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Abstract

Our goal is to capture the pose of real animals us-

ing synthetic training examples, without using any man-

ual supervision. Our focus is on neuroscience model or-

ganisms, to be able to study how neural circuits orches-

trate behaviour. Human pose estimation attains remark-

able accuracy when trained on real or simulated datasets

consisting of millions of frames. However, for many appli-

cations simulated models are unrealistic and real training

datasets with comprehensive annotations do not exist. We

address this problem with a new sim2real domain trans-

fer method. Our key contribution is the explicit and inde-

pendent modelling of appearance, shape and pose in an

unpaired image translation framework. Our model lets us

train a pose estimator on the target domain by transferring

readily available body keypoint locations from the source

domain to generated target images. We compare our ap-

proach with existing domain transfer methods and demon-

strate improved pose estimation accuracy on Drosophila

melanogaster (fruit fly), Caenorhabditis elegans (worm)

and Danio rerio (zebrafish), without requiring any manual

annotation on the target domain and despite using simplis-

tic off-the-shelf animal characters for simulation, or simple

geometric shapes as models. Our new datasets, code and

trained models will be published to support future computer

vision and neuroscientific studies.

1. Introduction

Deep learning-based pose estimation on images has

evolved into a practical tool for a wide range of applications,

as long as sufficiently large training databases are available.

However, in very specialized domains there are rarely large

annotation databases. For example, neuroscientists need

to accurately capture the poses of all the appendages of
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Figure 1. Approach. Our most morphologically complex exam-

ple is the six-legged Drosophila: a) We transfer synthetic images

and their keypoint annotations to realistically looking images us-

ing only unpaired examples of the two domains. b) Our method

enables training of a pose detector that c) can be applied to real

images for neuroscientific studies.

fruit flies, as pose dynamics are crucial for drawing infer-

ences about how neural populations coordinate animal be-

havior. Publicly available databases for such studies are rare

and current annotation techniques available to create such a

database are tedious and time consuming, even when semi-

automated. Given the existence of motion simulators, an ap-

parently simple workaround would be to synthesize images

of flies in various poses and use these synthetic images for

training purposes. Although image generation algorithms

can now generate very convincing deepfakes, existing im-

age translation algorithms do not preserve pose geometri-

cally when the gap between a synthetic source and a real

target is large. This is critical to our application, as creating

matching high-fidelity images would be time consuming.

In this paper, we introduce a novel approach to generate

realistic images of different kinds of laboratory animals—

flies, fish, and worms–from synthetic renderings for which

labels such as keypoint annotations are readily available.
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Figure 2. Domain examples with large discrepancy in appear-

ance, shape and pose. Translating from rendering to real im-

ages requires bridging the domain gap without having pixel nor

pose correspondences. It is particularly challenging in our setting,

as even the realistic fly character shows significant differences in

shape (body and limb width) as well as pose (legs stretched).

Figure 3. Generalization to humans. Our method also applies to

human pose transfer undergoing large shape changes.

The generated realistic images can then be used to train

a deep network that operates on real images, as shown in

Fig. 1. The challenge is to condition the generated images

in such a way that the keypoints (e.g. skeleton joint posi-

tions) in the simulated source transfer to the realistic target;

despite large differences in shape and pose as well as for

small training sets that are practical, see Fig. 2.

We model the change of 2D pose and shape in terms of

a deformation field. This field is then paired with an image-

to-image translator that synthesizes appearance while pre-

serving geometry, as shown in Fig. 4. Our approach is in-

spired by earlier approaches modeling human faces [59] and

brain scans [6]. We go beyond these studies in two impor-

tant ways. First, we introduce silhouettes as an interme-

diate representation that facilitates independent constraints

(loss terms) on shape and appearance. It stabilizes training

to succeed without reference images and helps to separate

explicit geometric deformation from appearance changes.

Furthermore, end-to-end training on unpaired examples is

enabled with two discriminators and a straight-through es-

timator for non-differentiable thresholding operation and

patch-wise processing. Second, to cope with large-scale

as well as small-scale shape discrepancies, we introduce a

hierarchical deformation model to separate global scaling,

translation, and rotation from local deformation.

We test our method on flies (Drosophila melanogaster),

worms (Caenorhabditis elegans) and larval zebrafish

(Danio rerio), see Fig. 2, and compare it against state-of-

the-art approaches that rely either on circularity constraint

or hand-defined factorizations of style and content. We also

show the advantage over classical domain adaptation [47],

which can not cope with large geometric differences. Not

only does our method generate more realistic images, but

more importantly, when we use the images it generates to

train pose estimators we get more accurate results. Nothing

in our approach is specific to the animals we worked with

and that could also be applied just as well to limbed verte-

brates, including rodents and primates, as shown in Fig. 3

for person to person transfer with large shape differences.

Our code and fly dataset is available on github.

2. Related Work

We present a method for spatially consistent image do-

main adaptation and pose estimation. In the following sec-

tions, we discuss recent advances towards this goal.

Pose Estimation. Deep learning based human pose esti-

mation methods have recently made great progress. This

is especially true for capturing human movements for

which there is enough annotated data to train deep net-

works [49, 16, 25, 43, 27, 1]. A large corpus of the liter-

ature focuses on prediction of 2D key points from images

directly [31, 53, 46, 15, 55, 54]. There is also a wide lit-

erature on capturing 3D pose directly from images, or as a

function of 2D keypoints instead [35, 29, 39, 32, 61, 44, 33].

Weakly [60] and semi-supervised algorithms [50] can fur-

ther improve the performance of motion capture systems,

for example by using multi-view constraints [38, 56].

Approaches designed primarily for human pose have re-

cently been transferred to study large animals, like chee-

tahs and lab mice [30]. [63] uses a model based algorithm,

trains on synthetic renderings, and refines on real zebra pho-

tographs. However, their quadruped body model does not

translate to animals with a different number of legs and the

suggested direct training on synthetic images for initializa-

tion did not succeed in our experiments, likely because re-

alistic models are not available for our cases.

For pose estimation in Drosophila, DeepLabCut

provides a user-friendly interface to DeeperCut [30],

LEAP [34] tracks limb and appendage landmarks, and

DeepFly3D leverages multiple views to capture 3D pose

[13]. Nevertheless, all these methods require large amounts

of manual labels, which are not available for many animals

and cannot be reused when recording the same species in

different environments and illumination conditions.

Paired Image-to-Image Translation. Supervised image-

to-image translation methods aim to translate images across

domains (e.g., day-to-night, summer-to-winter, photo-to-

painting), often using adversarial methods [17] to learn a

mapping from input to output images. More recent studies
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Figure 4. Overview of our deformation-based image translation method. Our model has two steps. In the first step, the deformation

from source domain A to target domain B is estimated for input image IA and it’s silhouette SA via network GS and a Spatial Transformer

Network (STN). Their output is an explicit deformation field parameterized by the global, affine transformation θ and a local, non-linear

warping φ, using a spatial integral layer (SIL).Then, the deformed silhouette is transformed into the full output image Î
B with image

generator GI . Discriminators DS and DI enable unpaired training. DS uses the Straight Through Estimator (STE) for backpropagation.

have aimed to translate edges to images [41] and cascaded

networks are used to condition on semantic label maps [5].

However, in our setting, no paired examples are available.

Style Transfer. Style transfer is an image-to-image trans-

lation method that works on unpaired examples, aiming to

transfer the input style while preserving the geometry of

the target image [11, 20, 9, 48]. Initial deep learning ap-

proaches optimized an image with respect to the Gram ma-

trix statistics of deep features of the target image [10, 11].

More recent studies tested other architectures and loss func-

tions [24] and use a contextual loss to transfer the style at the

semantic level [28, 19]. Our work differs from style transfer

as we support significant changes in pose and shape.

Unsupervised Image Domain Translation. Another line

of work trains neural networks on unpaired examples for

domain translation, including sim2real mappings. Early

approaches used weight-sharing [26, 62] and sharing of

specific content features [4, 42]. The cycle consistency

in Cycle-GAN, which assumes bijective mapping between

two domains, can map from zebra to horse [62, 23, 14],

but bridging large deformations across domains, such as

for going from cat to dog and even more in our case (see

Fig. 2), requires alternative network architectures [12] or in-

termediate keypoint representations [52]; However, none of

the methods discussed above establish a fine-grained, dense

spatial correspondence between source and target, which

prevents accurate transfer of desired keypoint locations.

Deformation networks. Explicit deformation has been

used in diverse contexts. The spatial transformer network

(STN) made affine and non-parametric spatial deforma-

tions popular as a differentiable network layer [18]. These

approaches have been used to zoom in on salient objects

[37], disentangle shape and appearance variations in an im-

age collection [59], and register (brain scan) images to a

common, learned template image [6, 2, 22, 40]. [8] in-

troduced global transformation into the Cycle-GAN frame-

work. While similar in spirit, additional advances beyond

these approaches are still required to model deformations

faithfully on our unpaired translation task.

3. Method

Our goal is to translate pose annotations and images from

a synthetic domain A to a target domain B for which only

unpaired images {IAi }
N
i=1

and {IBi }
K
i=1

exist. In our ap-

plication scenario, the target examples are frames of video

recordings of a living animal and the source domain are sim-

ple drawings or computer graphics renderings of a character

animated with random deformations of the limbs. Both do-

mains depict images of the same species, but in different

pose, shape, and appearance.

Fig. 4 summarizes our approach. To tackle the problem

of translating between domains while preserving pose cor-

respondence, we separately transfer spatially varying shape

changes via explicit deformation of the source images via
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an intermediate silhouette representation Ŝ
B (Section 3.1).

Subsequently, we locally map from silhouette to real ap-

pearance (Section 3.2). The final goal is to train a pose esti-

mator on realistic images from synthetic examples (Section

3.3). Our challenge then becomes to train neural networks

for each, without requiring any paired examples or keypoint

annotation on the target domain. To this end, we set up ad-

versarial networks that discriminate differences with respect

to the target domain statistics. Learning of the image trans-

lation is performed jointly on the objective

L = LI + LS +RD, (1)

where LI and LS are the adversarial losses on generated

segmentation and image, and RD is a regularizer on the de-

formation grid. Besides images I, our method operates on

segmentation masks S of the same resolution. The domain

origin is denoted with superscripts—I
A, and the domain tar-

get (real images) is denoted I
B . We use several generator

and discriminator networks, which we denote G and D, re-

spectively, with subscripts differentiating the type—GI . We

explain each step in the following section.

3.1. Spatial Deformation

Our experiments showed that using a single, large dis-

criminator, as done by existing techniques, leads to overfit-

ting and forces the generator to hallucinate, due to the lim-

ited and unrealistic pose variability of the simulated source.

We model shape explicitly through the intermediate silhou-

ette representation and its changes with a per-pixel deforma-

tion field, as shown in Fig. 5. The silhouette lets us setup in-

dependent discriminators with varying receptive field; large

for capturing global shape and small to fill-in texture. More-

over, the deformation field enables the desired pose transfer

while bridging large shape discrepancies.

The first stage is a generator that takes a synthetic image

I
A and mask S

A as input, and outputs a deformed segmen-

tation mask Ŝ
B that is similar to the shapes in B. To model

global deformation, we use a spatial transformer network

(STN) [18] that takes the synthetic image I
A ∈ R

C,H,W as

input, and outputs an affine matrix θ ∈ R
3,4, which mod-

els global scaling, translation and rotation differences be-

tween the source and target domains. It is trained jointly

with a fully-convolutional generator network, GS , which

takes the globally transformed image as input and outputs

φ ∈ R
2,H,W , a per-pixel vector field that models fine-

grained differences in pose and shape. The vector at pixel

location x in φ points to the pixel in the source domain

that corresponds to x. Overlaying the source pixels of se-

lected rows and columns of φ leads to the deformed grid

visualized in Fig. 5. This hierarchical representation allows

us to cope with varying degrees of discrepancies between

the two domains. We refer to the combined application of

these two networks as φ ⊗ θ ⊗ S
A, where θ = STN(IA),

c)

a) b)

Deformation field

on source keypoints

Deformed 

keypoint locations

Deformed

segmentation mask

Annotated 

target image

Generated 

target image
Deformation field

on source image

Figure 5. Explicit deformation ensures transfer of keypoints.

The deformation field is inferred as part of a) source image seg-

mentation to target image segmentation transfer (including global,

affine transformation) and b) segmentation to target image trans-

lation. c) The same deformation field is applied to transfer known

keypoints from source to target.

φ = GS(θ ⊗ I
A), and ⊗ denotes the transformation by

global and local deformation.

Training the STN and GS requires silhouettes in A and

B. Silhouettes SA in the source domain are trivially obtain-

able from synthetic characters by rendering them on a black

background. It is relatively easy to estimate S
B on a static

background for the target domain as datasets are obtained in

controlled lab environments. We will later demonstrate that

our model is robust to remaining errors in segmentation.

The difficulty of our task is that all domain examples are

unpaired, hence, a constraint can only be set up in the dis-

tributional sense. Thus, we train a shape discriminator DS

alongside GS and STN and train them alternately to mini-

mize and maximize the adversarial loss

LS = LGAN (GS, DS,S
A,SB) (2)

= ESB [logDS(S
B)] + ESA [log(1−DS(φ⊗ θ ⊗ S

A))],

where the expectation is built across the training set of A
and B. The adversarial loss is paired with the regularizer

RD = α(‖▽φx(A)‖
2
+ ‖▽φy(A))‖

2
) + β ‖φ(A)‖ , (3)

to encourage smoothness by penalizing deformation mag-

nitude and the gradients of the deformation field, as in [59].

The inputs of the discriminator are binary masks from

source domain A and target domain B. However, the de-

formed masks are no longer binary on the boundary be-

cause of the interpolation required for differentiation. Thus,

it would be trivial for DS to discriminate against the real

and synthesized masks based on non-binary values. To

overcome this issue, we threshold to get a binary mask.

Although the threshold operation is not differentiable, we

can still estimate the gradients with respect to GS using
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a straight through estimator (STE) [58], which treats the

threshold as the identity function during backpropagation,

and therefore passes the gradients on to the previous layer.

Implementation details. Directly outputting a vector

field leads to foldovers that make the training unstable. In-

stead, we parameterize it as the gradient of the deforma-

tion field φ, and enforce positivity to prevent foldovers as in

[59]. φ can be recovered by summing the gradients across

the image. The deformation from A to B is implemented

with a spatial transformer layer (STL) that infers the value

of deformed pixel locations by bilinear interpolation [18]

and is differentiable. In contrast to [59], we use a fully con-

volutional network to learn the local deformation field. The

GS network consists of 3 Resnet blocks between downsam-

pling/upsampling layers. The receptive field of the network

is 64 pixels, 1/2 of the image.

The STN network consists of 5 convolutional layers and

a fully connected stub to output θ that is preceded by max-

pooling and SELU units (this yielded better results in pre-

liminary experiments, compared to ReLU activations).

3.2. Appearance Transfer

Once the shape discrepancies between the two domains

have been estimated by φ, θ, we then generate the appear-

ance of the target domain on the deformed silhouettes ŜB =
φ ⊗ θ ⊗ S

A. We deploy a generator GI that is configured

to preserve the source shape, only filling in texture details.

The input is ŜB and the output is a realistic image Î
B that

matches the appearance of the target domain. We use a dis-

criminator DI for training, as synthetic and real images are

unpaired. In addition, our choice of using the silhouette as

an intermediate representation allows us to introduce a su-

pervised loss on silhouette SIB , computed from real images

I
B using background subtraction. The training objective is

LI = λLGAN (GI , DI , I
A, IB) +

∥

∥GI(SIB )− I
B
∥

∥ , (4)

where the GAN loss is defined as before and the second part

is the supervised loss which stabilizes training.

Training the supervised loss in isolation without end-to-

end training with the adversarial losses leads to artifacts

since neither the synthesized nor silhouettes from real im-

ages are perfect, see Fig. 6.

The pose distribution of the simulated character can dif-

fer even after local and global deformation as some pose

differences cannot be explained by an image deformation.

For instance, the occlusion effects of crossing legs on

Drosophila cannot be undone as a 2D image transforma-

tion. A discriminator with a large receptive field could de-

tect these differences and re-position legs at locations with-

out correspondence in the source. To counteract this issue,

we make sure DI has a small receptive field. This is possi-

ble without suffering from texture artifacts since the global

w/o adversarialInput segmentation Ours (with )

Figure 6. Texture discriminator influence. Without the adversar-

ial discriminator, the image generator is disturbed by an irregular

silhouette boundary. In our model, the adversarial DI creates a

link to the deformed silhouettes ŜB enabling end-to-end training.

shape deformation is already compensated by GS and the

texture can be filled in locally.

Implementation details. We use a 7-layer U-Net gener-

ator as our backbone network for image translation with

GI . The skip connections in the U-Net help the network

preserve the spatial information. For DI , we use a patch-

wise discriminator, consisting of three 4x4 convolutional

layers; the first one with stride two and the second one with

instance normalization. All activation functions are leaky

ReLU. The small receptive field of the patch discriminator

additionally helps to maintain the spatial structure of the

object and was sufficient in our experiment to reproduce the

real appearances faithfully.

3.3. Pose Estimation

We use the stacked hourglass network architecture

for pose estimation [31]. Stacked hourglass is a fully-

convolutional network with several bottlenecks that takes

an image I and outputs a heatmap H of the same aspect ra-

tio but at four times lower resolution due to pooling at the

initial layers. The heatmaps H are a stack of 2D probability

maps with Gaussian distribution, where the maximum value

of each channel in the stack indicates one specific joint lo-

cation. Because our source images are synthesized from 3D

character models, we can use the virtual camera matrix to

project 3D keypoints, such as the knee joint, onto the image.

To obtain annotations in the target domain, we conve-

niently use the image deformation operation Ĥ
B = φ⊗θ⊗

H
A to compute the deformed heatmap Ĥ

B that matches to

the synthesized target domain image ÎB = GI(φ⊗θ⊗ I
A),

with φ coming from GS and θ from the STN. Note, this is

only possible due to the explicit handling of deformations.

Having synthesized realistic examples of the target do-

main and transferred ground truth heatmaps, it remains to

train the pose estimation network in a supervised manner.

We use the L2 loss between the predicted and ground truth

heatmaps. At test time, we estimate the corresponding joint

location as the argmax of the predicted heatmap, as usual
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in the pose estimation literature. Implementation details are

given in the supplemental document.

4. Evaluation

In this section, we qualitatively compare our results to

canonical baselines and variants of our algorithm, in order

to highlight advantages and remaining shortcomings both

visually and quantitatively. This includes the task of 2D

keypoint localization on the target domain. We test our ap-

proach on different neuroscience model organisms in order

to demonstrate varying complexity levels of deformation

and generality to different conditions. Additional qualita-

tive results and comparisons are given in the supplemental

document.

All input and output images are of dimension (128, 128).
We operate on gray-scale images, i.e. channel dimension

C = 1, obtained from infrared cameras, which are com-

monly used in neuroscience experiments in order to avoid

inadvertent visual stimulation. Nevertheless, our method

extends naturally to color images.

Datasets. We test on available zebrafish and worm image

datasets, by [21] and [57, 45], using 500 and 1000 real im-

ages for unpaired training. To quantify pose estimation ac-

curacy, we manually annotate a test set of 200 frames with

three keypoints (tail and eyes) for the zebrafish and two

points (head and tail) for the worm. In these datasets, the

background is monochrome and is removed by color key-

ing to obtain the foreground masks. Because of the sim-

plicity of these models, we use a simple, static stick figure

as a source image that is augmented by uniformly random

rotation and translation. Fig. 7 gives example images.

For human examples in Fig. 3, we use two walking se-

quences from endlessreference.com of a slim and ample

man with length 250 and 137 frames, respectively, to train

our unpaired image translation model.

Our most challenging test case is the Drosophila fly. We

use the subset of the dataset published alongside [13], which

contains transitions between different speeds of walking,

grooming and standing captured from a side view and in-

cludes annotations for five keypoints for each of the fully-

visible legs (four joints and tarsus tip). In this dataset, the

fly is tethered to a metal stage of a microscope and the body

remains stationary, yet the fly can walk on a freely rotat-

ing ball (spherical treadmill), see Fig. 7. To get the target

domain segmentation masks, we first crop out the ball and

background clutter with a single coarse segmentation mask.

This mask is applied to all images due to the static cam-

era setup. The body, including the legs, is then segmented

by color keying on the remaining black background. Please

note, that at test time, no manual segmentation is used. We

use 815 real images for unpaired training and 200 manually

annotated images for testing. On the source side, we render
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Figure 7. Qualitative comparison. Existing unpaired image

translation methods can generate realistic images on worm and

fish, but exhibit artifacts for the thin legs of the Drosophila and

zebrafish examples. Ours succeeds on all three classes.

1500 synthetic images using an off-the-shelf Maya model

from turbosquid.com. The source motion is a single robotic

walk cycle from [36] which we augment by adding random

Gaussian noise to the character control handles. This in-

creases diversity but may lead to unrealistic poses that our

deformation network helps to correct.

Metrics. The pose estimation accuracy is estimated as

the root mean squared error (RMSE) of predicted and

ground truth 2D location and percentage of correct key-

points (PCK), the ratio of predicted keypoints below a set

threshold. We report results for thresholds ranging from 2

to 45 pixels. We also provide accumulated error histograms

and the average PCK difference as the area under the curve

(AUC) of the error histogram, to analyze the consistency of

the improvements.

In many cases, it is impossible, even for a human, to

uniquely identify the leg identity for Drosophila. As in

[13], we therefore only evaluate the three entirely visible

legs. Moreover, we find at test time the optimal leg assign-

ment across the three legs and refer to these permutation

invariant (PI) metrics PI-RMSE, PI-PCK, and PI-AUC. Be-

cause the worm is tail-head symmetric, we compute errors

for front-to-back and back-to-front ordering of joints and

return the minimum. The pose estimation task lets us quan-

tify the made improvements, both due to more realistically

generated images (image quality), as well as the preserva-

tion of correspondences (geometric accuracy) since the lack

of one would already lead to poor pose estimation.

To independently quantify the image quality, we use the

structural similarity (SSIM) index [51]. We measure the

similarity between all generated images ÎB (for every I
A in

A) with a pseudo-randomly sampled reference image I
B .
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Task D.M. C.E. D.E.

Fast-Style-Transfer 0.3932 0.0539 0.6385

Cycle-GAN 0.6543 0.9034 0.8504

Gc-GAN 0.6392 0.8915 0.8586

Ours 0.6746 0.9076 0.8771

Table 1. Structured similarity (SSIM) comparison. The explicit

modeling of deformation outperforms baselines, particularly on

the complex Drosophila images showing complex poses.

Baselines. We compare to Fast-Style-Transfer [7], which

combines [10, 20, 48], Cycle-GAN [62] and Gc-GAN [8].

With the latter being a state-of-the-art method for image to

image translation and the former used to validate that sim-

pler solutions do not succeed.

We compare pose estimation with the same architecture,

trained directly on the synthetic images, images generated

by the above mentioned methods, and on manual annota-

tions of real training images (185 for Drosophila, 100 for

worm, and 100 for fish). To also compare to domain adapta-

tion methods, we adopt the pipeline of ADDA [47] for pose

estimation. The original ADDA [47] transfers domains in a

vector feature space. Instead, we use the hourglass network

for feature extraction, replacing the vector space into spatial

feature maps which preserves the spatial pose information.

The supplemental document provides additional details.

4.1. Quality of Unpaired Image Translation

The quality of Cycle and Gc-GAN is comparable to ours

on the simple worm and fish domains, as reflected visually

in Fig. 7 and quantitatively in terms of SSIM in Table 1.

For Drosophila, our method improves image quality (0.67

vs. 0.39, 0.63 and 0.65). Albeit the core of explicit de-

formation was to transfer pose annotations across domains,

this analysis shows that an explicit mapping and incorpo-

ration of silhouettes regularizes and leads to improved re-

sults. For instance, it ensures that thin legs of the fly are

completely reconstructed and that exactly six legs are syn-

thesized, while Cycle-GAN and Gc-GAN hallucinate addi-

tional partial limbs.

4.2. Pose Domain Transformation

Fig. 8 shows that our method faithfully transfers 2D key-

points, obtained for free on synthetic characters, to the tar-

get domain. The transferred head and tail keypoints on the

worm and fish correspond precisely to the respective loca-

tions in the synthesized images, despite having a different

position and constellation in the source. This transfer works

equally well for the more complex Drosophila case. Only

occasional failures happen, such as when a leg is behind or

in front of the torso, rendering it invisible in the silhouette.

Moreover, the eyes of the fish are not well represented in the

silhouette and therefore sometimes missed by our silhouette

deformation approach.
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Figure 8. Automatic Pose Annotation. Our method faithfully

transfers poses across domains, while Cycle-GAN, the best per-

forming baseline, loses correspondence on all three datasets.
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Figure 9. Pose estimation accuracy. The accumulated error

curves show the accuracy (vertical axis) for different PCK thresh-

olds (horizontal axis). Our method clearly outperforms the base-

lines and approaches the manually supervised reference.

Drosophila Melanogaster

Metric
PI-PCK ↑
(5 pix)

PI-PCK ↑
(15 pix)

PI-AUC ↑
(4-45 pix)

PI-RMSE ↓
(pix)

Synthetic 19.8 67.9 75.75 13.456

Fast-Style-Transfer 15.4 57.6 68.9 17.309

Gc-GAN 11.9 68.7 76.3 13.175

Cycle-GAN 15.0 72.9 78.4 12.302

Ours 40.0 84.7 86.0 8.823

Supervised 72.2 88.8 90.35 6.507

Table 2. Pose estimation accuracy comparison on Drosophila

Melanogaster. A similar improvement as for Drosophila is at-

tained on the other tested laboratory animals, with a particularly

big improvements on the zebrafish.

By contrast, existing solutions capture the shape shift be-

tween the two domains, but only implicitly, thereby loosing

the correspondence. Poses that are transferred one-to-one

from the source do no longer match with the keypoint lo-

cation in the image. Keypoints are shifted outside of the

body, see last column of Fig. 8. The style transfer maintains

the pose of the source, however, an appearance domain mis-

match remains. We show in the next section that all of the

above artifacts lead to reduced accuracy on the downstream

task of pose estimation.
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Caenorhabditis elegans Danio rerio

Metric
PI-PCK ↑
(5 pix)

PI-AUC ↑
(2-20 pix)

PI-RMSE ↓
(pix)

PCK ↑
(10 pix)

AUC ↑
(2-20 pix)

RMSE ↓
(pix)

Synthetic 0.0 0.9 67.29 29.3 37.4 20.15

Fast-Style-Transfer 3.1 25.0 20.50 15.6 20.8 19.25

Gc-GAN 9.7 25.0 27.38 68.2 54.5 27.38

Cycle-GAN 45.3 63.2 14.71 68.7 59.1 9.70

Ours 90.3 87.6 5.36 93.9 83.1 4.50

Supervised 94.6 92.3 3.77 99.6 86.5 3.91

Table 3. Pose estimation accuracy on C. elegans and D. rerio.

Our method significantly outperforms all baselines and approaches

the supervised baseline. Units are given in round brackets.
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Figure 10. Qualitative pose estimation results. The estimator

provides decent results across all three animals. Occasional fail-

ures (last two rows) happen when legs cross, at occlusions, and for

the fine fish tail. Training on Cycle-GAN images does not succeed.

4.3. 2D Pose Estimation

The primary objective of this study is to demonstrate ac-

curate keypoint detection on a target domain for which only

annotations on synthetic images with different shape and

pose exist. Fig. 10 shows qualitative results. We compare

the performance of the same keypoint detector trained on

images and keypoints generated by ours and the baseline

methods. The absolute errors (tables 2 and 3) and accumu-

lated error histograms (Fig. 9) show significant (PCK 15:

84.7 vs. 72.9 Cycle-GAN) and persistent (AUC 86.0 vs

78.4) improvements for Drosophila and the other domains.

Even bigger gains are visible for the simpler worm and ze-

brafish datasets. Although there remains a gap compared to

training on real images with manual labels for small error

thresholds, our method comes already close to the super-

vised reference method in PCK 15 and above and has a large

margin on existing unpaired image translation methods.

Ablation Study on Fly. We compared our full model at

PI-PCK-15 (84.7), to not using one of our core contribu-

tions: no deformation (64.9), only global affine (57.4), only

Ours w/o STN Vector field Reference*w/o deform.only STN
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Figure 11. Ablation study. All our contributions are important:

removing the global STN reduces local details (bends legs), only

global transformation misses pose differences (thinner, straight

legs), and predicting the vector field directly produces foldovers.
∗The reference silhouette is from an unpaired target image.

local non-linear (79.2), and directly encoding a vector field

(69.1). The numbers and Fig. 11 shows that all contribu-

tions are important. Also end-to-end training with DI is

important, as shown in Fig. 6, and by additional examples in

the supplemental document. Moreover, using ADDA (55.5

PI-PCK-15), did not suffice to bridge the large domain gap.

5. Limitations and Future Work

For some domains the assumption of a target segmen-

tation mask is constraining. For instance, for transfer-

ring synthetic humans to real images on cluttered back-

grounds. We plan on integrating unsupervised segmenta-

tion, as demonstrated by [3] for single-domain image gen-

eration. Although we could synthesize a variety of poses

for the worm and fish using a single stylized source im-

age, our method was not able to synthesize entirely unseen

Drosophila poses, because crossing legs could not be mod-

eled using a 2D image deformation. Moreover, symmetries

and self-similarities can lead to flipped limb identities (see

bottom of Fig. 10). We plan to use temporal cues and mul-

tiple views to find a consistent assignment in the future, fol-

lowing ideas used in [56] for humans and monkeys.

6. Conclusion

In this paper, we have presented an approach for trans-

lating synthetic images to a real domain via explicit shape

and pose deformation that consistently outperforms existing

image translation methods. Our method allows us to train

a pose estimator on synthetic images that generalize to real

ones; without requiring manual keypoint labels.

One of our test cases is on Drosophila tethered to a mi-

croscope used to measure neural activity. By combining

pose estimation with state-of-the-art microscopy, we antici-

pate more rapid advances in understanding the relationship

between animal behaviour and neural activity.
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