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Abstract

Human-Object Interaction (HOI) detection lies at the

core of action understanding. Besides 2D information

such as human/object appearance and locations, 3D pose

is also usually utilized in HOI learning since its view-

independence. However, rough 3D body joints just carry

sparse body information and are not sufficient to under-

stand complex interactions. Thus, we need detailed 3D

body shape to go further. Meanwhile, the interacted ob-

ject in 3D is also not fully studied in HOI learning. In

light of these, we propose a detailed 2D-3D joint repre-

sentation learning method. First, we utilize the single-

view human body capture method to obtain detailed 3D

body, face and hand shapes. Next, we estimate the 3D

object location and size with reference to the 2D human-

object spatial configuration and object category priors. Fi-

nally, a joint learning framework and cross-modal con-

sistency tasks are proposed to learn the joint HOI rep-

resentation. To better evaluate the 2D ambiguity pro-

cessing capacity of models, we propose a new benchmark

named Ambiguous-HOI consisting of hard ambiguous im-

ages. Extensive experiments in large-scale HOI bench-

mark and Ambiguous-HOI show impressive effectiveness

of our method. Code and data are available at https:

//github.com/DirtyHarryLYL/DJ-RN .

1. Introduction

Human-Object Interaction (HOI) detection recently re-

ceives lots of attentions. It aims at locating the active

human-object and inferring the action simultaneously. As

a sub-task of visual relationship [37], it can facilitate activ-

ity understanding [6, 43, 44, 55], imitation learning [2], etc.

What do we need to understand HOI? The possible an-

swers are human/object appearance, spatial configuration,

context, pose, etc. Among them, human body information
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Figure 1. HOI detection based on 2D may have ambiguities un-

der various viewpoints. HOI representation in 3D is more robust.

Thus, we estimate the 3D detailed human body and interacted ob-

ject location and size to represent the HOI in 3D. Then we learn a

joint 2D-3D representation to combine multi-modal advantages.

often plays an important role, such as 2D pose [31, 21, 58,

13] and 3D pose [63, 39]. Because of the various view-

points, 2D human pose [7] or segmentation [22, 61, 16] of-

ten has ambiguities, e.g. same actions may have very differ-

ent 2D appearances and poses. Although 3D pose is more

robust, rough 3D body joints are not enough to encode es-

sential geometric and meaningful patterns. For example, we

may need detailed hand shape to infer the action “use a knife

to cut”, or facial shape for “eat and talk”. And body shape

would also largely affect human posture. In light of this, we

argue that detailed 3D body can facilitate the HOI learning.

Meanwhile, the object in HOI is also important, e.g. “hold

an apple” and “hold the horse” have entirely different pat-

terns. However, few studies considered how to embed 3D

interacted objects in HOI. The reasons are two-fold: first,

it is hard to reconstruct objects because of the 6D pose es-

timation and diverse object shapes (detailed point cloud or

mesh [8, 64]). Second, estimating 3D human-object spatial

relationship is also difficult for single-view.

In this work, we propose a method to not only borrow

essential discriminated clues from the detailed 3D body but

also consider the 3D human-object spatial configuration.

First, we represent the HOI in 3D. For human, we utilize

the single-view human body capture [45] to obtain detailed

human shape. For object, referring to the 2D human-object
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spatial configuration and object category prior, we estimate

its rough location and size through perspective projection,

and use a hollow sphere to represent it. Then, we put the 3D

detailed human and object sphere into a normalized volume

as the 3D HOI spatial configuration volume, as shown in

Fig. 1. Next, we propose Detailed Joint Representation Net-

work (DJ-RN), which consists of two feature extractors: a

2D Representation Network (2D-RN) and a 3D Represen-

tation Network (3D-RN). Finally, we adopt several consis-

tency tasks to learn the 2D-3D joint HOI representation. In

detail, we align the 2D spatial features according to more

robust 3D spatial features. And we perform semantic align-

ment to ensure the cross-modal semantic consistency. To

better embed the body posture, we estimate body part at-

tentions in a 2D-3D joint way with consistency. That is

if 2D features tell us the hands and head are important for

“work on laptop”, so will the 3D features. DJ-RN is the first

joint learning method to utilize single-view 3D recover for

HOI. It is a novel paradigm instead of an ad-hoc model,

and flexible to replace 2D/3D modules/extracted features.

We believe it would promote not only HOI learning but also

action related tasks, e.g., image caption, visual reasoning.

To better evaluate the ability of processing 2D ambigu-

ities, we propose a new benchmark named Ambiguous-

HOI, which includes ambiguous examples selected from

existing datasets like HICO-DET [9], V-COCO [20], Open-

Image [28], HCVRD [65]. We conduct extensive ex-

periments on widely-used HOI detection benchmark and

Ambiguous-HOI. Our approach achieves significant im-

provements with 2D-3D joint learning. The main contri-

butions are as follows: 1) We propose a 2D-3D joint repre-

sentation learning paradigm to facilitate HOI detection. 2)

A new benchmark Ambiguous-HOI is proposed to evaluate

the disambiguation ability of models. 3) We achieve state-

of-the-art results on HICO-DET [9] and Ambiguous-HOI.

2. Related Work

Human-Object Interaction Detection. Recently, great

progress has been made in HOI detection. Large-scale

datasets [9, 20, 28] have been released to promote this field.

Meanwhile, lots of deep learning based methods [19, 17,

31, 51, 21, 58, 48] have been proposed. Chao et al. [9] pro-

posed a multi-stream framework, which is proven effective

and followed by subsequent works [17, 31]. Differently,

GPNN [51] proposed a graph model and used message

passing to address both image and video HOI detection.

Gkioxari et al. [19] adopted an action density map to es-

timate the 2D location of interacted objects. iCAN [17] uti-

lized self-attention to correlate the human-object and con-

text. TIN [31] proposed an explicit interactiveness learn-

ing network to identify the non-interactive human-object

pairs and suppress them in inference. HAKE [30] pro-

poses a novel hierarchical paradigm based on human body

part states [38]. Previous methods mainly relied on the vi-

sual appearance and human-object spatial relative locations,

some of them [31] also utilized the 2D estimated pose. But

the 2D ambiguity in HOI is not well studied before.

3D Pose-based Action Recognition. Recent deep learn-

ing based 3D pose estimation methods [26, 14, 46] have

achieved substantial progresses. Besides 2D pose based ac-

tion understanding [31, 29, 35, 10, 18, 59], many works also

utilized the 3D human pose [54, 13, 62, 63, 39, 49, 27, 33,

3, 34, 40, 57, 24]. Yao et al. [62] constructed a 2.5D graph

with 2D appearance and 3D human pose, and selected ex-

emplar graphs of different actions for the exemplar-based

action classification. In [63], 2D pose is mapped to 3D pose

and the actions are classified by comparing the 3D pose sim-

ilarity. Luvizon et al. [39] estimated the 2D/3D pose and

recognized actions in a unified model from both image and

video. Wang et al. [60] used the RGB-D data to obtain the

3D human joints and adopted an actionlet ensemble method

for HOI learning. Recently, Pham et al. [49] proposed a

multi-task model to operate 3D pose estimation and action

recognition simultaneously from RGB video. Most 3D pose

based methods [3, 34, 40, 57, 33, 49, 60, 13, 27, 24] are us-

ing Recurrent Nerual Network (RNN) based framework for

spatio-temporal action recognition, but few studies focus on

the complex HOI understanding from single RGB image.

Single-view 3D Body Recover. Recently the single-view

human body capture and reconstruction methods [45, 26,

42, 47, 4] have made great progresses. With the help of deep

learning and large-scale scanned 3D human database [11,

25, 1], they are able to directly recover 3D body shape and

pose from single RGB images. SMPLify-X [45] is a holistic

and efficient model that takes the 2D human body, face and

hand poses as inputs to capture 3D body, face and hands. To

obtain more accurate and realistic body shape, SMPLify-

X [45] utilizes the Variational Human Body Pose prior

(VPoser) trained on large-scale MoCap datasets, which car-

ries lots of human body pose prior and knowledge. It sup-

ports us to recover 3D detailed human body from HOI im-

ages and embed more body posture knowledge.

3. Representing HOI in 3D

Our goal is to learn the 2D-3D joint HOI representation,

thus we need to first represent HOI in 3D. Given a still im-

age, we use object detection [52] and pose estimation [7] to

obtain 2D instance boxes and human pose. Next, we adopt

the 3D human body capture [45] to estimate the 3D human

body with above 2D detection (Sec. 3.1), and estimate the

object location and size in 3D to construct the 3D spatial

configuration volume (Sec. 3.2).

3.1. Singleview 3D Body Capture

Rough 3D pose is not sufficient to discriminate various

actions, especially the complex interactions with daily ob-
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Figure 2. We adopt detailed human information. We use Open-

Pose [7] and SMPLify-X [45] to estimate the 2D, 3D poses and

shapes of face and hands. These information would largely help

the HOI learning, especially on actions related to face and hands.

jects. Thus we need holistic and fine-grained 3D body in-

formation as a clue. To this end, we adopt a holistic 3D

body capture method [45] to recover detailed 3D body from

single RGB images. Given the 2D detection of image I ,

i.e., 2D human and object boxes bh and bo, 2D human pose

θ2D = {θ2Db , θ2Df , θ2Dh } (main body joints θ2Db , jaw joints

θ2Df and finger joints θ2Dh in Fig. 2). We input them into

SMPLify-X [45] to recover 3D human estimations, i.e., fit-

ting the SMPL-X [45] model to I and θ2D. Then we can

obtain the optimized shape parameters {θ3D, β, ψ} by min-

imizing the body pose, shape objective function, where θ3D

are pose parameters and θ3D = {θ3Db , θ3Df , θ3Dh }, β are

body, face and hands shape parameters, ψ are facial expres-

sion parameters. The template body mesh is finally blended

and deformed to fit the target body posture and shape in

images. With function M(θ3D, β, ψ) : R|θ3D|×|β|×|ψ| →
R

3N , we can directly generate the 3D body mesh according

to the estimated {θ3D, β, ψ} from images and utilize it in

the next stage, some examples are shown in Fig. 2.

3.2. 3D Spatial Configuration Volume

After obtaining the 3D body, we further represent HOI in

3D, i.e. estimate the 3D object location and size. For robust-

ness and efficiency, we do not reconstruct the object shape,

but use a hollow sphere to represent it. Thus we can avoid

the difficult 6D pose estimation under the circumstance of

single-view and various categories. Our procedure has two

stages: 1) locating the sphere center on a plane according

to the camera perspective projection, 2) using the prior ob-

ject size and human-object distance to estimate the depth of

the sphere. For each image, we adopt the estimated camera

parameters from SMPLify-X [45], where focal length f is

set to a fixed value of 5000, and the camera distortions are

not considered. For clarification, the camera optical center

is expressed as C(t1, t2, t3) in the world coordinate system,

and the object sphere center is O(xO, yO, zO).

Object Sphere Center. As shown in Fig. 3, we assume that

O is projected to the midperpendicular of object box border-

top, indicating the sphere center falls on plane PABC . And

we suppose the highest and lowest visible points of the

��
��

��
���� Optical Center �

�
�(��, ��, ��)

�(��, ��, ��)
Midperpendicular of 

Object Box Border-top 

Image Plane

Figure 3. Object location estimation. Given prior radius r, we

can get the sphere center location by solving projection equations,

which restricts the sphere to be tangent to plane P1 and P2, and

assures the sphere center falls on plane PABC .

sphere are projected to the object box border-bottom and

border-top respectively. Then we can get two tangent planes

of the sphere: P1 (contains points B, C, E) and P2 (contains

points A, C, D) as shown in Fig. 3. P1 and P2 intersect with

PABC , restricting a region on PABC where the sphere cen-

ter may locate. To get the depth of sphere center, we need

to know the sphere radius, i.e., r = |
−−→
OD| = |

−−→
OE|.

Object Sphere Radius. As for the sphere radius, we de-

termine it by both considering the object box relative size

(to the 2D human box) and the object category prior. With

object detection in the first step, we can obtain the object

category j. Thus, we can set a rough object size according

to Wikipedia and daily life experience. In practice, we set

prior sizes for COCO 80 objects [32] to suit the HICO-DET

setting [9]. First, for small objects or objects with simi-

lar size along different axes (e.g. ball, table), we define the

prior object scale ratio between the sphere radius and the

human shoulder width. Second, for objects that are usually

partly seen or whose projection is seriously affected by the

6D pose (e.g. boat, skis), we use the relative scale ratio of

the human and object boxes as the referenced ratio. The

estimated sphere center is denoted as Ô(x̂O, ŷO, ẑO).

The sphere depth is very sensitive to the radius and may

make the sphere away from human. Thus, we regularize the

estimated depth ẑc using the maximum and minimum depth

zmaxH , zminH of the recovered human. We define prior ob-

ject depth regularization factor Γ = {[γmini , γmaxi ]}80i=1 for

COCO objects [32]. Specifically, with pre-defined depth

bins (very close, close, medium, far, very far), we invite

fifty volunteers from different backgrounds to watch HOI

images and choose the degree of the object relative depth

to the human. We then use their votes to set the empiri-

cal regularization factors Γ. For estimated Ô(x̂O, ŷO, ẑO),
if ẑO falls out of [γminj zminH , γmaxj zmaxH ], we shift Ô to

(x̂O, ŷO, γ
max
j zmaxH ) or (x̂O, ŷO, γ

min
j zminH ), depending

on which is closer to Ô. Size and depth priors can effec-

tively restrict the error boundaries. Without them, 3D vol-

ume would have large deviation and degrade performance.
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Volume Formalization. Next, we perform translations to

align different configurations in 3D. First, we set the coor-

dinate origin as the human pelvis. The direction of gravity

estimated is kept same with the negative direction of the

z-axis, and the line between two human shoulder joints is

rotated to be parallel to the x-axis. Then, we down-sample

the 3D body to 916 points and randomly sample 312 points

on spherical surface. The hollow sphere can keep the body

information of the interacted body parts within the sphere.

We then normalize the whole volume by setting unit length

as the distance between the pupil joints. At last, we can ob-

tain a normalized 3D volume including 3D body and object

sphere, which not only carries essential 3D action informa-

tion but also 3D human-object spatial configuration.

4. 2D-3D Joint Learning

In this section, we aim to learn the joint representation.

To this end, we propose Detailed Joint Representation Net-

work (DJ-RN), as seen in Fig. 5. DJ-RN has two modules:

2D Representation Network (2D-RN) and 3D Representa-

tion Network (3D-RN). We use them to extract features

from two modalities respectively (Sec. 4.1, 4.2). Then we

align 2D spatial feature with 3D spatial feature (Sec. 4.3),

and use body part attention consistency (Sec. 4.4) and se-

mantic consistency (Sec. 4.5) to guide the learning .

4.1. 2D Feature Extraction

2D-RN is composed of human, object, and spatial

streams following [9, 17, 31]. Within each stream, we adopt

different blocks to take in 2D information with different

properties and extract corresponding features (Fig. 5).

Human/Object Block. Human and object streams mainly

utilize visual appearance. We use a COCO [32] pre-

trained Faster-RCNN [52] to extract ROI pooling features

from detected boxes. To enhance the representation ability,

we adopt the iCAN block [17] which computes the self-

attention via correlating the context and instances, and ob-

tain the human feature f2DH and object feature f2DO .

Spatial Block. Although appearance carries important

clues, it also imports noise and misleading patterns from

various viewpoints. Thus human-object spatial configura-

tion can be used additionally to provide discriminative fea-

tures [9, 17, 31]. Spatial stream mainly considers the 2D

human-object relative locations. We input the 2D pose map

and spatial map [31] to the spatial block, which consists of

convolution and fully-connected (FC) layers to extract the

spatial feature f2Dsp . The spatial map consists of two chan-

nels, human and object maps, which are all 64 × 64 and

generated from the human and object boxes. The value is

1 in the box and 0 elsewhere. The pose map consists of 17

joint heatmaps of size 64× 64 from OpenPose [7].

2D Spatial 
Configuration

2D Human

3D Object
Location & Size

3D Spatial
Configuration Volume,
Semantics of Locations

3D Body

Word2Vec
“head”
“hand”..…

“bottle”
“foot”

Figure 4. 3D spatial configuration volume. After 3D body capture,

we use 2D boxes, estimated camera parameters and object cate-

gory prior to estimate the 3D object location and size, and then put

3D human and object together in a normalized volume. We also

pair the 3D location with semantic knowledge (Sec. 4.2).

4.2. 3D Feature Extraction

3D-RN contains a 3D spatial stream with volume block

which takes in the 3D spatial configuration volume, and a

3D human stream with 3D body block to encode 3D body.

Volume Block. In 3D spatial stream, we adopt Point-

Net [50] to extract 3D spatial feature f3Dsp . We first pre-train

it to segment the human and object points in the generated

3D spatial configuration volume. Thus it can learn to dis-

criminate the geometric difference and shape of human and

object. Then we use it to extract features from 3D spatial

volume point cloud. To further embed the semantic infor-

mation of 3D locations, we pair the spatial feature with the

corresponding semantics, i.e., the word embedding of ob-

ject or body part category. We first divide the volume point

cloud into 18 sets: 17 part sets and an object sphere set.

Then, for the feature of part set, we concatenate it with PCA

reduced word embedding [41] of part name (e.g. “hand”).

Similarly, for the feature of the sphere set, we concatenate

it with the object category word embedding (e.g. “bottle”),

as seen in Fig. 4. The concatenated feature is used as f3Dsp .

3D Body Block. In 3D body block, we extract features

based on SMPL-X [45] parameters: joint body, face and

hands shape β, face expression ψ and pose θ3D, consisting

of jaw joints θ3Df , finger joints θ3Dh and body joints θ3Db .

For body shape and expression, we directly use their param-

eters. For pose, we adopt the VPoser [45] to encode the 3D

body into latent representations {f3Db , f3Df , f3Dh } for body,

face and hands corresponding to {θ3Db , θ3Df , θ3Dh }. VPoser

is a variational auto-encoder trained with large-scale Mo-

Cap datasets [11, 25, 1]. Thus it learns a latent space encod-

ing the manifold of the physically plausible pose, and effec-

tively embeds the 3D body pose. We concatenate the latent

representations, shape parameters and face expression, feed

them to two 1024 sized FC layers, and get the 3D human

feature f3DH = FC3D({β, ψ, f
3D
b , f3Df , f3Dh }).
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Figure 5. Overview of DJ-RN. The framework consists of two main modules, named 2D Representation Network (2D-RN) and 3D Rep-

resentation Network (3D-RN). They extract HOI representations from 2D and 3D information respectively. Hence, we can use spatial

alignment, part attention consistency and semantic consistency to learn a joint 2D-3D representation for HOI learning.

4.3. 2D3D Spatial Alignment

In view of that 2D spatial features lack robustness and

may bring in ambiguities, we propose the 2D spatial align-

ment. 3D spatial features are more robust, thus we refer

them as anchors in the spatial space which describes the

manifold of HOI spatial configuration. Given the 2D spatial

feature f2Dsp of a sample, from the train set we randomly

sample a positive 3D spatial feature f3Dsp+ with the same

HOI label and a negative feature f3Dsp− with non-overlapping

HOIs (a person may perform multiple actions at the same

time). For a human-object pair, we use triplet loss [53] to

align its 2D spatial feature, i.e.,

Ltri = [d(f2Dsp , f
3D
sp+)− d(f2Dsp , f

3D
sp−) + α]+ (1)

where d(·) indicates the Euclidean distance, and α = 0.5 is

the margin value. For 2D samples with the same HOIs but

different 2D spatial configurations, this spatial alignment

will gather them together in the spatial space.

4.4. Joint Body Part Attention Estimation

Body parts are important in HOI understanding, but not

all parts make great contributions in inference. Thus, adopt-

ing attention mechanism is apparently a good choice. Dif-

ferent from previous methods [12, 15], we generate body

part attention by considering both 2D and 3D clues. Specif-

ically, we use a part attention consistency loss to conduct

self-attention learning, as shown in Fig. 6. With the 2D and

3D features, we can generate two sets of body attention.

2D Attention. We concatenate the input f2DH , f2DO , f2Dsp to

get f2D, and apply global average pooling (GAP) to get

the global feature vector f2Dg . Then we calculate the inner

product
〈

f2Dg , f2D
〉

and generate the attention map att2D

by att2D = Softmax(
〈

f2Dg , f2D
〉

). Because 2D pose

joints can indicate the part locations, we use joint attention

to represent 2D part attention. If a joint location has high

attention, its neighboring points should have high attention

too. Thus we can calculate the pose joint attention by sum-

marizing the attentions of its neighboring points. We repre-

sent the attention of 17 pose joints as A2D = {a2Di }17i=1,

â2Di =

∑

u,v att
2D
(u,v)/(1 + d[(u, v), (ui, vi)])

∑

u,v 1/(1 + d[(u, v), (ui, vi)])
, (2)

and a2Di =
â2D
i∑

17

i=1
â2D
i

, where (u, v) denotes arbitrary point

on attention map att2D, (ui, vi) indicates the coordinate of

the i-th joint (calculated by scaling the joint coordinate on

image). d[·] denotes the Euclidean distance between two

points. Eq. 2 means: if point (u, v) is far from (ui, vi),
the attention value of (u, v) contributes less to the attention

value of (ui, vi); if (u, v) is close to (ui, vi), it contributes

more. After the summarizing and normalizing, we finally

obtain the attention of (ui, vi), i.e. a2Di .

3D Attention. We use 3D joint attention to represent the

3D body part attention. Input f3Dsp is [1228× 384] and f3DH
is [1024]. We first tile f3DH 1228 times to get shape [1228×
1024], then concatenate it with f3Dsp to get f3D ([1228 ×

1408]). Then we apply GAP to f3D to get a [1408] tensor,

and feed it to two 512 sized FC layers and Softmax, finally

obtain the attention for 17 joints, i.e., A3D = {a3Dj }17j=1.
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Figure 6. Body part attention alignment. For 2D, we apply self-

attention on f2D
sp to generate attention map att2D and 2D part at-

tention A2D . For 3D, we use f3D
sp to generate 3D part attention

A3D , and get attention map att3D using the correspondency be-

tween point cloud and joints. Finally, we construct consistency

loss Latt with A3D and A2D . att2D and att3D are used to re-

weight and generate f2D∗

sp and f3D∗

sp .

Attention Consistency. Whereafter, we operate the atten-

tion alignment via an attention consistency loss:

Latt =

17
∑

i

a2Di ln
a2Di
a3Di

. (3)

where a2Di and a3Di are 2D and 3D attentions of the i-
th joint. Latt is the Kullback–Leibler divergence between

A2D and A3D, which enforces two attention estimators to

generate similar part importance and keep the consistency.

Next, in 2D-RN, we multiply f2Dsp by att2D, i.e. the

Hadamard product f2D∗
sp =f2Dsp ◦ att2D. In 3D-RN, we first

assign attention to each 3D point in the spatial configura-

tion volume (n points in total). For human 3D points, we

divide them into different sets according to 17 joints, and

each set is corresponding to a body part. Within the i-th
set, we tile the body part attention a3Di to each point. For

object 3D points, we set all their attention as one. Because

each element of f3Dsp is corresponding to a 3D point in the

spatial configuration volume, we organize the attentions of

both human and object 3D points as att3D of size n × 1,

where n is the number of elements in f3Dsp (Fig. 6). Thus

we can calculate the Hadamard product f3D∗
sp =f3Dsp ◦att3D.

After the part feature re-weighting, our model can learn to

neglect the parts unimportant to the HOI inference.

4.5. 2D3D Semantic Consistency

After the feature extraction and re-weighting, we per-

form the HOI classification. All classifiers in each stream

are composed of two 1024 sized FC layers and Sigmoids.

The HOI score of the 2D-RN is S2D = (s2DH + s2DO ) ◦ s2Dsp ,

where s2DH , s2DO , s2Dsp are the scores of human, object and

spatial stream. S3D = s3DH +s3Dsp indicates the final predic-

tion of the 3D-RN. To maintain the semantic consistency of

repair toaster pick up sports ball

Figure 7. Ambiguous samples from Ambiguous-HOI.

2D and 3D representations, i.e. they should make the same

prediction for the same sample, we construct:

Lsem =

m
∑

i

||S2D
i − S3D

i ||2, (4)

where m is the number of HOIs.

Multiple HOI Inferences. Moreover, we concatenate the

features from the last FC layers in 2D-RN and 3D-RN as

f joint (early fusion), and make the third classification to

obtain the score Sjoint. The joint classifier is also com-

posed of two 1024 sized FC layers and Sigmoids. The

multi-label classification cross-entropy losses are expressed

as L2D
cls ,L

3D
cls ,L

joint
cls . Thus, the total loss of DJ-RN is:

Ltotal = λ1Ltri + λ2Latt + λ3Lsem + λ4Lcls, (5)

where Lcls=L
2D
cls+L3D

cls+Ljointcls , and we set λ1=0.001, λ2
=0.01, λ3=0.01, λ4=1 in experiments. The final score is

S = S2D + S3D + Sjoint. (6)

5. Experiment

In this section, we first introduce the adopted datasets

and metrics. Then we describe the detailed implementation

of DJ-RN. Next, we compare DJ-RN with the state-of-the-

art on HICO-DET [9] and Ambiguous-HOI. At last, abla-

tion studies are operated to evaluate modules in DJ-RN.

5.1. AmbiguousHOI

Existing benchmarks mainly focus on evaluating generic

HOIs, but not to specially examine the ability to process 2D

pose and appearance ambiguities. Hence, we propose a new

benchmark named Ambiguous-HOI. Ambiguous-HOI con-

sists of hard examples collected from the test set of HICO-

DET [9], and other whole datasets such as V-COCO [20],

OpenImage [28], HCVRD [65] and Internet images. We

choose HOI categories from HICO-DET [9] for its well-

designed verbs and objects. For Internet images, we labeled

the HOIs according to HICO-DET setting. The 2D pose

and spatial configuration ambiguities are mainly considered

in the selection. First, we put all images and correspond-

ing labels in a candidate pool and manually choose some

template 2D pose samples for each HOI. Then we use Pro-

crustes transformation [5] to align the 2D pose of samples

to the templates. Next, we cluster all samples to find the
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samples far from the cluster center and repeat clustering ac-

cording to different templates. The mean distance between

a sample and multiple cluster centers is recorded as refer-

ence. Meanwhile, we train an MLP taking the 2D pose and

spatial map as inputs on HICO-DET train set. Then we use

it as an ambiguity probe to find the most easily misclas-

sified samples. Combining the above two references, we

finally select 8,996 images with 25,188 annotated human-

object pairs. Ambiguous-HOI finally includes 87 HOI cate-

gories, consisting of 48 verbs and 40 object categories from

HICO-DET [9]. Some sample are shown in Fig. 7.

5.2. Dataset and Metric

Dataset. We adopt the widely-used HOI benchmark HICO-

DET [9] and our novel Ambiguous-HOI. HICO-DET [9] is

an instance-level benchmark consisting of 47,776 images

(38,118 for training and 9,658 for testing) and 600 HOI cat-

egories. It contains 80 object categories from COCO [32],

117 verbs and more than 150k annotated HOI pairs.

Metric. We use mAP metric from [9] for two benchmarks:

true positive need to contain accurate human and object lo-

cations (box IoU with reference to the ground truth box is

larger than 0.5) and accurate interaction/verb classification.

5.3. Implementation Details

For 3D body recovery, we first use OpenPose [7] to de-

tect the 2D pose of body, face and hands. Then we feed

them with the image to SMPLify-X [45] to get 3D body.

Since cases with severe occlusion might fail the 3D recov-

ery, we only recover 3D bodies for those which at least in-

cludes detected 2D head, pelvis, one shoulder and one hip

joints. For the rest, we assign them the body with stan-

dard template 3D pose, i.e. generated by setting all SMPL-

X parameters to zero. Sometimes the recovered body can

be implausible, i.e. “monsters”. To exclude them, we use

VPoser[45] to extract the latent embedding of every recov-

ered 3D body. With the mean latent embedding of the gen-

erated 3D body from HICO-DET train set as a reference, we

assume that the farthest 10% embeddings from the mean

embedding are “monsters”. At last, 81.2% of the anno-

tated instances are assigned with SMPLify-X [45] gener-

ated mesh, and we assign standard templates for the rest to

avoid importing noise.

For feature extraction, we use COCO [32] pre-trained

ResNet-50 [23] in 2D-RN. In 3D-RN, we first train a Point-

Net [50] to segment the human and object points in 3D vol-

ume, and then use it to extract the 3D local feature of vol-

ume. The PointNet is trained for 10K iterations, using SGD

with learning rate of 0.01, momentum of 0.9 and batch size

of 32. In spatial alignment, we adopt the triplet loss with

semi-hard sampling, i.e., for a sample, we only calculate

the loss for its nearest negative and farthest positive sam-

ples in the same mini-batch with respect to their Euclidean

Default Known Object

Method Full Rare Non-Rare Full Rare Non-Rare

Shen et al. [56] 6.46 4.24 7.12 - - -

HO-RCNN [9] 7.81 5.37 8.54 10.41 8.94 10.85

InteractNet [19] 9.94 7.16 10.77 - - -

GPNN [51] 13.11 9.34 14.23 - - -

iCAN [17] 14.84 10.45 16.15 16.26 11.33 17.73

Interactiveness [31] 17.03 13.42 18.11 19.17 15.51 20.26

No-Frills [21] 17.18 12.17 18.68 - - -

PMFNet [58] 17.46 15.65 18.00 20.34 17.47 21.20

Julia et al. [48] 19.40 14.60 20.90 - - -

S2D 19.98 16.97 20.88 22.56 19.48 23.48

S3D 12.41 13.08 12.21 16.95 17.74 16.72

SJoint 20.61 17.01 21.69 23.21 19.66 24.28

DJ-RN 21.34 18.53 22.18 23.69 20.64 24.60

Table 1. Results comparison on HICO-DET [9].

distances. In joint training, we train the whole model for

400K iterations, using SGD with momentum of 0.9, follow-

ing cosine learning rate restart [36] with initial learning rate

of 1e-3. For a fair comparison, we use object detection from

iCAN [17]. We also adopt the Non-Interaction Suppression

(NIS) and Low-grade Instance Suppression (LIS) [31] in in-

ference. The interactiveness model from [31] is trained on

HICO-DET train set only. The thresholds of NIS are 0.9

and 0.1 and LIS parameters follow [31].

5.4. Results and Comparisons

HICO-DET. We demonstrate our quantitative results in

Tab. 1, compared with state-of-the-art methods [56, 9, 19,

51, 17, 31, 21, 58, 48]. The evaluation follows the settings

in HICO-DET[9]: Full(600 HOIs), Rare(138 HOIs) and

Non-Rare(462 HOIs) in Default and Known Object mode.

We also evaluate different streams in our model, i.e. 2D

(S2D), 3D (S3D) and Joint (Sjoint). Our 2D-RN has a sim-

ilar multi-stream structure, object detection and backbone

following HO-RCNN [9], iCAN [17], Interactiveness [31]

and PMFNet [58]. With joint learning, 2D-RN (S2D) di-

rectly outperforms above methods with 13.53, 6.50, 4.31,

3.88 mAP on Default Full set. This strongly proves the ef-

fectiveness of the consistency tasks in joint learning. Mean-

while, 3D-RN (S3D) achieves 12.41 mAP on Default Full

set and shows obvious complementarity for 2D-RN. Espe-

cially, 3D performs better on Rare set than Non-Rare set.

This suggests that 3D representation has much weaker data-

dependence than 2D representation and is less affected by

the long-tail data distribution. Joint learning (SJoint) per-

forms better than both 2D and 3D, achieving 20.61 mAP,

while unified DJ-RN (late fusion) finally achieves 21.34

mAP, which outperforms the latest state-of-the-art [48] with

1.94 mAP. Facilitated by the detailed 3D body information,

we achieve 21.71 mAP on 356 hand-related HOIs, which is

higher than the 21.34 mAP on 600 HOIs.

Ambiguous-HOI. To further evaluate our method, we con-

duct an experiment on the proposed Ambiguous-HOI. We

choose methods [17, 31, 48] with open-sourced code as

baselines. All models are trained on HICO-DET train set
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2D Part
Attention

Image

3D Part
Attention

Figure 8. Visualized attention. Three rows are images, 2D and 3D

attentions respectively. Red indicates high attention and blue is the

opposite. 2D attention is in line with 3D attention, and they both

capture reasonable part attentions for various HOIs.

Method Ambiguious-HOI

iCAN [17] 8.14

Interactiveness [31] 8.22

Julia et al. [48] 9.72

DJ-RN 10.37

Table 2. Results comparison on Ambiguous-HOI.

Default Known Object

Method Full Rare Non-Rare Full Rare Non-Rare

DJ-RN 21.34 18.53 22.18 23.69 20.64 24.60

3D Pose 20.42 16.88 21.47 22.95 19.48 23.99

Point Cloud 20.05 16.52 21.10 22.61 19.11 23.66

w/o Face 21.02 17.56 22.05 23.48 19.80 24.58

w/o Hands 20.83 17.36 21.87 23.40 19.99 24.41

w/o Face & Hands 20.74 17.36 21.75 23.33 19.82 24.37

w/o Volume Block 20.34 17.19 21.28 22.97 19.94 23.87

w/o 3D Body Block 20.01 16.14 21.17 22.73 18.88 23.88

w/o Latt 20.70 16.56 21.93 23.32 19.13 24.57

w/o Ltri 20.83 17.66 21.77 23.50 20.31 24.45

w/o Lsem 20.80 17.51 21.78 23.45 20.27 24.39

Table 3. Results of ablation studies.

and achieve respective best performances. To test the abil-

ity of disambiguation and generalization, we directly test

all models on Ambiguous-HOI. Ambiguous-HOI is much

more difficult, thus all methods get relatively low scores

(Tab. 2). DJ-RN outperforms previous method by 0.65, 2.15

and 2.23 mAP. This strongly verifies the advantage of our

joint representation.

Visualizations. We visualize the part attention in Fig. 8. We

can find that two kinds of attention are aligned well and both

capture essential parts for various HOIs. We also visualize

carry-backpack, 0.58

type_on-laptop, 0.88

pour-bottle, 0.68

ride-bicycle, 0.91

jump-skateboard, 0.78

hold-tennis_racket, 0.72

Figure 9. Visualized results and the corresponding 3D volumes.

HOI predictions paired with estimated 3D spatial configu-

ration volumes in Fig. 9. Our method performs robustly in

HOI inference and 3D spatial configuration estimation.

Time Complexity. 2D-RN has similar complexity with

iCAN [17] and Interactiveness [31]. 3D-RN is very effi-

cient because of the pre-extracted features (about 50 FPS).

SMPLif-X runs with GPU acceleration is about 5 FPS.

5.5. Ablation Study

We evaluate different components of our method on

HICO-DET. The results are shown in Tab. 3.

3D Formats. Using 3D pose or point cloud for 3D body

block in 3D-RN performs worse than VPoser embedding.

3D Human Inputs. Without detailed face and hand shape,

DJ-RN shows obvious degradation, especially DJ-RN with-

out hand shape. Because about 70% verbs in HICO-DET

are hand-related, which is consistent with daily experience.

Blocks. Without volume or body block in 3D-RN hurts the

performance with 1.00 and 1.33 mAP.

Losses: Without Latt, Ltri and Lsem, the performance de-

grades 0.64, 0.51 and 0.54 mAP.

6. Conclusion

In this paper, we propose a novel 2D-3D joint HOI rep-

resentation learning paradigm, DJ-RN. We first represent

the HOI in 3D with detailed 3D body and estimated ob-

ject location and size. Second, a 2D Representation Net-

work and a 3D Representation Network are proposed to

extract multi-modal features. Several cross-modal consis-

tency tasks are finally adopted to drive the joint learning.

On HICO-DET and our novel benchmark Ambiguous-HOI,

DJ-RN achieves state-of-the-art results.
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