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Abstract

Unsupervised domain adaptation (UDA) is a represen-

tative problem in transfer learning, which aims to improve

the classification performance on an unlabeled target do-

main by exploiting discriminant information from a labeled

source domain. The optimal transport model has been used

for UDA in the perspective of distribution matching. How-

ever, the transport distance cannot reflect the discriminant

information from either domain knowledge or category pri-

or. In this work, we propose an enhanced transport distance

(ETD) for UDA. This method builds an attention-aware

transport distance, which can be viewed as the prediction-

feedback of the iteratively learned classifier, to measure

the domain discrepancy. Further, the Kantorovich poten-

tial variable is re-parameterized by deep neural networks to

learn the distribution in the latent space. The entropy-based

regularization is developed to explore the intrinsic structure

of the target domain. The proposed method is optimized al-

ternately in an end-to-end manner. Extensive experiments

are conducted on four benchmark datasets to demonstrate

the SOTA performance of ETD.

1. Introduction

Sufficient labeled data play an important role in train-

ing discriminative and interpretable models which have

wide applications in pattern recognition and machine learn-

ing [24, 28]. However, not all tasks have plenty of labeled

data for model training, and the collection of annotated data

is very expensive and time-consuming. Fortunately, due to

the explosive growth of information, the big data era pro-

vides us sufficient training data from multiple sources and

scenarios, by which we can extract discriminative features

and exploratory data structure. However, there exist large

distribution gaps and domain shifts between different do-

mains due to many factors (e.g., postures, locations and

views) [5, 12]. Applying the model trained on the exist-

ing labeled source domain to the unlabeled domain directly
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Figure 1. The primary goal of UDA is to generalize the well-

trained classifier on the source domain to the unlabeled target do-

main. Direct application of the learned classifier suffered from the

“domain shift” problem, as shown in the left case. UDA meth-

ods match the features of different domains, and then reduce the

misclassification rate, as shown in the right case.

will result in a significant performance degradation.

In unsupervised domain adaptation (UDA), the target do-

main data are unlabeled. As shown in Figure 1, UDA meth-

ods solve tasks in the target domain by exploiting the in-

formation from the labeled source domain. Those methods

attempt to establish the association between different do-

mains, and then learn a shared and domain-invariant feature

space [7, 17, 30].

Optimal transport (OT) distance [32, 33], known as the

Earth Mover’s distance, is a classic metric that plays a fun-

damental role in the probability simplex. Compared with

Kullback-Leibler or Jensen-Shannon divergence [8], OT

distance is the unique one that needs to be parameterized.

Though the support sets of two distributions do not over-

lap with each other, the OT distance can still measure the

relation between the distributions [1].

It is worth noting that the OT model [32] has received

wide attention in domain adaptation. It aims to learn the

transformation between domains with theoretical guaran-

tees [5, 23]. The optimal transport distance is used to learn

an optimal transport plan, which plays an important role in

mapping the data from the source domain to the target do-

main [29], so that the classifier trained on the source domain

generalizes well in the target domain. Recently, Bhushan et
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al. [3] employ deep neural networks to explore the optimal

transport plan and further learn the domain-similar features.

Existing domain adaptation methods using the OT dis-

tance are mainly constrained by two bottlenecks. First, deep

adaptation methods using the transport distance are based

on the Euclidean metric and the mini-batch training manner.

Since the sampled instances within mini-batches cannot ful-

ly reflect the real distribution, the obtained transport dis-

tance lacks discrimination and the estimated transport plan

is biased. Second, some OT methods ignore the label infor-

mation and latent structure of the target domain.

In order to tackle the above bottlenecks, this paper pro-

poses a model called Enhanced Transport Distance (ETD)

for classification problems in UDA. The basic model struc-

ture consists of three parts, i.e., the feature extraction net-

work, the classification network and the optimization of

transport plan. In particular, our novelty is emphasized in

the third part. The main contributions of this paper are sum-

marized as follows.

• To make full use of the category-based outputs of the

classification network, we exploit the attention mech-

anism to estimate the similarity between samples, and

weigh the transport distances with the attention scores.

The weighed distances are expected to learn the dis-

criminant features well.

• By virtue of the powerful fitting ability of deep net-

works, it is expected to learn the optimal transport plan

with higher accuracy. The Kantorovich potential is

re-parameterized by a three-layer fully connected net-

work, instead of the vectored dual variable in the tra-

ditional semi-dual optimization problems.

• The entropy criterion on the target domain is used

to explore the intrinsic structures of the target distri-

bution. Thus, it improves the transferability of the

learned classifier. The whole model is trained in an

end-to-end manner. Extensive experiments conducted

on benchmark datasets show that ETD achieves com-

petitive performance in UDA tasks.

2. Related Work

The UDA models assume that the source domain has suf-

ficient labels, and the unlabeled target domain participates

the model training in an unsupervised manner [2]. The U-

DA methods can be divided into two categories roughly, i.e.,

methods based on shared features and methods based on da-

ta reconstruction.

Methods based on shared features. Early methods min-

imize distribution gaps by extracting shared features from

different domains [12]. They often learn a feature projec-

tion to align different domains. Weight-sharing techniques

are used to learn domain-invariant features through dif-

ferent metrics, e.g., Maximum Mean Discrepancy (MMD)

[17, 20, 25]. Contrastive Adaptation Network (CAN) [13]

proposes to optimize the intra-class and the inter-class do-

main discrepancies by a new metric. Deep Adaption Net-

work (DAN) [17] adapts the high-layer features with the

multi-kernel MMD criterion. Adversarial Discriminative

Domain Adaptation (ADDA) [30] is trained in a minimax

paradigm such that the feature extractor is learned to fool

the classifier, while the classifier struggles to be discrimi-

native. General to Adapt (GTA) [28] induces a symbiotic

relation between the embedding network and the genera-

tive adversarial network. Conditional Domain Adversarial

Network (CDAN) [18] is a principled framework that con-

ditions the adversarial adaptation models on discriminative

information conveyed in the classifier predictions.

Methods based on reconstruction. Reconstruction-based

adaptation methods aim to learn a shared-latent representa-

tion between two domains and maintain the domain-specific

characterizations [34]. These methods learn an encoder to

extract the domain-invariant features, and maintain the rep-

resentation consistency through minimizing the reconstruc-

tion error between domains. Domain Adversarial Neural

Network (DANN) [7] proposes a domain-adversarial train-

ing to promote the emergence of features that are discrimi-

native for the main learning task on the source domain while

indiscriminate w.r.t. the domain shifts. Image to image

translation for domain adaptation (I2I Adapt) [22] requires

that the features extracted are able to reconstruct the images

in both domains while the distribution of features in the t-

wo domains are indistinguishable. Unsupervised Image-to-

Image Translation (UNIT) [16] makes a shared-latent space

assumption and proposes an unsupervised image-to-image

translation framework based on Coupled GANs.

The OT distance measures the distribution divergence

and offers the UDA task a new viewpoint. However, these

advantages come at a huge computational cost. Fortunately,

Geneval et al. [9] propose a class of stochastic optimiza-

tion schemes for obtaining the optimal transport distance

for both discrete and continuous distributions.

3. Brief Review of Optimal Transport

Some important notations are defined here. Let X and

Z be complete metric spaces, e.g., Euclidean space. We

denote random multi-variates such as X by capital letters,

and use X ∼ µ to indicate that X obeys the probability

measure µ. x is a sample vector sampled from µ. Supp(µ)
refers to the support of µ, which is a subset of X .

The OT distance is originally formulated as the Monge

problem [32]. Considering two random variables X ∼ µ

and Z ∼ ν, which are sampled from space X and Z , re-
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Figure 2. Adaptive model structure diagram for the proposed ETD. The source and target domains share the network weights of the feature

extractor. The Kantorovich potential network is constructed by three fully-connected layers, and the attention network is formulated as a

single fully connected layer. Blue and Orange arrows represent data flow of the source and target domain respectively. The attention matrix

is used to reweigh the optimal transport distance.

spectively, and a loss function

c : (X,Z) ∈ X × Z �→ c(X,Z) ∈ R
+.

The goal of the OT problem is to find a mapping κ : X �→ Z
that maps the unit quality from µ to ν when the transport

cost is minimized, i.e.,

inf
κ

EX∼μ[c(X,κ(X))] s.t. κ(X) ∼ Z. (1)

To make the problem shown in Eq. (1) more feasible,

Kantorovich [14] relaxed the Monge problem by casting it

into a minimization over couplings (X,Z) ∼ π rather than

the set of maps, where π should have marginals equal to

µ and ν. The Kantorovich relaxation allows the mass at

a given point X ∈ Supp(µ) to be transferred to several

positions in Z ∈ Supp(ν).
The hard constraint for π can be further relaxed, and the

computation of OT can be speeded up by adding a strictly

convex regularization term R(·), i.e.,

inf
π

E(X,Z)∼π [c(X,Z)] + εR(π) s.t. X ∼ µ,Z ∼ ν,(2)

Rε(π) � KL(π|µ⊗ ν).

The regularization term also accelerates the optimization

by making the OT distance differentiable everywhere w.r.t.

the weights of the input measure [4].

4. Our Method

Assume that we can access to a source domain Ds =
{(xs

i , y
s
i )|i = 1, 2, · · · , ns} and a target domain Dt =

{

x
t
j |j = 1, 2, · · · , nt

}

. Here, xi represents a sample (fea-

ture vector), and yi represents the corresponding label. No-

tice that the source domain data are labeled and the target

domain data are unlabeled. Let ŷtj be the softmax prediction

of the classifier, which can be updated in the training pro-

cedure. Since the model update is based on mini-batch, we

suppose there is a training batch B = Bs
⋃

Bt, which con-

tains a source batch Bs = {(xs
i , y

s
i )|i = 1, 2, · · · , b} and a

target batch Bt =
{

(xt
j , ŷ

t
j)|j = 1, 2, · · · , b

}

. Here b is the

mini-batch size.

The entire network structure consists of three parts,

namely, a feature extractor network f(·), a classification

network η(·) and the Kantorovich potential network g(·).
Their working flows are shown in Figure 2. The feature

extractor takes original image x as input and outputs deep

feature f(x). The classifier maps the feature f(x) to classi-

fication prediction η(f(x)). The parametrization network

returns the optimal transport plan g(f(x)) based on the

deep feature. Besides, we introduce an attention module

to reweigh the transport distance.

4.1. Attention-based Distance Weighing

The distance function c involved in the OT problem is

used to calculate the distance between two samples via their

features. Let C be the distance matrix for each batch1, i.e.,

Cij = c(fs
i , f

t
j ).

Generally, the distance measurement is specified to the

Euclidean metric due to its simplicity.

1From now on, the features of the source and target domains are abbre-

viated as fs and f t, respectively.
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As the OT problem is optimized within the mini-batch,

the learned transport plan are inconsistent at each training

iteration. We propose an adaptively weighed OT algorith-

m based on the attention mechanism. The attention score

indicates the degree of correlation between samples. By ap-

plying the reweighed distance matrix, current mini-batch is

adjusted to the real data distribution.

The attention network consists of two fully connected

network layers. It takes η(fs) and η(f t) as inputs and out-

puts the attention matrix S ∈ R
b×b, which will be used as

the weighing operator. Sij represents the correlation of the

source domain sample xs
i and the target domain sample xt

j .

Let σ(·) be the activation function, such as sigmoid, tanh

and ReLU. The attention matrix is formulated by

Sij = σ
[

(W s
aη(f

s
i )

T (W t
aη(f

t
i ))

]

, (3)

where W
s
a and W

t
a are projection matrix of the one lay-

er attention network. ReLU is used in our method due to

its effectiveness in tackling the gradient vanishing and ex-

plosion problems. Moreover, ReLU is unilateral and has a

constant derivation in most cases, which is helpful for faster

convergence. Then the attention matrix S is normalized to

unit length as
∑bt

j=1 Sij = 1, e.g., by softmax, where bt is

the mini-batch size of the target domain.

The update procedure of this attention network is includ-

ed in the parameter update of the overall model. It should

be noted that the calculation of the attention score is based

on the current mini-batch. Thus, the weighing operator is

also dynamically approximate to the complete data space.

The reweighed distance matrix is formulated as

C = S ⊙C. (4)

Here C is still used to denote the reweighed distance ma-

trix without symbol abuse. It deduces a reweighed distance

metric c(fs
i , f

t
j ) = Sijc(f

s
i , f

t
j ), which is used to redefine

the optimal transport problem.

The adaptively adjusted distance function results in a

transport plan that is expected to approximate the actual s-

cenario. As for the optimal transform model, though the

Sinkhorn algorithm [6] can solve the problem of Eq. (2), it

does not scale well to metrics supported by a large num-

ber of samples. In order to tackle this problem, Fenchel-

Rockafellar et al. [29] define

Fε(u, v) � −ε exp

(

u(X) + v(Z)− c(X,Z)

ε

)

, ∀ε > 0.

Then the dual problem is derived from the dual theo-

rem [29] as

sup
u,v

E(X,Z)∼(μ×ν)[u(X)+v(Z)+Fε(u(X), v(Z))], (5)

where u and v are known as Kantorovich potentials [4].

This dual approximation of the regularized OT problem can

be effectively solved by Stochastic Gradient Descent (SGD)

methods [1, 29].

The relation between u and v is obtained by writing the

first order optimality condition for v. Then the relational ex-

pression and the reweighed distance matrix are inserted into

Eq. (5) yields the semi-dual formulation of the reweighed

OT problem [9], i.e.,

sup
v

Efs∼μ[v
c,ε(fs)] + Eft∼ν [v(f

t)]− ε. (6)

Our exploration of the reweighed OT problem and its do-

main adaptation extension is based on the above efforts.

4.2. Network Re-parametrization of the Kan-
torovich Potential

Instead of direct optimization of the transport plan, ex-

isting methods use the semi-dual variable v as the optimiza-

tion target, known as the Kantorovich potential [14]. They

initialize the dual variable v by a random vector (dimension

equals the distributed sample size) and update it in an iter-

ative manner [9]. In this paper, deep networks are used to

parameterize the dual variable due to its strong fitting abili-

ty, rather than the original vector approaches.

The Kantorovich potential network g consists of three

fully connected layers, and it transforms features of two do-

mains into the dual variable. Since update of the potential

variable re-parametrized network g is an independent loop

outside the overall model optimization, the corresponding

parameters are denoted as W g , and the parameters of other

parts as W .

The optimization problem w.r.t. the parameters W g be-

comes

sup
v

Efs∼μ[g
c,ε(fs)] + Eft∼ν [g(f

t)]− ε,

where

gc,ε(fs) =
⎧

⎪

⎨

⎪

⎩

− ε log

(

Eft∼ν

[

exp
(g(f t)− c(fs, f t)

ε

)]

)

, ε > 0,

min
ft∈Z

(c(fs, f t)− g(f t)) , ε = 0.

The network re-parametrization of the Kantorovich po-

tential variable provides a more powerful fitting and gener-

alization ability, and the optimization is efficient. The ap-

plicability of dual variable is extended by such an approach,

so that the optimal transport plan learning procedure can get

rid of the constraints of the current feature space and pro-

cees in a more flexible space.

To present the calculation clearly, the adaptively weighed

OT problem is re-formulated as a finite dimensional opti-

mization problem w.r.t the distance function c(·, ·), i.e.,

max
g

Hε(g(f
t)) =

b
∑

i=1

(

b
∑

j=1

g(f t
j ) + hε(f

s
i , g(f

t))
)

,
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where

hε(f
s
i , g(f

t)) =
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ε log

( b
∑

j=1

exp
(g(f t

j )− c(fs
i , f

t
j )

ε

)

)

− ε , ε > 0,

min
j

(c(fs
i , f

t
j )− g(f t

j )) , ε = 0.

In this way, the optimization procedure of the transport

plan πε can be transformed into the optimization of the net-

work g in the training process. Optimizing the dual variable

makes the training process more suitable for the mini-batch

training scheme in deep networks. Besides, the network-

based re-parametrization can simplify the algorithm calcu-

lation. After optimizing the network g, the optimal transport

distance Wε(µ, ν) is calculated by the current parameters

W g , i.e.,

Wε(µ, ν) = Efs∼μg
c,ε(fs) + Eft∼νg(f

t)− ε, (7)

gc,ε(fs) = −ε log

(

Eft∼ν

[

exp
(g(f t)− c(fs, f t)

ε

)]

)

.

Finally, the domain discrepancy (i.e., the alignment loss)

is measured by the OT distance as

Lopt(W ) � Wε(µ, ν). (8)

4.3. Discriminant Features Adaption and Model
Optimization

According to the theoretical result of Ben-David [2], the

expected error on the target domain is bound by three terms,

i.e., the expected domain discrepancy, the expected error on

the domain classifier, and a shared error (which is usually

viewed as constant) of the idea joint hypothesis. Thus, we

also need to minimize the classification error and extract

discriminant features on the source domain. This part is

essentially a supervised learning task only performed on the

source domain. The cross entropy loss denoted by lce is

used here, due to its simplicity, i.e.,

Ls(W ) �
1

ns

ns
∑

i=1

lce(η(f
s
i ), y

s
i ;W ),

where W represents all the parameters (excluding W g) up-

dated in the adaptation network learning.

To explore the the intrinsic structure of the target do-

main, the entropy criterion is added to the objective func-

tion. Mathematically, the target entropy loss denoted by Lt

is formulated as

Lt(W ) �
1

nt

nt
∑

i

∑

j=1

−ŷtij log ŷ
t
ij ,

where ŷtij is the probability of the i-th target samples be-

longing to the the j-th class.

Combining the optimization objective functions de-

scribed above, the whole cost function of the model consist-

s three parts, namely the source classification loss Ls(W ),
the domain adaptation loss Lopt(W ) and the target entropy

loss Lt(W ), which can be written as

L(W ) = Ls(W ) + λLopt(W ) + βLt(W ). (9)

The parameter λ and β are used to balance the effect-

s of three loss terms. The model adapts different domains

by minimizing the optimal transport loss Lopt(W ), and it

learns a discriminant classifier by minimizing the cross en-

tropy loss of the source domain Ls(W ). Further, the target

entropy loss Lt(W ) helps the model to learn an adaptive

classifier. The parameters will be learned by minimizing L
with the SGD approach.

Algorithm 1 ETD for Unsupervised Domain Adaptation

Require: Bs = {xs; ys}, Bt = {xt}, C ∈ R
b×b, ε, λ.

Ensure: W g , W , Wε, Ŷ t.

1: Pre-train the network W and W g by using Bs;

2: Predict the pseudo-labels {ŷt} for samples in Bt;

3: while not converged do

4: Calculate attention S via Eq. (3) and softmax;

5: Re-weigh C via Eq. (4), i.e., C = S ⊙C;

6: while not converged do

7: Update W g by minimizing Wε via Eq. (7) and E-

q. (8);

8: end while

9: Update W by minimizing Eq.(9);

10: end while

The main steps of our ETD method are summarized in

Algorithm 1. Note that there are two loops in the algorithm,

and they aim to optimize the parameters W and W g , re-

spectively. The optimal transport module (w.r.t. W g) is a

build-in loop in the network update process. we update pa-

rameters of the adaptive model and the Kantorovich poten-

tial re-parametrization in an alternative manner. First, we

fix the network parameters W and determine the optimal

transport plan, and then fix the transport plan W g to up-

date the network parameters. The convergent condition for

each of them can be defined by the relative error between

two successive iterations. In our work, the convergent con-

dition is simply set by pre-defined iteration times. Note that

the algorithm is illustrated based on each mini-batch, but

in actual experiments, we can choose to make the network

forward through one or more batches and then carry out the

backpropagation of the whole network.

5. Experiment Results and Analysis

In this section, the proposed ETD is compared with sev-

eral SOTA methods on four UDA benchmark datasets.
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Figure 3. Classification results under different λ and ε settings. Best viewed in color.

5.1. Datasets, Settings and Implementation Details

The algorithm is evaluated by conducting experiments

on four visual datasets.

Office-31 [27] consists of images from three domains,

namely, Amazon (A), Webcam (W), and Dslr (D). It has

4,652 images covering 31 categories. Six adaptation tasks,

i.e., A→W, D→W, W→D, A→D, D→A and W→A, will

be conducted in the experiments.

ImageCLEF-DA has twelve classes shared by three

datasets, i.e., Caltech-256 (C), ImageNet ILSVRC 2012 (I),

and Pascal VOC 2012 (P). All six adaptation tasks, i.e.,

I→P, P→I, I→C, C→I, C→P, P→C, will be used to algo-

rithm evaluation.

Office-Home [31] consists of 15,500 images in 65 cat-

egories, mostly from an office or home environment. The

images are sampled from four distinct areas including Art

(Ar), Clipart (Cl), Product (Pr), and Real World (Rw). We

evaluate the methods on all twelve learning tasks.

Digits Recognition This work uses an evaluation

scheme being consistent with Cyclic Anti-Adaptive Net-

work (CyCADA) [11], which includes three transfer tasks,

i.e., SVHN to MNIST (S→M), USPS to MNIST (U→M)

and MNIST to USPS (M→U). In particular, tasks U→M

and M→U will be evaluated under the protocols of [7].

The network backbones and basic settings are described

as follows. For the U→M and M→U tasks, LeNet [15] is

used as the network backbone due to the small-sample-size

of the training setting. Note that the images are of gray-

scale, and the pixels are of 16×16 (USPS) and 28×28 (M-

NIST), respectively. The small-scaled images are interpo-

lated to fit the large-sized images, and the single-channel

images are replicated to fit the three-channel setting. For

the remaining tasks, ResNet-50 [10] is used as the network

backbone. The mini-batch size is 32. Empirically, the pa-

rameter β of the target entropy loss in Eq. (9) is set as 1e-1

to reduce the risk of the uncertain predictions. The basic

experimental setups follow a standard set of unsupervised

domain adaptive settings [17].

In the experiments, LeNet is initialized by random val-

ues, and ResNet-50 is initialized by pre-training on the Im-

ageNet [26]. We use Adam optimizer to train all layers of

Table 3. Accuracy (%) on MNIST, USPS and SVHN datasets

(based on ResNet-50)

Method M→U U→M S→M Avg

DANN [7] 95.7±0.1 90.0±0.2 70.8±0.2 85.5

UNIT [16] 96.9±0.3 93.6±0.2 90.5±0.2 93.4

ADDA [30] 89.4±0.2 90.1±0.8 76.0±1.8 85.2

CyCADA [11] 95.6±0.4 96.5±0.2 90.4±0.3 94.2

I2I Adapt [22] 95.1±0.1 92.2±0.2 92.1±0.2 93.1

GTA [28] 95.3±0.3 90.8±0.2 92.4±0.1 92.8

ETD 96.4±0.3 96.3±0.1 97.9±0.4 96.9

the network through back-propagation. The dimension of

the bottleneck layer is set to 256.

5.2. Parameter Sensitivity and Ablation Study

The ETD method has two important hyper-parameters,

i.e., λ and ε. The parameter λ acts on the total loss function

L to balance the classification loss Ls and the transport dis-

tance based domain discrepancy Lopt. The parameter ε is

the regularization coefficient in the optimal transport prob-

lem. They correspond to the outer-loop and the inner-loop,

respectively. Both of them are assumed to be non-negative.

The parameter sensitivity of ETD is evaluated on two

datasets, i.e., Office-Home and Digit Recognition. We use

the try-and-error approach by selecting parameter values

from pre-defined sets. Office-Home have 65 classes while

Digit Recognition have 10 classes. The former dataset has a

more serious domain shift problem for UDA. Therefore, the

optimal value of parameter λ has different ranges for differ-

ent tasks as illustrated in Figure 3. Parameter λ is select-

ed from {0.01, 0.1, 0.5, 0.8, 1, 2, 5} for Office-Home and

{1, 5, 10, 15, 25, 30, 35} for Digit Recognition. The optimal

parameter value for the Office-Home dataset is λ = 0.5, and

for the Digit Recognition dataset is λ = 25. Parameter ε is

selected from the collection {0, 0.01, 0.05, 0.1, 0.5, 2} for

both Office-Home and Digit Recognition. We can see that

the optimal parameter value on both datasets is ε = 0. Ex-

perimental results present that the proposal is stable under

different parameter settings.

The ablation study is conducted on the ImageCLEF-DA

dataset. The attention network, target entropy and Kan-
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Table 1. Accuracy (%) on Office-31 and ImageCLEF-DA datasets (based on ResNet-50)

Method
Office-31 ImageCLEF-DA

A→W D→W W→D A→D D→A W→A Avg I→P P→I I→C C→I C→P P→C Avg

ResNet[10] 68.4 96.7 99.3 68.9 62.5 60.7 76.1 74.8 83.9 91.5 78.0 65.5 91.27 80.7

DAN[17] 80.5 97.1 99.6 78.6 63.6 62.8 80.4 74.8 83.9 91.5 78.0 65.5 91.27 80.7

RTN[19] 70.2 96.6 95.5 66.3 54.9 53.1 72.8 - - - - - - -

DANN[7] 84.5 96.8 99.4 77.5 66.2 64.8 81.6 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN[20] 82.0 96.9 99.1 79.7 68.2 67.4 82.2 76.8 88.4 94.8 89.5 74.2 91.7 85.8

GTA[28] 89.5 97.9 99.8 87.7 72.8 71.4 86.5 - - - - - - -

CDAN[18] 93.1 98.2 100.0 89.8 70.1 68.0 86.6 76.7 90.6 97.0 90.5 74.5 93.5 87.1

CDAN+E[18] 94.1 98.6 100.0 92.9 71.0 69.3 87.7 77.7 90.7 97.7 91.3 74.2 94.3 87.7

ETD 92.1 100.0 100.0 88.0 71.0 67.8 86.2 81.0 91.7 97.9 93.3 79.5 95.0 89.7

Table 2. Accuracy (%) on Office-Home dataset (based on ResNet-50)

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet[10] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN[17] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN[7] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN[20] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CAN[13] 50.8 71.5 74.8 58.0 70.6 70.0 57.3 52.5 75.9 69.3 56.2 80.9 65.7

CDAN[18] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

CDAN+E[18] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

ETD 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

torovich potential network are denoted by Att., Lt and KP-

N, respectively. To demonstrate the effectiveness of Kan-

torovich potential network g, we design a stacked version

of OT. Specifically, this method takes the features of three

fully connected layers as input and optimize the OT prob-

lem according to [9] independently.

5.3. Results and Comparative Analysis

The proposed method ETD is compared with the latest

domain adaptive methods, e.g., DAN [17], Residual Trans-

fer Network (RTN) [19], DANN [7], Joint Adaptation Net-

work (JAN) [20], GTA [28], CAN [13], CDAN [18], U-

NIT [16], ADDA [30], CyCADA [11], and I2I Adapt [22].

Table 1 shows classification results on Office-31 and

ImageCLEF-DA datasets. Compared with CDAN [18], the

accuracy of our method increases by 1.4% on task D→W,

and the average accuracy of our model is 86.2% which is s-

lightly lower but has basically reached the level of the most

advanced methods. The average accuracy of our method is

89.7%. Compared with the most advanced method [18], the

accuracy of our model increases by 3.3% on the task I→P,

and the average accuracy of our model is 89.7% which is

improved by 2%. The model average accuracy is superior

to the latest methods in all tasks.

Table 2 shows classification results on Office-Home

dataset. The average accuracy of our method is 67.3%,

which exceeds the SOTA methods. Since there are more

categories and larger domain discrepancy in Office-Home,

model training is more difficult. Compared with C-

Table 4. Accuracy (%) of ablation study on ImageCLEF-DA.

stacked Att. Lt KPN I→C I→P P→C P→I

� 93.4 77.2 92.0 89.2

� � 93.8 78.0 92.0 89.4

� � 95.8 78.4 94.4 91.0

� � � 95.2 78.2 95.2 92.0

� � 96.22 78.5 94.5 91.2

� � � 98.0 81.0 95.0 91.7

DAN [18], the accuracy of our model increases by 9.7% on

task Ar→Rw, and the average accuracy increases by 1.5%.

Table 3 shows classification results on Digits Recogni-

tion datasets. Experiments on this dataset consist of 3 tasks

with two network structures. It can be observed that the pro-

posed method improves the average accuracy by 2.7% and

achieves the highest accuracy in the task S→M.

In Table 4, the accuracies of stacked with Lt on tasks

P→I and P→C are improved about 1.0% by adding the at-

tention module. As for other tasks, the improvement of the

attention module is less significant. This is probably due

to the existing consistency between OT distance and the re-

sults of the learned classifier. Compared with the stacked

module with Lt increases 0.5%∼1.0% almost on all tasks.

The accuracies of KPN with Lt are further improved by

adding the attention module.
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(a) Before adaptation (Office-Home)
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(d) After adaptation (ImageCLEF)

Figure 4. Feature Visualization of Office-Home and ImageCLEF-DA. Best viewed in color.
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(b) P→I

Figure 5. Classification accuracy and loss value w.r.t. different

epochs. Best viewed in color.

5.4. Visualization and Training Stability

To present the adaptive learning process more intu-

itively, t-distribution Stochastic Neighbour Embedding (t-

SNE) [21] is used to show the changes in low-dimensional

visualization before and after the adaptation learning.

We use two tasks, i.e., Ar→Pr (Office-home) and I→P

(ImageCLEF-DA), to conduct the experiments. The result-

s are shown in Figure 4, where (a)-(b) correspond to task

Ar→Pr and (c)-(d) task P→I. Apparently, the spatial distri-

bution of different domains is quite different before adaptive

learning. It indicates that the distribution has no discrimi-

native structure and is evenly dispersed in the feature space.

However, the feature distribution shows an obvious cluster

structure after domain adaptive learning. Cluster centers of

distributions are closer than before, and the dispersion de-

gree is more similar. It means that our method significantly

changes the distribution in the feature space.

To show the training stability of the algorithm, we

present the classification accuracy and training loss w.r.t.

different epochs. We select two tasks, i.e., Ar→Pr (Office-

Home) and P→I (ImageCLEF-DA) as instances to illustrate

the performance of ETD, and present the results in Figure 5.

These results are recorded in the stage of fine-tuning, in-

stead of pre-training. The left diagram shows the experi-

ment results of task Ar→Pr. We can see that the loss values

drop very quickly and then begin to stabilize within the first

ten epochs. It tends to be stable when more epochs are used

for training. The classification accuracy fluctuates as the e-

poch size increases, but the overall trend is upward. The

right diagram shows the results of task P→I. The loss drops

rapidly at the beginning of the training process. It then drop-

s relatively smooth when more epochs are used for training,

and the overall trend is downward. The classification accu-

racy increases rapidly in the first ten epochs, and then the

speed slows down.

6. Conclusion and Future Work

In this paper, we propose an end-to-end method called

ETD to tackle the bottlenecks of OT in UDA. Specif-

ically, ETD develops an attention-aware OT distance to

measure the domain discrepancy under the guidance of

the prediction-feedback. The Kantorovich potential is re-

parameterized by deep neural networks to make the trans-

port plan of OT more precise. Further, the domain discrep-

ancy is minimized by reducing the transport costs. To make

the most use of prediction information and explore the dis-

tribution structures, the entropy criterion is applied to the

target domain. Experimental results illustrate the superior-

ity of the ETD compared with other SOTA methods. How

to apply the re-parameterized OT method to other practical

problems, such as image generation, target detection, and

object tracking, is our future work.
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