in an end-to-end manner. To

encourage one-to-one matching, we propose using a novel

loss, called the orthogonal loss, together with the supervised

loss on sparse key-point annotations, for training our model.

Figure 1 illustrates the main architecture of our net-

work. It consists of a feature extractor F , a multi-scale self-

similarity module, and an adaptive neighbourhood consen-

sus (ANC) module N . The feature extractor F is composed

of a sequence of standard convolutional layers. We first feed

the two images into F , and get a pair of feature maps Fs and

F
t. The multi-scale self-similarity module S consists of

two convolutional layers followed by a concatenation oper-

ation to fuse them into the multi-scale features. With F
s and

F
t, S will produce the multi-scale self-similarity feature

maps S
s and S

t which capture the complex self-similarity

patterns. We can then obtain the 4D correlation map Cs

from S
s and S

t, and the 4D correlation map Cf from F
s

and F
t. However, Cs and Cf are often noisy as they lack

the constraints to enforce the correspondence validity, and

thus are unreliable for directly extracting correspondences.

Our proposed ANC module N , which is realised with a

stack of non-isotropic 4D convolutions, takes Cs and Cf

as input, refining them by considering neighbourhoods with

varying sizes. Finally, the ANC module combines the re-

fined correlation maps by simply summing up the two, pro-

ducing a single 4D correlation map C̄, from which reliable

correspondences can be retrieved. Cs is introduced to cap-

ture the second order (and higher) cues derived from the

raw features. Cs shares a similar structure to Cf , allowing

both to be refined using a neighbourhood consensus mod-

ule without introducing extra learnable parameters. Exper-

iments show that the proposed self-similarity module out-

performs similar methods [17, 10].

In this section, we will first introduce the multi-scale

self-similarity module in Section 3.1. We then, in Sec-

tion 3.2, describe the adaptive neighbourhood consensus

matching validity module. Section 3.3 will discuss the ap-

proach to enforcing global constraints over the output of

the neighbourhood consensus by maximising an a posteri-

ori estimation. Finally, we describe the learning objectives

for training our network in Section 3.4.

3.1. Multi­scale self­similarity

Self-similarity has been shown to be effective for the task

of semantic correspondence estimation [17, 10]. Given a

feature map F ∈ R
hf×wf×d established by the backbone

feature extractor, a self-similarity map measures the local

similarity pattern at each feature location. One way to ex-

tract the self-similarity feature for the feature vector fij at

(i, j) in F is to calculate the cosine distance between itself

and its neighbours. Figure 2 illustrates the self-similarity

module when considering the 3 × 3 neighbours of a given

feature vector. This approach results in 9 self-similarity

scores for each fij . We further vectorise each of the 3 × 3
self-similarity scores into a 9-vector, which make up the

self-similarity feature map S0 ∈ R
hf×wf×9.

To further capture the correlations among different self-

similarity features, we apply two 2D convolutional layers

with zero padding on S0. Given the output feature maps

for the two layers are S1 and S2, we then concatenate the

3-scales S0, S1, and S2 together to form an enhanced fea-

ture map S, which will serve as the input to the later layers.

10198



Cosine distance + Vectorisation

Self - similarity Module

F

S0 S1 S2

S
2D Convolution

Concatenation

Figure 2: Self-similarity module. The top left figure illus-

trates the calculation of a self-similarity score over the 3 ×
3 window. Specifically, the cosine distances between each

of the 9 features and the centre feature are calculated and

then vectorised into the S0. In the bottom, we first calculate

the S0 from the feature map F, and then perform two levels

of 2D convolutions, each followed by an activation function

(ReLU) to produce S1 and S2. Finally, the initial similar-

ity score S0, its first scale filtered features S1, and second

filtered features S2 are concatenated together to form final

feature map S.

With the feature maps Ss and S
t of source and target images

respectively, we can obtain the 4D correlation map Cs.

Unlike DCCNet [10], where the self-similarity of a sin-

gle scale is considered, and the self-similarity scores are

then concatenated with F and convolved using a point-wise

convolution which is intended to use the self-similarity to

re-weight the raw features, our method avoids fusing with F

to reduce redundancy, as the features in F have already been

implicitly included in S0. Further, we extract more complex

self-similarities than DCCNet and make use of multi-scale

self-similarities to bootstrap the features. Thus, we capture

more complex features from a much larger local window as

well as second order (and higher) information.

As will be shown in the experiments, our multi-scale

self-similarity module performs better than that of DCCNet.

It is also worth noting that FCSS [17] proposes a similar

design, however their self-similarity score is defined using

a set of irregular point pairs within the local window which

is more complex to implement. In contrast, we adopt the

design of correlating the centre feature with neighbours for

simplicity and computation efficiency, and as a result, our

simplified self-similarity module outperforms FCSS in all

benchmarks.

Both Cf and Cs are complementary to each other as we

hypothesise they are dominated by first order and higher or-

der cues respectively. They will be refined by the following

ANC module independently and then combined.

3.2. Adaptive neighbourhood consensus

Neighbourhood consensus has been shown to be effec-

tive for filtering the noisy 4D correlation map [32, 10]. Mul-

tiple layers of the isotropic 4D convolutional kernels, i.e.

kernels with identical size in each dimension, are applied

on the 4D correlation map to refine it. The isotropic 4D

convolution with size 5× 5× 5× 5 is illustrated in top left

of Figure 3. It can be seen that the kernel establishes two

neighbourhoods with the same size for both images. How-

ever, objects in real images often have varying scales and

shapes, therefore, two neighbourhoods depicting the same

semantic meaning are very likely to have different sizes.

Thus, using neighbourhoods of the same size for both im-

ages may introduce noise (e.g. unrelated background) when

determining a match.

To deal with the problem, we introduce the adaptive

neighbourhood consensus (ANC) module which contains a

set of non-isotropic 4D convolutional layers. As illustrated

in the top right of Figure 3, the non-isotropic 4D convolu-

tion has dimensions of 3 × 3 × 5 × 5, defining the neigh-

bourhood of 3× 3 and 5× 5.

To handle objects in real images with varying scales and

shapes, we can combine our non-isotropic 4D kernels with

isotropic 4D kernels so that the model can dynamically de-

termine which set of convolutions should be activated to

handle objects of various sizes. We consider 3 candidate

architectures (shown in Figure 3) in our experiments with

each non-isotropic 4D convolution using zero padding. Un-

less stated otherwise, we use (d) in our experiments, as it

gives the best performance in our evaluation. This is pos-

sibly because (d) allows for more scale variation than the

others. This choice might ignore better designs than (d), but

the main point in this work is to demonstrate the effective-

ness of the ANC module.

It is also worth noting that it is unnecessary to have both

p× p× q× q and q× q× p× p kernels in the model where

p and q are the sizes of some kernel dimensions, as the bidi-

rectional neighbourhood consensus filter in Eq. 1 (which

will be explained next) effectively tries both the configura-

tions of small vs large neighbourhood and large vs small

by reversing the matching direction, and the effect of both

filters are equivalent due to the bidirectional matching.

Let N be the module of our adaptive neighbourhood

consensus. It takes a 4D correlation map Cs or Cf as input

and refining them. Their refined counterparts can then be

combined to form C̄. We apply N to both matching direc-

tions (i.e. matching I
s to I

t and matching I
t to I

s), so that

our model is invariant to the order of the images. More im-

portantly, this allows N to only include one p × p × q × q

non-isotropic kernel to handle the small to large as well as

the large to small neighbourhood. In particular, the refined

4D correlation map can be obtained by
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Figure 3: Adaptive neighbourhood consensus. The top

row illustrates an isotropic and a non-isotropic 4D convolu-

tional kernel. The bottom row illustrates the architecture of

(a) the non-isotropic in NC-Net [32] and (b-d) three ANC

candidates. ⊕ denotes concatenation of feature maps. The

numbers {1, 16, 16, 1} denote the input and output channels

for the 4D kernels. The non-isotropic 4D convolutions are

always zero padded so that the size of the 4D correlation

remains the same size after each convolution.

C̄ = N (Cs)+
(

N
(

C
⊤

s

))⊤

+N (Cf )+
(

N
(

C
⊤

f

))⊤

, (1)

where ⊤ denotes the swapping of the matching direction

given an image pair, i.e., (C⊤)ijkl = Cklij .

3.3. Most likely matches

After obtaining the refined 4D correlation map C̄, we

follow [32] to apply soft mutual nearest neighbour filter-

ing, i.e., for each c̄ijcd in C̄, we replace it by ĉijcd =

rsijklr
t
ijklc̄ijkl where rsijkl =

c̄ijkl

maxab c̄abkl
and rtijkl =

c̄ijkl

maxcd c̄ijcd
, which downweights the scores of matches that

are not mutual nearest neighbours. Next, we perform soft-

max normalisation to the scores ĉijkl. The normalised

scores can be interpreted as the matching probabilities. In

particular, the probability of a given point at (i, j) in I
s be-

ing matched with an arbitrary point (k, l) in I
t is

vtijkl =
exp (ĉijkl)

∑

cd exp (ĉijcd)
. (2)

Similarly, the probability of a given point at (k, l) in I
t be-

ing matched with an arbitrary point (i, j) in I
s is

vsijkl =
exp (ĉijkl)

∑

ab exp (ĉabkl)
. (3)

For a given position (i, j) in I
s, the most likely match (k, l)

in I
t can be found by

(k, l) = argmax
cd

vtijcd. (4)

Similarly, for a given position (k, l) in I
t, the most likely

match (i, j) in I
s can be found by

(i, j) = argmax
ab

vsabkl. (5)

After retrieving the correspondences in the feature space

with Eq. 4 and Eq. 5, the pixel-wise correspondences can

be obtained by interpolation.

3.4. Learning objective

For the tasks of establishing dense semantic correspon-

dences, it is impossible to obtain dense ground-truth la-

belling for all training image pairs due to the huge amount

of human labour required. In practice, one can easily label

only a few key-points of the objects in an image. These

key-points often indicate the objects parts with concrete

semantic meaning (e.g. eyes, mouths, body joints, etc.).

Sparse key-point annotations are included in many exist-

ing datasets including PF-PASCAL [8], Spair-71k [27],

CUB [37] and others. There are also other forms of al-

ternative annotations, such as image level pairwise anno-

tations [32, 10], or object masks [22]. In this paper, we are

interested in the sparse key-point annotations, as they are

more directly linked to our objective to learn semantic cor-

respondences.

The sparse key-point annotations provide a straightfor-

ward way to train a CNN model for semantic matching,

in which we minimise the distances between features of

matched key-points (e.g. [2]). However, this is not appli-

cable to ANC, because the feature space ANC operates is a

4D correlation map, rather than a 3D feature map consist-

ing of per pixel feature vectors. Therefore, we introduce a

simple but effective supervised loss on 4D correlation maps

to train our model.

For each key-point (x, y) in the image (e.g. Figure 4(a)),

we first re-scale (x, y) to the same resolution as the fea-

ture map, giving the re-scaled coordinates (xc, yc). Since

(xc, yc) is a sub-pixel coordinate, it can not be used as the

target in the feature map directly. Instead, we can sim-

ply pick the nearest neighbour (xn, yn) of (xc, yc) in the

feature map to be the target (see Figure 4 (b)). However,

this will introduce errors caused by ignoring the offset be-

tween the (xn, yn) and (xc, yc). As the resolution of the

feature map is much smaller than that of the image, small

offsets in the feature map will cause large errors in the im-

age. To compensate for the offset, we take the four near-

est neighbours into consideration (see Figure 4 (c)), rather

than the single nearest neighbour. In particular, we pick the
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(a) (b) (c)

Figure 4: Generating the ground-truth probability map

for each key point. (a) The key point (x, y) is a key point

in the image coordinates. (b) (xn, yn) is the nearest neigh-

bour of (xc, yc) which is re-scaled coordinate (x, y) to the

feature map resolution. (c) (x1
n, y

1
n), (x

2
n, y

2
n), (x

3
n, y

3
n), and

(x4
n, y

4
n) are the four nearest neighbours to (xc, yc).

four nearest neighbours (x1
n, y

1
n), (x

2
n, y

2
n), (x

3
n, y

3
n), and

(x4
n, y

4
n), and set scalar values t1, t2, t3, and t4 to them

representing the probability of being the considered as tar-

get. t1, t2, t3, and t4 are proportional to their distances

to (xc, yc), and
∑4

j=1 tj = 1. We then apply 2D Gaus-

sian smoothing on the four nearest neighbour probability

map obtained above. We found that such smoothing can

effectively enhance the performance. In this way, each key-

point location annotation is converted into a 2D probability

map. Next, we reshape the smoothed 2D probability map

into a (hc × wc)-vector for the key-point (x, y), followed

by L2 normalisation. For the source image I
s containing n

key-points, we can therefore construct its target as a matrix

Mgt ∈ R
n×(hc×wc) with each row being a probability vec-

tor of a ground truth matching key-point in the target image

I
t. Let Mgt and M be the ground truth and prediction. Note

that M can be obtained by flattening the first two and last

two dimentions of C̄ (after mutual nearest neighbour filter-

ing), and taking the same n rows corresponding to Mgt.

The loss function is then the Frobenius Norm between them

for both matching directions:

Lk = ‖Ms −M
s
gt‖F + ‖Mt −M

t
gt‖F , (6)

where M
s denotes target probability map from I

s to I
t and

M
t denotes inverse direction.

3.5. Enforcing one­to­one matching

The one-to-one mapping (i.e. one point can be only

matched to one other point) turns out to be a useful clue

for improve the matching accuracy in classic graph match-

ing (GM)[38, 14], which aims to match two given point sets

(graphs) in two images. Ideally, for our semantic correspon-

dence estimation task, the result should also agree with the

one-to-one mapping constraint. This is especially helpful

when there exist some repetitive patterns in the image (e.g.

a building with multiple identical windows). GM methods

always assume that the number of key-points in two images

are exactly the same. However, this is often not the case in

real applications. For example, due to pose variation, some

key-points may be visible in one image, but not in the other.

In this case, there exist one-to-none mappings in both im-

ages. A plausible one-to-one matching constraint should be

able to ignore the one-to-none matches in the data automat-

ically. To handle this problem, we introduce a novel loss,

named the orthogonal loss, as it was inspired by the non-

negative orthogonal GM algorithm [14]. The idea is that

when MM
⊤ is an identity matrix I, each row of M con-

tains only one element, and the rest are zero, so we include

a difference between MM
⊤ and I in the loss. However,

in reality, M may contain zero rows for one-to-none case.

Therefore, our orthogonal loss term can be defined as

Lo = ‖MM
⊤ −MgtM

⊤

gt‖F , (7)

where ‖.‖F is a the Frobenius norm. It is worth noting that

MgtM
⊤
gt has zeros on its diagonal that allows both one-

to-one and one-to-none matches to be accurately penalised.

The orthogonal loss has to be combined with Eq. 6 as it

has no impact over the prediction accuracy. It simply reg-

ularises the model by encouraging one-to-one predictions.

The overall loss of our model can be written as

L = Lk + αLm
o , (8)

where α is a weight balancing term, which is set to

0.001 in all our experiments, and Lm
o = ‖Ms

M
s⊤ −

M
s
gtM

s
gt

⊤‖F + ‖Mt
M

t⊤ −M
t
gtM

t
gt

⊤
‖F by considering

both matching directions.

4. Experimental results

4.1. Datasets and implementation details

Datasets. We evaluate our method on four public datasets,

namely, PF-PASCAL [8], Spair-71k [27], and CUB [37].

PF-PASCAL contains 1351 image pairs, which is approxi-

mately divided into 700 pairs for training 300 pairs for val-

idation and 300 pairs for testing [9, 32]. Spair-71k dataset

is much more challenging than the others as it contains both

large view point differences and scale differences. We use

the 12,234 pairs of testing pairs. Spair-71k is only used to

evaluate the transferrability of the models trained on the PF-

PASCAL training split. The CUB dataset contains 11,788

images of various species of birds with large variation of

appearance, shape and pose. We randomly sample about

10,000 pairs from the CUB training data and test using the

5,000 pairs selected by [19].

Implementation details. Our ANC-Net is implemented

in the PyTorch [29] framework. We experiment with

three convolutional networks as feature backbones, namely,

ResNet-50, ResNet-101 and ResNeXt-101. All of them are

pre-trained on ImageNet [23], and the parameters are fixed
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during the training of our ANC-Net. The size of the self-

similarity window is set to 5×5, and channels of ANC mod-

ule are set to {1, 16, 16, 1}. The model is initially trained

for 10 epochs using an Adam optimiser [18] with a learning

rate of 0.001 and applying Gaussian smoothing with a ker-

nel size of 5 for ground truth probability map generation.

The model is then fine-tuned for 5 epochs applying Gaus-

sian smoothing with a kernel size of 3 followed by another

5 epochs with a kernel size of 0. To compare with DCC-

Net [10], we implemented it based on the publicly available

official implementation of NC-Net [32]. Our implementa-

tion slightly surpassed the reported accuracy in [10]. We

also implemented UCNResNet-101 based on the publicly avail-

able official code [2].

Evaluation metric. Following common practice, we use

the percentage of correct key-points (PCK@α) as our eval-

uation metric. We report the results under PCK threshold

α = 0.1. α is set w.r.t. max(wr, hr) where wr and hr are

the width and height of either the image or the object bound-

ing box. Following existing works [9, 32, 21, 27], we use α

w.r.t. the image size on PF-PASCAL, and w.r.t. the object

bounding box on CUB and Spair-71k.

Table 1: Comparison with state-of-the-art methods.

Methods PF-PASCAL CUB Spair-71k

Identity mapping 37.0 14.6 3.7

UCNGoogLeNet [2] 55.6 48.3 15.1

UCNResNet-101 [2] 75.1 52.1 17.7

SCNetVGG-16 [9] 72.2 - -

WeakalignResNet-101 [31] 74.8 - 21.1

RTNetResNet-101 [16] 75.9 - -

NC-NetResNet-101 [32] 78.9 64.7 26.4

DCCNetResNet-101 [10] 82.6 66.1 26.7

SFNetResNet-101 [21] 81.9 - 26.0

HPFResNet-101 [27] 84.8 - 28.2

HPFResNet-101-FCN [27] 88.3 - -

ANCResNet-50 83.7 69.6 27.1

ANCResNet-101 86.1 72.4 28.7

ANCResNeXt-101 88.7 74.1 30.1

4.2. Benchmark comparisons

We compare our method with recent state-of-the-art

methods, and present our results in Table 1. For results

on PF-PASCAL and Spair-71k, all methods are trained on

PF-PASCAL. For results on CUB, the methods are trained

and tested on CUB. We used three different feature back-

bones, i.e. ResNet-50, ResNet-101, and ResNext-101 for

our method. When using an identical feature backbone

(ResNet-101) with other methods, our ANC-Net achieves

the best performance on all the datasets. For example,

we achieve 86.1% and 28.7% on PF-PASCAL and Spair-

71k respectively. Note that even with the ResNet-50 fea-

ture backbone, our model outperforms NC-Net and DCC-

Net with the more powerful ResNet-101 feature backbone

on all datasets. Further, when we replace our feature back-

bone with ResNext-101, the performance of our method can

be further boosted on all datasets (86.1% to 88.7% on PF-

PASCAL, 72.4% to 74.1% on CUB, and 28.7% to 30.1%
on Spair-71k). Our results are also better than the previous

best results achieved HPF with ResNet-101-FCN. The re-

sults clearly demonstrate the effectiveness of our approach.

Unbiased evaluation on FP-PASCAL. As discussed

in [21], there are 302 images in the training split overlap-

ping with either target or source images in the testing split.

In terms of images pairs, there are 95 target-to-source pairs

in the training split overlapping with the source-to-target

pairs in the testing split. Hence, we further conduct an unbi-

ased evaluation by excluding the 302 images and the 95 im-

age pairs respectively. The results are shown in Table 2. Our

method consistently outperforms NC-Net and DCCNet.

Table 2: Unbiased evaluation on PF-PASCAL.

Methods Original w/o 95 w/o 302

NC-NetResNet-101 [32] 78.9 78.8 80.3

DCCNetResNet-101 [10] 82.6 78.7 75.7

ANC-NetResNet-101 86.1 84.2 84.5

4.3. Ablation study

In the ablation experiments, we analyse the effectiveness

of all the proposed modules of ANC-Net on PF-PASCAL,

with ResNet-101 as the feature backbone. We experi-

ment on four variants of our ANC-Net, namely, ANC-Net

(our model with all components), ANC-Net w/o ANC (our

model without ANC, i.e. replacing our non-isotropic 4D

kernels with the isotropic counterparts), ANC-Net w/o MS

(our model with out the multi-scale self-similarity), and

ANC-Net w/o Orth (our model trained without orthogonal

loss). We also evaluate the three ANC module candidates,

denoted as, ANCb, ANCc and ANCd in Figure 3. We also

compare with NC-Net and DCCNet. For a fair comparison

with them, we also retrain them with the same sparse anno-

tations. The retrained NC-Net is the plain baseline of our

method, and the retrained DCCNet can be compared with

ANC-Net w/o ANC module for evaluating our multi-scale

self-similarity module against the self-similarity module of

DCCNet. The results are reported in Table 3. As can be

seen, when we remove each of our proposed modules, the

performance drops, showing that all our proposed modules

are effective. However, ANC-Net and all its variants per-

form consistently better than the retrained NC-Net and DC-

CNet as well as the original NC-Net and DCCNet. Among

the three ANC architectures in Figure 3, ANCd performs

better than the other two by a noticeable margin. This might

be explained by the fact that ANCd contains more flexible
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feature combination paths to deal with objects having more

severe scale variations.

Table 3: Ablation study experimental results.

Method PCK@0.1

NC-Net [32] (original/retrain) 78.9/81.9

DCCNet [10] (original/retrain) 82.6/83.7

ANC-Net w/o ANC 84.1

ANC-Net w/o MS 84.3

ANC-Net w/o Orth 85.9

ANC-Net w/ ANCb 82.7

ANC-Net w/ ANCc 83.8

ANC-Net w/ ANCd 86.1

4.4. Qualitative evaluations

Source DCCNetNC-Net ANC-Net

Figure 5: Predicted correspondence and correlation map

for a query key-point. The first column shows the source

images with a query key-point marked with cyan cross.

The remaining columns show the correlation maps super-

imposed with the target image. The red and cyan crosses

represent the prediction and the ground truth respectively.

ANC-Net predicts single-peak correlation maps, avoiding

catastrophic failure between distant, but ambiguous key-

points, such as the legs of the dog in the first row. Best

viewed in electronic form.

We show two sets of qualitative experiments. The first

set of qualitative experiments is shown in Figure 5. It in-

cludes examples of key-points with some degree of am-

biguity, such as the limbs of an animal or a table. With

both NC-Net and DCCNet, it can be seen that there are of-

ten multiple peaks in the correlation maps. In some cases,

this can lead to failures where, although the key-points look

alike, they are far from the true correspondence. In contrast,

ANC-Net tends to produce correlation maps with a single

dominant peak. This drastically reduces the occurrence of

these failures due to the ambiguous nature of a key-point.

Source DCCNetNC-Net ANC-NetTarget

Figure 6: Dense correspondence prediction. Given the

correlation map predicted by the model, we compute a

dense flow field to warp the source image to the target im-

age. ANC-Net can capture the scale of the objects better

than other methods. Best viewed in electronic form.

We qualitatively evaluate the dense correspondence predic-

tion of ANC-Net in Figure 6. From a correlation map pre-

dicted by the network, we compute a dense flow field, which

maps pixel locations from the source to the target image. In

general, ANC-Net and NC-Net preserve more details in the

warping than DCCNet, and ANC-Net is able to capture the

scale of the target more accurately.

5. Conclusion

In this paper, we have proposed a convolutional neu-

ral network, called ANC-Net, for dense semantic match-

ing. ANC-Net takes a pair of images depicting different ob-

jects from the same category as input, and produces a dense

4D correlation map containing all the pair-wise matches

in the feature space. Pixel-wise semantic correspondences

can then be extracted from the 4D correlation map. ANC-

Net can be trained end-to-end with sparse key-point anno-

tations. At the core of ANC-Net is our proposed 4D non-

isotropic convolution kernels, which incorporates an adap-

tive neighbourhood consensus constraint for robust match-

ing, and our proposed multi-scale self-similarity module,

which aggregates multiple self-similarity features that are

insensitive to intra-class appearance variation. We also pro-

posed a novel loss, called orthogonal loss, that can en-

force a one-to-one matching constraint, encouraging plau-

sible matching results. We have thoroughly evaluated the

effectiveness of our method on various benchmarks, and it

substantially outperforms state-of-the-art methods.

Acknowledgements. We gratefully acknowledge the sup-

port of the European Commission Project Multiple-actOrs

Virtual EmpathicCARegiver for the Elder (MoveCare) and

the EPSRC Programme Grant Seebibyte EP/M013774/1.

10203



References

[1] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M Seitz,

and Richard Szeliski. Building Rome in a day. In Proceed-

ings of Intl. Conf. on Computer Vision (ICCV), pages 72–79,

2009. 1

[2] Christopher B Choy and Silvio Savarese. Universal Corre-

spondence Network. In NIPS, pages 1–9, 2016. 1, 2, 5, 7

[3] Navneet Dalal and Bill Triggs. Histograms of oriented gradi-

ents for human detection. In Proceedings of IEEE Intl. Conf.

on Computer Vision and Pattern Recognition (CVPR), 2005.

1, 2

[4] Olivier Duchenne, Armand Joulin, and Jean Ponce. A graph-

matching kernel for object categorization. In Proceedings of

Intl. Conf. on Computer Vision (ICCV), 2011. 1

[5] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip

Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. In Proceedings

of IEEE Intl. Conf. on Computer Vision and Pattern Recog-

nition (CVPR), 2015. 3

[6] Yoav HaCohen, Eli Shechtman, Dan B. Goldman, and Dani

Lischinski. Non-rigid dense correspondence with applica-

tions for image enhancement. In Proceedings of ACM Spe-

cial Interest Group on GRAPHICS (SIGGRAPH), 2011. 1

[7] Bumsub Ham, Minsu Cho, Cordelia Schmid, and Jean

Ponce. Proposal flow. In Proceedings of IEEE Intl. Conf.

on Computer Vision and Pattern Recognition (CVPR), 2016.

2

[8] Bumsub Ham, Minsu Cho, Cordelia Schmid, and Jean

Ponce. Proposal flow: Semantic correspondences from ob-

ject proposals. In IEEE Trans. Pattern Anal. Machine Intell.

(PAMI), 2018. 2, 5, 6

[9] Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K.

Wong, Minsu Cho, Cordelia Schmid, and Jean Ponce. Scnet:

Learning semantic correspondence. In Proceedings of Intl.

Conf. on Computer Vision (ICCV), 2017. 1, 2, 6, 7

[10] Shuaiyi Huang, Qiuyue Wang, Songyang Zhang, Shipeng

Yan, and Xuming He. Dynamic Context Correspondence

Network for Semantic Alignment. In Proceedings of Intl.

Conf. on Computer Vision (ICCV), 2019. 1, 2, 3, 4, 5, 7, 8

[11] Junhwa Hur, Hwasup Lim, Changsoo Park, and Sang Chul

Ahn. Generalized deformable spatial pyramid: Geometry-

preserving dense correspondence estimation. In Proceedings

of IEEE Intl. Conf. on Computer Vision and Pattern Recog-

nition (CVPR), 2015. 2

[12] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. In Pro-

ceedings of IEEE Intl. Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017. 3

[13] Sangryul Jeon, Seungryong Kim, Dongbo Min, and

Kwanghoon Sohn. Parn: Pyramidal affine regression net-

works for dense semantic correspondence. In Proceedings

of the European Conference on Computer Vision (ECCV),

2018. 3

[14] Bo Jiang, Jin Tang, Chris Ding, and Bin Luo. Nonnegative

Orthogonal Graph Matching. In Proceedings of AAAI Con-

ference on Artificial Intelligience(AAAI), pages 4089–4095,

2017. 6

[15] Jaechul Kim, Ce Liu, Fei Sha, and Kristen Grauman. De-

formable spatial pyramid matching for fast dense correspon-

dences. In Proceedings of the 2013 IEEE Conference on

Computer Vision and Pattern Recognition, Proceedings of

IEEE Intl. Conf. on Computer Vision and Pattern Recogni-

tion (CVPR), 2013. 2

[16] Seungryong Kim, Stephen Lin, Sangryul Jeon, Dongbo Min,

and Kwanghoon Sohn. Recurrent transformer networks for

semantic correspondence. In Proceedings of the 32nd Inter-

national Conference on Neural Information Processing Sys-

tems, pages 6129–6139. Curran Associates Inc., 2018. 3, 7

[17] Seungryong Kim, Dongbo Min, Bumsub Ham, Sangryul

Jeon, Stephen Lin, and Kwanghoon Sohn. Fcss: Fully con-

volutional self-similarity for dense semantic correspondence.

In Proceedings of IEEE Intl. Conf. on Computer Vision and

Pattern Recognition (CVPR), 2017. 1, 3, 4

[18] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method

for Stochastic Optimization. In Proceedings of Intl. Conf. on

Learning Representations (ICLR), 2015. 7

[19] Jonathan Krause, Hailin Jin, Jianchao Yang, and Fei Fei Li.

Fine-grained recognition without part annotations. In Pro-

ceedings of IEEE Intl. Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 5546–5555, 2015. 6

[20] Zihang Lai and Weidi Xie. Self-supervised Learning for

Video Correspondence Flow. In Proceedings of British Ma-

chine Vision Conference (BMVC), 2019. 3

[21] Junghyup Lee, Dohyung Kim, Wonkyung Lee, Jean Ponce,

and Bumsub Ham. Learning semantic correspondence ex-

ploiting an object-level prior. arXiv:1911.12914, 2019. 7

[22] Junghyup Lee, Dohyung Kim, Jean Ponce, and Bumsub

Ham. Sfnet: Learning object-aware semantic flow. In Pro-

ceedings of IEEE Intl. Conf. on Computer Vision and Pattern

Recognition (CVPR), 2019. 3, 5

[23] Li-Jia Li, Kai Li, Fei Fei Li, Jia Deng, Wei Dong, Richard

Socher, and Li Fei-Fei. ImageNet: a Large-Scale Hier-

archical Image Database Shrimp Project View project hy-

brid intrusion detction systems View project ImageNet: A

Large-Scale Hierarchical Image Database. In Proceedings

of IEEE Intl. Conf. on Computer Vision and Pattern Recog-

nition (CVPR), pages 248–255, 2009. 6

[24] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense

correspondence across scenes and its applications. IEEE

Trans. Pattern Anal. Machine Intell. (PAMI), 33(5):978–994,

2011. 1, 2

[25] Jonathan L Long, Ning Zhang, and Trevor Darrell. Do con-

vnets learn correspondence? In Proceedings of IEEE Conf.

on Neural Information Processing Systems-Natural and Syn-

thetic (NIPS), 2014. 2

[26] David G. Lowe. Distinctive image features from scale-

invariant keypoints. Intl. Journal of Computer Vision (IJCV),

2004. 1, 2

[27] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.

Hyperpixel flow: Semantic correspondence with multi-layer

neural features. In Proceedings of Intl. Conf. on Computer

Vision (ICCV), 2019. 1, 3, 5, 6, 7

10204
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